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It is a standard result in macro-dynamics that the actual law of motion of a

model economy depends on the law of motion perceived by the agents populating the

model. This yields a sort of indeterminacy of the prevailing dynamics. In particular,

the nature of the shared beliefs, not less than the deep structural parameters, will often

decide whether the actual dynamics may or may not exhibit systematic forecasting

errors (Bullard [1994]), whether it is likely to converge to a perfect-foresight steady

state and, possibly, which steady state is selected (see, for instance, the contributions

in Kirman and Salmon [1995]).

Since agent’s learning makes beliefs endogenous, introducing this feature of

human activity into macroeconomic models may avoid indeterminacy, when it can

show which types of beliefs are more likely to prevail. Moreover, if beliefs are

attracted by the set of forecast rules leading to asymptotically-correct predictions,

there is a sense in which belief formation can be regarded as self confirming.

The paper attempts at clarifying the difficulties encountered by this line of

argument, when the forecasts of a variable are generated by expectation functions

defined on a space of realized values of the variable, and learning is based on

gradient-descent procedures.  The analysis is carried out with reference to one of the

first macroeconomic models in which the problem made itself apparent. More

precisely, we reconsider the local stability of a steady state of a simple multiplier-

accelerator model of Harrodian inspiration.

As is well known, under the assumption of extrapolative growth expectations,

the macro-dynamic interaction between the instantaneous Keynesian multiplier and

the simple accelerator causes the instability of the path on which entrepreneurs are

satisfied of their decisions (‘warranted path’). This corresponds to what came to be

known as Harrod’s knife-hedge, a notion which had a profound influence on growth

theory and macrodynamics, more generally.

To justify the viewpoint adopted in this paper, it is worth recalling how Harrod

himself was inclined to stress that the average propensity to save is not generally

constant, but is more likely to be increasing in income. By implication, also the rate of

growth on the warranted path (warranted rate of growth) is generally non constant. In

particular, there may be points on a warranted path such that the warranted rate of



growth coincides with the population growth rate1. Still, in so far as the warranted

path is unstable, the actual path of the economy would be repelled from such steady

states.

This paper considers the local dynamics around steady states on a warranted

path with a view to address a number of related questions:

As a first step, we assume that agents (firms) do not know the structure of the

economy and face the problem of predicting the future income level on the base of

past realizations thereof. We identify a set of restrictions on economic structure and

expectation functions such that a steady state is stable locally, when the income

dynamics is driven by such ‘stabilizing’ expectations. Within the same framework, we

can also reproduce the known result that extrapolative growth expectations make a

steady state unstable. As emphasized by the literature on expectations and

macroeconomics, these findings define the typical, but uncomfortable situation, where

stability and instability come to depend upon the nature of exogenous beliefs.

The indeterminacy thus identified would be less disturbing if the set of

‘stabilizing expectations’ proves to be at least locally attractive in the appropriate

belief space, when the income dynamics is coupled with that resulting from the

endogenous revision of expectation functions2. In this paper belief revision takes place

through a form of gradient-descent learning, a procedure extensively applied in the

learning literature, including that on neural networks. The main findings are as

follows.

Locally, if the rate of learning is positive and sufficiently low, or is controlled

by appropriate euristics, income converges to the steady state and the parameters of

the expectation functions converge to a set on which steady states are properly

detected.

The same local analysis shows, however, that the set of ‘stabilizing

expectations’ does not attract every belief trajectory starting in its neighbourhood,

even when the definition of neighbourhood is particularly restrictive.

                                                          
1 J. Marschack, commenting on Harrod [1939], hints at this possibility in his graphical illustration of
the fluctuations of the warranted growth rate in the course of a trade cycle. See Young [1989].
2 The difficulty here is that the attempt at explaining the otherwise exogenous parameters of a prediction
rule, poses a new decision problem (e. g., the choice of a learning algorithm) and calls new parameters
into being. Thus, we are faced with an apparently-infinite hierarchy of choice problems; still, every time
we proceed further along this hierarchy, the arbitrariness of the primary choice tends to be lower and we
may be able to give a more complete explanation thereof.



This lack of attractiveness of the set of stibilizing expectations is related to the

way in which forecasting and learning are characterized within the model. Firms apply

and then adaptively revise an expectation function mapping past output realizations

into future output. However, the true function from past output relizations to future

output depends on the forecast rule in use and changes with every change of this rule.

Self referentiality of this sort implies that belief-revising firms are systematically

chasing a shifting function, except  the economy is in a perfect-foresight steady state

and the expectation function in use correctly detects such a state.

In the situation just described, learning firms do not have at their disposal large

sample relizations of a given true output function defined on the domain contemplated

by the class of the forecast rules under use. This would not be necessarily the case if

learning firms aim in the first place at knowing how the true law of motion of the

economy depends on expectations, and then use their understanding of it to make

forecasts. To clarify some implications of this point, in the final section we consider a

situation  where information on aggregate output forecasts is available, or can be

inferred from data on the aggregate capital stock and from partial knowledge of the

structural parameters. In this case, the learning environment is ‘simple’ in the sense

that firms have access  to the set of past sample realizations of the time-invariant true

law of motion of the economy. Formal results from the field of neural networks can be

used to show that the application of a (suitably defined) gradient-descent procedure to

this ‘simple’ environment can avoid the lack of local convergence of beliefs

encountered with the previous formulation of the problem.

Successful learning of the way in which expectations enter the output true law

of motion does not solve firms’ forecasting problem, but clarifies how this problem

shares fundamental properties with a co-ordination game.

The plan of the paper is as follows. Part 1 introduces a simple multiplier-

accelerator model and discusses its perfect-foresight dynamics in the neighbourhood

of a per-capita-income steady state. Part 2 is concerned with the local stability of a

steady state when the local dynamics is driven by given expectations functions. The

expectation function Ψ(⋅⋅⋅) is defined here as a function from observations (lagged

values of economic variables) to forecasts. It can be interpreted as the law of motion

perceived by the boundedly-rational agent. Part 3 considers the coupled  local



dynamics of income and expectation functions when boundedly-rational firms try to

learn from their past errors. The concluding section discusses the situation arising

when gradient-descent learning procedures are applied by firms endowed with

information on aggregate forecasts.

1. Fulfilled predictions

Let us consider a simple one-good economy with fixed prices. The existing

good can be either consumed or used as a mean of production; in this case it

depreciates at a constant proportional rate δ. Capital and labour are partial substitutes

in production. For the sake of simplicity we hold to a descriptive approach to

consumption which is partly reminiscent of Kaldor [1940]. Consumption per-capita C

depends on income per-capita y and may also depend on wealth per-capita k, which is

here identified with per-capita real capital.

Let us therefore introduce the per-capita aggregate consumption function C = C(k, y)

with partial derivatives ∂C/∂k ≡ C1 ≥ 0, ∂C/∂y ≡ C2  > 0.

There is a given number of firms, each with a fixed market share. These firms

make positive profits at the ongoing prices, so that their output is rationed by demand.

Since prices and distribution are constant, and we abstract from adjustment costs, the

desired long-run output-capital ratio γ is also constant. Still, capital adjustment takes

time and firms operate, in the short-run, under the constraint of a given capital stock.

For this reason, market demand is met in the short-run through profit-maximizing

deviations from the long-run optimal factor proportion. In what follows, a position of

the economic system is said to be fully adjusted if and only if the actual output-capital

ratio is equal to its desired level γ.

Let Kt and Yt be the aggregate capital stock and the aggregate output at time t.

A warranted path, as defined in this paper3, identifies a sequence of fully adjusted

positions {Kt, Yt} such that Yt is the good-market equilibrium output corresponding to

gross investment Kt+1 − (1 − δ)Kt.

                                                          
3 We abstract from more general definitions of a warranted path, where the initial position {K0, Y0} may
not be fully adjusted.



Since Kt can be expressed in terms of the aggregate-output prediction Ye
t, taken

at beginning of period t−1, aggregate gross investment is

Kt+1 −(1−δ)Kt = Ye
t+1/γ −(1−δ)Ye

t/γ

If population grows at the constant proportional rate θ−1, the same relation can be

written in per-capita terms as:

θkt+1 −(1−δ)kt = θye
t+1/γ −(1−δ)ye

t/γ

The equilibrium condition in the market for goods is

yt = C(ye
t/γ, yt) + θye

t+1/γ −(1−δ)ye
t/γ (1)

or, in implicit form

T(yt, y
e
t, y

e
t+1) = 0 (2)

On the assumption that the partial derivative ∂T/∂yt ≠ 0, the implicit function theorem

makes it sure that yt is a well defined function of ye
t, y

e
t+1.

yt = F(ye
t+1, y

e
t) (2.bis)

A warranted path is then obtained as the perfect-foresight dynamics resulting from the

substitution of yt, yt+1 for ye
t, y

e
t+1 into (1) or (2).

yt+1 = G(yt) ≡ [γ( yt − C(yt /γ, yt)) + (1 − δ) yt]θ−1 (3)

The corresponding formulation of the warranted rate of growth is:

g(yt) ≡ (Yt+1/Yt) − 1 = (θyt+1/yt) − 1 =(θG(yt)/ yt) − 1 (4)

At a point y on a warranted path, the  total derivative of C(⋅,⋅) with respect to y is:

dC/dy = C1(y/γ, y)/γ + C2(y/γ, y) (5)

which can be interpreted as the long-run marginal propensity to consume.

When predictions are fulfilled, the average propensity to consume is

c(y)≡C(y/γ, y)/y. The case of a constant c(y) = c corresponds to a particular situation

where dC/dy = c. We may observe, in passing, that the empirical finding of an

approximately constant ratio C/y does not mean that the function c(y) is a constant, but

may simply reflect observations in a neighbourhood of a steady state. Moreover, it

turns out that even minor deviations of c(y) from the non-generic constant case may

have relevant implications for warranted growth. In what follows, it is assumed that in

fully adjusted positions (that is, on a warranted path) a sufficiently-large (-low) per-

capita income gives rise to a savings behaviour such the warranted rate of growth

exceeds (is lower than)  the population growth rate. This fits with the stylized fact that



sufficiently higher income and wealth are normally associated to a higher propensity

to save4.  For the sake of later reference, this is stated as:

A.1. There is a finite yM such that g(y) >  θ − 1 if y > yM. There is ym > 0 sufficiently
small such that g(y) < θ − 1 if y < ym.

There is of course a continuum of ‘warranted trajectories’, that is, solutions to (3)

parametrized by a non negative initial condition y0.

y* is a positive stationary equilibrium with perfect-foresight if and only if

g(y*) ≡ γ[1 − c(y*) ] − δ =  θ − 1 (6)

y* is locally stable if G’(y*)<1 and unstable if G’(y*)>1.

If we had a constant c(y), we would be in a situation where, either positive

stationary equilibria do not exist, or there exists a continuum of them. The latter case

must be regarded as an irrelevant fluke, but the condition c(y) = c is itself non generic.

A.1 implies that c(y) is not constant; in particular, we have the following trivial

proposition:

P.1. Assume A.1. Then there exists a positive stationary equilibrium y*; that is, g(y*)
= θ − 1. The curve (yt, G(yt)) intersects the 45° line yt+1 = yt  from below at y*. Thus,
G’(y*)>1, and y* is unstable under perfect foresight. A small upward shift of c(y)
gives rise to an increase in the level of y*.

Assumption A.1 is consistent with a locally-increasing average propensity to consume

at a relatively low income y5. The possibility may arise for instance from the

aggregation of interpersonal differences in consumer behaviour, and is not ruled out

for the sake of generality. The interesting fact about a non-monotonic c(y) is that it

gives rise to the possibility of multiple steady-state equilibria. These may well

originate from small-amplitude fluctuations of c(y) around a constant value, hence

even with an approximately-constant propensity to consume for the economy as a

whole. To fix our ideas, let us consider the following case:

                                                          
4 Harrod [1939], p. 25; Kaldor [1940].
5A locally-increasing specification of c(y) gives rise to the possibility of endogenous  fluctuations of the
warranted trajectories only under the highly unrealistic assumption that per-capita output in one period
is a locally decreasing function of per-capita output in the previous period. (In fact, the required
condition is G’(y**)< −1).



A.2. There exists y** < y* such that g(y**) = θ − 1 and the curve (yt, G(yt)) intersects
the 45° line yt+1 = yt  from above at y** .

Under A.1, A.2 equation (4) has a multiplicity of stationary states. They can be

partitioned into type-y* and type-y** stationary states. The highest stationary state is

of type y*, by A1. The dynamic and comparative -static properties of a type-y** state

are described by the following straightforward proposition:

P.2. Assume A.1 and A.2. y** is locally stable (in the perfect-foresight dynamics) if
y**  γc’(y**) θ−1 < 2. This condition is necessarily fulfilled if G’(y**) > 0, as assumed
throughout in this paper. A small upward shift of c(y) gives rise to an decrease in the
level of y**.

We may observe, in passing, that the effect of a parametric change of the

propensity to consume on steady-state output depends crucially on which steady state

is selected. It is also worth stressing that assumption A.2 identifies a mere possibility,

which can not be ruled out by theoretical considerations. Thus, if a type-y** steady

state may well not exist, a y* steady state is much more in line with stylized facts and

indeed is the implicit reference point of the macro-dynamic trade cycle literature of

the forties and fifties.

2. Dynamics with fixed expectation functions

A crucial issue posed by the foregoing analysis is whether the local stability

properties of the perfect-foresight dynamics characterizing a warranted trajectory, may

reveal information of some kind on the stability properties of the dynamics which is

induced when firms do not know the true structure of the economy and make mistakes

in predictions. In particular, we may wonder about the stability property of a stationary

state like y* or y** under plausible forms of expectation formation.

Let us consider a stationary state y of the perfect-foresight dynamics yt+1 = G(yt).

Agents in the economy are boundedly rational. They locally form predictions on the

base of past observations. Let ye
t + 1 be the prediction on yt + 1 made at the beginning of

period t.



ye
t + 1 = Ψ(yt - 1, ..., yt - L) (7)

It is worth emphasizing how the first argument in (7) is yt - 1, rather than yt.

Since the capital stock can not be changed instantaneously6, investment decisions in

period t depend on ye
t + 1 and determine current demand yt. When firms form their

prediction on yt + 1 they can not observe yt.

The expectation function Ψ( ) is said to detect period k (Grandmont and

Laroque [1986], [1989], [1990]) if for any sequence   (yt-1,..., yt-L) of prime period k,

Ψ(yt-1,..., yt-L) = yt-k +1. In part 2. of this paper it is assumed that Ψ( ) detects at least

period 1; in other words, agents are prepared to extrapolate constant sequences, i. e.

Ψ(y,..., y) = y. This restriction appears to be quite weak and is equally consistent with

cautious or daring behaviour in expectation formation. For instance, while  prepared

to extrapolate a constant sequence an agent may or may not be prepared to extrapolate

a growing or periodic sequence. The assumption will be more thoroughly motivated in

part 3 of this paper.

Remark 1: On the assumption that firms extrapolate the last-observable growth performance
ye

t + 1 = yt - 1 (1 + (yt - 1 −  yt - 2) / yt - 2)
2. Thus, Ψ(yt - 1, ..., yt - L) takes the form:

Ψ(yt - 1, ..., yt - L) = (yt - 1)
3 / (yt - 2)

2.

Ψ( ) is assumed to be continuous and differentiable; its partial derivative with

respect to yt−j evaluated at (y, y, ..., y) is Ψj, for j = 1, ..., L. Since Ψ( ) detects period 1,

1
L∑ Ψj = 1. One can also write:

(ye
t+1, yt-1,..., yt- L+1)’ = Q((yt-1,..., yt-L)’).

The Jacobian matrix DQ of Q( ) evaluated at (y, y, ..., y) and here shown for

the case L=4  is:

DQ ≡ 

1 2 1Ψ Ψ Ψ ΨL L

1 0 0 0

0 1 0 0

0 0 1 0

−

















(8)

with characteristic polynomial:

                                                          
6The fact that consumption at time t depends on income at time t and meanwhile contributes to
determine the market-clearing output at the same date, reflects the simplifying convention followed in
this paper, which describes consumer decisions, the adjustment of labor input and production as
instantaneous. This assumption makes the model more exposed to dynamic instability and is therefore
admissible in the context of the present attempt at showing if and to what extent Harrodian instability is
inhibited by learning.



PQ(z) = zL − 1
L∑ Ψj z

L−j (9)

In a neighbourhood of y, the actual dynamics driven by the expectation

function (7) is obtained from the equilibrium condition (1) or (2) substituting for ye
t+1

and ye
t with the expressions Ψ(yt−1,...,yt−L) and Ψ(yt−2,..., yt−L−1), respectively.

yt = C(Ψ(yt−2,..., yt−L−1)/γ, yt)+θΨ(yt−1,..., yt−L)/γ −(1−δ)Ψ(yt−2,..., yt−L−1)/γ (10)

The actual dynamics can be equivalently written

(yt, yt−1,..., yt−L)’ = W(yt−1, yt−2,..., yt−L−1)’ (11)

Since Ψ() detects period 1, (y, y, ..., y) is a stationary point of (11). The characteristic

polynomial of the Jacobian matrix of (11) evaluated at (y, y, ..., y) is:

PW(z) = zL+1 − 1
L∑ Ψj z

L−j[θz−(1−δ−C1)]/[γ(1− C2)] (12)

where C1 ≡ C1(y/γ, y) and C2 ≡ C2(y/γ, y).

The  instability of the perfect-foresight dynamics (3) around a steady state like

y** is established here following upon a suggestion developed for a different type of

environment by Grandmont and Laroque [1986], [1989], [1990] and Grandmont

[1994].

P.3. Let y be a locally stable stationary equilibrium of the perfect-foresight dynamics
(3). Assume that the expectation function (7) detects period 1. The stationary
equilibrium (y, y, ..., y) of the actual dynamics with learning induced by this
expectation function is unstable.

Proof: Since y is locally stable under perfect-foresight, and realism requires θ > 0, 0 < C2 <
1, 1 − δ − C1 > 0,  it must be the case that:
0 < G’(y) = [γ(1 − C2) + 1 − δ − C1]θ−1 < 1 and therefore [θ−(1−δ− C1)]/[γ(1− C2)] > 1.
The expectation function Ψ() detects period 1, hence 1 is a root of PQ(z). Re-arrangement of
(9) yields − 1

L∑ Ψj z
L−j = PQ(z) − zL .

Thus, PW(z) = zL+1 + (PQ(z) − zL) [θz−(1−δ− C1)]/[γ(1− C2)]. At z = 1 this expression boils
down to:  PW(1) = 1 − [θ−(1−δ− C1)]/[γ(1− C2)] < 0
Let z vary on the real line. If the modulus of  z is sufficiently large, the term zL+1  dominates
the sign of the polynomial PW(z), hence there exists a real number z° > 1 such that PW(z°) > 0.
Since PW(z) is a continuous function of z, it must cross PW = 0 at a point z > 1 of the real line.
This proves the proposition.

Remark 2: The proof of P.3 relies upon the implicit assumption that the number of
arguments of the expectation function (7) is finite. However, this assumption can be dropped

without invalidating the instability of (y, y, ..., y) stated by P.3. For instance, let t
ey  be the

prediction on yt  made at the beginning of period t, and assume:



t
ey  = λ yt−1 + (1 − λ) t 1−

ey  = i 1=
∞∑ λ yt−i (1 − λ)i − 1; ye

t+1 = t
ey

This assumption on expectations is clearly consistent with (7) if L = ∞. It can be shown that,
if y is locally stable under perfect foresight (like in P.3), then it is unstable in the actual
dynamics induced by the adaptive expectations specified above.

In synthesis, and ruling out totally unplausible circumstances, a steady state of type

y** is unstable for any expectation function of the form (7). We now turn our

attention to a steady state like y*.

Let q ≡ θ / γ(1- C2) > 0; r ≡ − (1−δ− C1) / γ(1- C2) < 0.

Pw(z) can be written as:

Pw(z) = zL+1 − qΨ1z
L − 1

L-1∑ ( qΨi+1+ rΨi) z
L − i − rΨL

P.4 Let y be an unstable stationary state of the perfect foresight dynamics (4). Assume
that the expectation function Ψ( ) detects period 1, that each partial derivative Ψj,
(with j = 1, ..., L) evaluated at y is sufficiently close to 1/L, and L is sufficiently large.
The stationary equilibrium (y, ..., y) of the actual dynamics induced by Ψ( ) is locally
stable.

Remark 3: Since y* is unstable under perfect foresight and realism requires G’(y) > 0, then
G’(y) > 1, that is 0 < q + r < 1.

Proof of P.4: Under the stated assumptions, for any z on the complex plane, the following
inequality holds true.

zL+1 − Pw(z)=qΨ1z
L + 1

L-1∑ ( qΨi+1+ rΨi) z
L − i + rΨL ≤

qΨ1zL+ 1
L-1∑ (qΨi+1 + rΨi)zL − i + rΨL≡ Z(z). Since 0 < q + r < 1, Z(1) < 1, thus

implying that zL+1 − Pw(z) < 1 for any z on the unit circle, or equivalently that Pw(z) has
no roots on the unit circle. If Pw(z) had a real or complex root z on z> 1, then, as a
consequence, zL+1 − Pw(z) > 1 at z. That this can not be the case follows from the fact that,
under the stated assumptions, zL+1 grows faster than Z(z) as z increases on z≥ 1. This
completes the proof.

The expectation functions of the form (7) with partial derivatives evaluated at

y* which meet the assumptions stated under P.4 are called in this paper ‘stabilizing

expectations’7. Such expectations share the property of being little responsive to

                                                          
7The local stability of y* under ‘stabilizing expectations’ would justify comparative-statics
considerations. In particular, a small upward shift of the propensity to consume would effectively
increase the steady-state output per capita. We would have here a long-run equivalent of the standard



single deviations from average observation. The following remark clarifies how

extrapolative expectations are not ‘stabilizing’.

Remark 4: Assume that Ψ(yt - 1, ..., yt - L) corresponds to the case of extrapolative expectations
as defined by remark 1. Then L = 2, Ψ1 = 3, Ψ2 = −2. The Jacobian matrix of (11) evaluated
at y* is

3 3 2 2

1 0 0

0 1 0

q r q r− −















and has at least one eigenvalue outside the unit circle for any plausible value of q and r
meeting the restriction at remark 3.

Whether the prevalence of stabilizing expectations can or can not be regarded

as the relevant case is a completely open issue. To gain some information on this point

we drop the assumption that expectation functions are fixed and detect period 1 with a

view to considering the coupled (local) dynamics of income and expectation

functions, when the latter are revised in the light of the past forecasting errors. It is to

this task that we now turn.

3. Adaptively changing expectation functions

3. 1.

Let us choose a local parametrization of the expectation functions (7) in terms

of their partial derivatives Ψj at (y*, ..., y*). An expectation function held at t-1 is

locally identified by a vector of expectation parameters, or weights (Ψ1, t-1, ..., ΨL, t-1):

ye
t+1 = Ψ1,t-1 yt-1 + ...+ ΨL,t-1 yt-L (13)

For the scope of the present analysis we can also linearize the per-capita consumption

function around y*. Re-defining the partial derivatives C1 and C2 at y*, we have:

C = σ + C1k + C2y (14)

Recalling (1), the aggregate output yt  as function of the forecasts ye
t, y

e
t+1 is then:

yt = (σ + (C1 + δ − 1) ye
t /γ + θ ye

t+1/γ)/(1− C2)  (15)

                                                                                                                                                                     
Keynesian multiplier in a model with endogenous investment. A small parametric increase of the
propensity to consume may not permanently drive the economy out of its balanced-growth path (as



or, equivalently,

yt = p + r j 1
L
=∑ Ψj,t-2 yt-1-j + q j 1

L
=∑ Ψj,t-1 yt-j (16)

where p ≡ σ /(1− C2), r ≡ (C1 + δ − 1) / (γ (1− C2)),  q ≡  θ / (γ(1− C2)); moreover, the

restatement of remark 3 yields: 0 < q + r < 1.

Learning, if any, takes place through the observation of the past squared prediction

error Et 
8.

Et = 1/2 (ye
t − yt)

2 (17)

This information induces a revision of the vector Ψ to be used in the next prediction

ye
t+2.

Ψj ,t  = Ψj ,t-1 − h ∂ Et /∂ Ψj ,t-1 j = 1, ..., L (18)

This corresponds to a gradient-descent rule widely used in the learning literature,

where the adjustment parameter h is often referred to as the rate of learning (Hassoun

[1995], Mehra and Wah [1992]). In words, the information that an increase of Ψj,t-1

would have increased the squared error E observed at t, is taken as evidence that the

appropriate level of Ψj ,t  should be lower than Ψj ,t-1.

The learning rule interprets yt as the ‘target’ of the prediction ye
t. To

understand the nature of this ‘target’, it is worth stressing how the true model of the

world is unknown and subjective forecasts affect the observed realizations of y. More

formally, the arguments in the output true law of motion (2) and the definition of

expectation function (7) show that the actual function mapping the output realizations

(yt-1, ..., yt-L) into current output yt changes with every change in the expectation

function used to produce the forecast ye
t+1 and/or ye

t. Self-referentiality of this sort

implies that yt is not the ‘true’ target of the prediction ye
t. In other words, learning

firms do not have at their disposal sample relizations of a given true output function

defined on the domain contemplated by the class of forecast rules under use. Such a

’true’ function yt = f(yt−1, ..., yt−L) simply does not exist. For ease of reference, learning

environments with this property are here referred to as ‘complex’ and are

distinguished from ‘simple’ environments, where agents can observe the true targets

                                                                                                                                                                     
implied by Harrod), but drive it to a growth path with identical growth rate and a higher income per
capita (as opposed to what is the case in Solow’s growth model).
8It may be worth observing that under any plausible circumstance, a perfect-foresight trajectory (3) can
not have oscillations of any kind, periodic or aperiodic (see above, footnote 5). Thus, if {yt} is a
bounded trajectory and Et converges to zero, then 

t
lim
→∞

Ψt = yt+1 = yt = y*. In other words, if {yt} does

not explode, then Et converges to zero only if 
t
lim
→∞

 yt = y*.



of their acts. We shall see below  (section 4) how information on past aggregate

expectations and a properly defined learning task can change the environment from

complex to simple.

Complexity as defined above implies that the learning rule (18) has a further

property deserving special attention. This is that firms are not in the position of

computing the ‘true’ derivative ∂E/∂w in (18), but only an approximation thereof. A

plausible assumption is that firms disregard the unknown relation between the signal

yt and the vector Ψ. Thus, yt is treated as if it were an exogenous signal (this

approximation has a robust motivation in ‘large’ economies) and the learning rule (18)

is approximated by:

Ψj ,t  = Ψj ,t−1 − h(ye
t − yt) yt−j−1 j = 1, ..., L (19)

The coupled dynamics of income and expectation functions is then locally described

by the following system of 3L + 1 equations:

yt = p + r j 1
L
=∑ Ψj,t−2 yt−1−j + q j 1

L
=∑ Ψj,t−1 yt−j (20.1)

yt -j = yt-j j = 1, ..., L (20.2)

Ψj ,t  = Ψj ,t-1 + h (yt − j 1
L
=∑ Ψj,t-1 yt-j-1) yt - j - 1 j = 1, ..., L (20.3)

Ψt -j = Ψt-j j = 1, ..., L (20.4)

This is more compactly written as

x t = Vh(x t − 1) (21)

When h = 0 expectation functions are fixed and we are back to the case already

considered by proposition 4 of section 2. We call {Ψ* } ⊂ ℜL the set of vectors of the

form (Ψ1, ..., ΨL)  such that y* is locally stable in the actual dynamics (20.1), (20.2)

under the restriction Ψt = Ψt-1 . {Ψ* } corresponds to the set of stabilizing

expectations, introduced in our comment to proposition 4 of section 2. Clearly, every

vector in {Ψ* } is such that ∑ Ψj = 1; hence {Ψ* } is a subset of the unit simplex SL of

ℜL. The question posed at the beginning of this paper amounts to asking whether, with

endogenous expectation formation, hence at h > 0, the local dynamics (20) drives

expectation parameters to the set of stabilizing expectations, and, simultaneously,



income to the steady state y*. More formally, the question is whether the set Q ≡ y* ⊗

{ Ψ* , Ψ* }, where y* ≡ (y*, ..., y*) ∈ ℜL+1 and Ψ*∈ {Ψ* }, is a local attractor of the

dynamics (20) under h > 0.

 A moment reflection reveals that this can not be the case. If initial beliefs are

described by any expectation vector Ψ0 in SL, then (y*, ..., y*, Ψ0, Ψ0) is a rest point

of (20). The reason is, of course, that, a stationary state would be detected without

error by any such expectation function Ψ0; thus, firms would not have any incentive to

revise their beliefs.

The above property is mirrored by a salient feature of the Jacobian matrix J(h)

of (21) evaluated at a point in Q.

J(h) = 
A B

F( ) Gh h( )







where A ∈ ℜ(L+1) ⊗ ℜ(L+1), B ∈ ℜL+1 ⊗ ℜ2L, F(h) ∈ ℜ2L ⊗ ℜL+1, G(h) ∈ ℜ2L ⊗ ℜ2L.

These sub-matrixes are shown below for the case L = 2.

A = 

q q r r1 2 1 2

1 0 0

0 1 0

Ψ Ψ Ψ Ψ+















B = 

qy qy ry ry

0 0 0 0

0 0 0 0

















F(h) = 

hyq hy q r hy r

hyq hy q r hy r
1 2 1 2

1 2 1 2

1 1

1 1
0

0

0

0

0

0

Ψ Ψ Ψ Ψ
Ψ Ψ Ψ Ψ

( ( ) ( )

( ( ) ( )

+ − −
+ − −





















G(h) = 

1 1 1

1 1 1

1 0 0 0

0 1 0 0

2 2 2 2

2 2 2 2
+ − −

− + −



















h q y h q y hr y hr y

h q y h q y hr y hr y

( ) ( )

( ) ( )

P.5  At any h ≥ 0, z = 1 is eigenvalue of J(h) with multiplicity at least L − 1.

Proof of P.5: Let ei be the ith unit-co-ordinate (column) vector in ℜ3L+1:
ei

T ≡ (0... 0 1 0 ... 0)



It can be easily checked that for i = 2, ..., L (eL + i − eL+1+i)
T is a row eigenvector of J(h)

associated to the eigenvalue z = 1. 

For trajectories {x t} generated by (21) with initial conditions in a ‘spherical’

ε-neighbourhood Uε around Q we prove the following result9:

P.6  Assume that each coefficient Ψj j = 1, ..., L in the matrix J(h) is sufficiently close
to 1/L, and L is sufficiently large.  There exist ε > 0 and h > 0 sufficiently small such
that the law of motion (21) restricted by 0 < h < h induces the following properties on
every trajectory {  x t }  with generic initial condition in Uε:
(a)  the first L + 1 elements of x t specifying the co-ordinates of the recent income

history (yt − 1, ..., yt − L − 1) converge to (y*, ..., y*);
(b)  the last 2L elements of x t specifying the co-ordinates of the expectation functions

(Ψt − 1, Ψt − 2) converge to a vector (Ψ, Ψ) in SL ⊗ SL.

In words, for appropriate levels of the learning parameter h the coupled local

dynamics of income and expectation functions drives income to the stationary state y*

and forces expectations functions to detect period 1, asymptotically.

Properties (a) and (b) above are revealed by the following result.

P.7 Assume that each coefficient Ψj j = 1, ..., L in the matrix J(h) is sufficiently close
to 1/L, and L is sufficiently large.  There exists h > 0 such that for  0 < h < h the
2L+2 eigenvalues of the Jacobian matrix J(h), that are left undetermined by P.5, have
modulus less than 1.

Proof of P.7: The eigenvalues of J(h) are continuous functions of the coefficients of the
characteristic polynomial of J(h); in turn, these coefficients are continuous functions of h.
The eigenvalues of J(h) can then be identified by the vector complex-valued function z(h).
Consider the Jacobian matrix J(0). This has eigenvalues z = 1 and z = 0, both with
multiplicity L. The remaining L + 1 eigenvalues of J(0) are the roots of the characteristic
polynomial of the sub-matrix A. The argument used in the proof of P.4 shows that under the
stated assumptions the modulus of these L + 1 eigenvalues is bounded away from 1 from
above. Let us write the L eigenvalues z = 1 of J(0) as zi(0) = 1, i = 1, ..., L. P.5 implies that
there exist zi(h) i = 2, ..., L such that zi(h) = 1 at h ≥ 0. Appendix A proves that at h ≥ 0 and
sufficiently small: (i) z1(h) is a real eigenvalue of J(h); (ii)   z1(h) decreases locally as h
increases from h = 0. Proposition P.7 is then implied by continuity of z(h). 

                                                          
9 The ‘spherical’ ε-neighbourhood Uε is the set of points in ℜ3L+1 with distance less than ε from  Q.



The choice of  initial expectation functions detecting period 1, but outside the

set of stabilizing expectations, shows that there are trajectories of (21) starting from

points arbitrarily close to Q and which are not attracted by this set. We can at best

expect convergence to Q only if the above possibility is ruled out. To this end it is

worth introducing the notion of a cylindric ε-neighbourhood.

Definition: The cylindric ε-neighbourhood Nε of Q is the set of vectors in Uε that are
orthogonal to Q.

The analysis of the coupled dynamics of income and expectation functions

described by (21) is completed by the following negative result, extending to the

present framework an argument originally developed by Fuchs [1979] for the case

where (unlike here) expectation functions are restricted to detect period 1. The

argument exploits the fact that the local trajectories of (21) do not approach Q

orthogonally.

P.8 Under the conditions of P.6 and P.7 there exist trajectories { x t} of (21) with
initial conditions in Nε that do not converge to Q.

Proof of P.8: As it can be easily verified, the proposition is false only if the subspace
spanned by the eigenvectors of J(h), associated to the eigenvalues with modulus less
than 1, is orthogonal to Q. The orthogonality requirement is illustrated in fig. 1. It is
trivially verified at h = 0, but not at h > 0.  

3.2.

As implied by the conditions stated in P.6 and P.7, an excessively high rate of

learning h is a potential source of the lack of (local) convergence of yt to y*.

Formal criteria for determining the time-varying learning rate which is optimal

for fast convergence rely upon the knowledge of the true derivative ∂E / ∂Ψj. Partly

because these criteria are computationally expensive10, or because the knowledge in

                                                          
10 Cf.  Hassoun [1995], p. 211-13 and the literature quoted therein.



question is not even available in ‘complex’ environments, various euristics have been

suggested for the automatic control of the learning rate by means of rules of thumb.

A suggested euristics is that a sign reversal of the approximated derivative

∂E/∂Ψj, hence of the prediction error (ye
t − yt), is taken as evidence of a too high

learning rate (Hassoun[1995]). It is worth observing in this respect how the sign of the

error (ye
t  − yt) determines the direction in which the expectation coefficients Ψj are

revised. Thus, a sign reversal of the prediction error signals an incoherence of the

adjustment process and suggests a more cautious implementation thereof. Under this

interpretation, incoherence should be detected not only by the number of sign

reversals, but also by the amplitude of the oscillations of (ye
t − yt).

Effective control on the learning rate is achieved in our simulations by an automatic

determination of the learning rate reflecting the above euristics11 (fig. 2).

4.

A distinctive feature of the approach followed in section 2 and 3 is that the

boundedly-rational firms do not try to model explicitly how the aggregate-income

dynamics depends on aggregate forecasts. Agents use instead expectation functions

mapping directly the recent history of y into the expected future level of the same

variable. We have seen how this approach is bound to imply a lack of attractiveness of

the set of stabilizing expectations when firms try to learn from their past errors.

                                                          
11 We simulate a model economy where ht is substituted for h in (18), (19), (20), and ht is defined as:

ht  = 

∑

∑

−

−

t

0
s

e

s

t

0
s

e

s

y

y )(

y

y
hm + h0 (22)

hm + h0 and h0 identify the upper and lower bound on ht, respectively. A recursive formulation of ht is

easily obtained by means of the auxiliary variables u and v.

ht = (ut / vt) hm + h0 (23.1)

ut = ut−1 + (ye
t − yt) (23.2)

vt = vt−1 + (ye

t − yt) (23.3)



Although a formal proof  would be cumbersome, it should be easy to see that the same

result carries over to learning environments which are more general than (21) in that

initial expectations functions are allowed to differ across firms.

A strictly-related implication of this approach to forecasting is that learning

firms do not have at their disposal large sample relizations of a given true income

function defined on the domain contemplated by the class of the forecast rules under

use. This is because the actual map from (yt − 1, ..., yt − L − 1) to yt depends on which

(aggregate) expectation function is in use, hence the map changes, as long as firms are

still learning.

In this section we contrast the above situation with that arising when firms try

to model explicitly how the aggregate-income dynamics depends on expectations. In

this case the forecasting problem can be separated into a learning and a coordination

task. Unlike the situation described in section 3, the learning task admits a formulation

where firms are applying the gradient-descent procedure in  a ‘simple’ environment,

that is, one in which they can compare the output of their learning algorithm with its

true target. It is as if firms were in a situation of supervised learning.

Let us therefore assume that agents in the model economy have access at time t

to the time series of the aggregate output forecasts {ye
t, y

e
t−1, ..., y

e
t−L, ...} or that they

can infer this information from the time series of k and from their knowledge that the

desired output-capital ratio γ is uniform across firms. For the scope of the present

discussion we may well assume also that firms correctly perceive that true law of

motion of aggregate income has the general form yt = F(ye
t+1, ye

t), but they do not

know about the functional form of F(⋅,⋅). A weaker, but equally admissible

assumption, is that firms wrongly perceive an income function of the general form yt =

Φ(ye
t+1, y

e
t, st) with s representing some (possibly vector valued) characteristics of the

model economy. In this case firms would have to learn, among other things, that y

does not depend on s.

That in the stated conditions firms can in principle approximate locally the

function F(⋅,⋅) to an arbitrary degree of accuracy, is stated by the following result

(Hornik et al. [1989]).

Theorem (see Haykin [1995], p.182): Let ϕ(⋅) be a non constant, bounded and
monotone-increasing function. Let Ip denote the p-dimensional unit hypercube[0,1]p.
The space of continuous functions on Ip is denoted C(Ip). Then, give any function F ∈



C(Ip) and ε > 0, there exists an integer M and sets of real constants αi , θi, wij, where i
=  1, ..., M and j = 1, ..., p such that we may define

f(x1, ..., xp ) = 
i

M

=
∑

1

αi ϕ(
j

p

=
∑

1

 wij xj − θi) (24)

as an approximate realization of the function F, that is,
 F(x1, ..., xp ) − f(x1, ..., xp ) < ε  for all (x1, ..., xp ) ∈ Ip.

Mathematical architectures of the form (24), where ϕ(⋅) is the sigmoid

function, M is ‘sufficiently large’ and the coefficients αi  and wij  are sequentially

apdated by means of an appropriate gradient descent procedure (see below), have been

proved to yield successful implementations of the approximation (24), provided that

the number of point realizations (x1, ..., xp, F(x1, ..., xp )) used to ‘train’ the coefficients

αi  and wij  is sufficiently large with respect to M. The fact that the derivatives of the

function f() built with this procedure have been proved to approximate the derivatives

of the ‘target’ function F() (Hornik et al. [1990]) gives an explanation of the good

extrapolation properties of f() in the neighbourhood of the training points (x1, ..., xp,

F(x1, ..., xp )).

The gradient-descent procedure for the training of each coefficient wij  has the

familiar form (the same procedure applies to αi):

w(t) = w(t − 1) − ∂E(t − 1) / ∂w(t − 1) (25)

where E(t − 1) is the square error

E(t − 1) =  (½)[ f(x1(t − 1), ..., xp(t − 1)) − F(x1 (t − 1), ..., xp(t − 1))]2

and the index t refers here to the number of training examples. We may observe, in

passing, that given the ‘simple’ nature of the learning task, firms are in the position of

computing the true derivative ∂E / ∂w.

Constraints on the capacity of  (25) to generate coefficients with the desired

approximation properties are posed in particular by the sample size (number of

examples) of the training set12.

To sharpen the contrast between the situation in the focus of this section and

that considered in sections 2. and 3., it is worth expanding upon some implications of

the envisaged possibility that firms come to learn the true law of motion (2.bis),

namely, yt = F(ye
t+1, y

e
t).

                                                          
12 On this and other problems see, for instance Haykin [1995], Hassoun [1995].



In the first place, firms knowing (2.bis) can easily compute the perfect-

foresight dynamics (3) and know about the stability properties of it.

In the second place, and more importantly, the knowledge of the true law of

motion (2.bis) makes firms’ forecasting and decision problem similar, in fundamental

respects, to  a tacit co-ordination game. Firms, although playing non co-operatively,

would be aware of their common, rather than conflicting, interests (recall that market

shares are fixed). This can be identified with the selection of behaviours leading to a

persistently high aggregate income. The analysis of this game-like situation is well

beyond the scope of this paper. Still, it may be worth observing how the perfect-

foresight high-income steady state y* would presumably stand out as a salient

equilibrium of the game: ‘one that stands out from the rest by its uniqueness in some

conspicuous respect’ and which is unique ‘in some way the subjects will notice,

expect each other to notice, and so on’13.

Should we replace our toy representation of a model economy with a less

extreme characterization thereof, agents’ attempts at (a) understanding of how

expectations feed in to the true law of motion and (b) solving co-ordination problems

would presumably have much more controversial outcomes. The fact remains,

however, that (a) and (b) are conceptually separate activities, a property which is

concealed by the modelling approach to forecasting and learning considered in section

3.

Appendix A

Let us consider the matrix J(h) of section 3. Tedious, but trivial, calculations yield the following:

Proposition 9: For any given real scalar z1, let the real scalars α( z1) and h(z1) be determined by:

α( z1) = [z1
L+1 − z1

LqΨ1 − z1
L−1(qΨ2 +  rΨ1) −  z1(qΨL + rΨL − 1) − rΨL] / Ly*(  z1q + r)

h (z1) = α( z1)( z1
2 − z1)(1/y*) ⋅

⋅[ z1
LqΨ1 + z1

L−1(qΨ2 + (r − 1)Ψ1) + ⋅⋅⋅ + z1(qΨL + (r − 1)ΨL − 1)+(r − 1)ΨL + α( z1)Ly*(  z1(q − 1) + r)]− 1

Then, the vector in  ℜ3L+1

(z1
L, z1

L−1, ..., z1, 1, α( z1) z1, ..., α( z1) z1, α( z1), ..., α( z1))
T

(where T denotes transposition) is the column eigenvector of J(h(z1)) associated to the eigenvalue  z1.

                                                          
13 Sugden [1996], p. 249.



We can now state the main result of this appendix.

Proposition 10:
(i)  h(1) = 0; α* ≡ α(1) = [(q + r)− 1 − 1] / y* > 0.
(ii)  Assume that each coefficient Ψj j = 1, ..., L in the matrix J(h) is sufficiently close to 1/L, and L is

sufficiently large. There exists a real scalar π > 0 sufficiently small, such that h(z1) and α (z1) are
invertible  functions on the domain [1 − π, 1], with h(z1) ≥ 0, α (z1) > 0.and h(z1) > 0 if z1 ≠ 1.

Proof: Statement (i) is directly obtained from the definitions of h(z1) and α (z1) using the fact that from
the definitions of y* and J(h) we have: 0 < q + r < 1;  ∑Ψj  = 1.
To prove statement (ii)  we may first notice that, since q > 1, 0 < q + r < 1, then for Ψj sufficiently close
to 1/L (j = 1, ..., L) there exists π > 0 such that α (z1) and h (z1) are C1 functions (are continuous and
have a continuous derivative) on the domain {z1 > 1 − π}.
The sign of ∂α (z1) / ∂z1 , evaluated at z1 = 1, is determined by the sign of:

[L+1 − LqΨ1 − (L−1) (qΨ2 +  rΨ1) − (L−2)(qΨ3 +  rΨ2) − ⋅⋅⋅ − (qΨL + rΨL − 1)](q + r) − q[1 − (q + r)]

The sign of this term is positive for Ψj sufficiently close to 1/L, j = 1, ..., L and L sufficiently large. This
is shown by the fact that, when each Ψj tends to 1/L, the above expression converges to:

[L+1 − q −  (q +  r) (L−1)/L − (q +  r) (L−2)/L − ⋅⋅⋅ − (q + r)/L](q + r) − q[1 − (q + r)]

The sign of ∂h(z1) / ∂ z1 , evaluated at z1 = 1, is determined by the sign of the expression:

α* (q + r − 1)(1 + y*α*L)/ y* < 0

These findings reveal that h(z1) is monotonic decreasing, α (z1) monotonic increasing on [1 − π , 1],
proving (ii) . 

Corollary: There exists h, 0 < h ≤  h(π), such that at every h in the interval (0 , h) z1 is a real
eigenvalue of J(h), with modulus less than 1.
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1.a

Fig. 1.a and 1.b illustrate the implications of the non orthogonality between  the set Q
(bold segment) and the trajectories of (21) approaching this set. Fig. 1.a shows the co-
ordinates Ψ1 and Ψ2 of the points in the intersection between Nε and the plane through Q
which has every y co-ordinate fixed at y*, and every  Ψ co-ordinate, except Ψ1, Ψ2 , fixed at
1/L.



1.b

Fig. 1.b shows the co-ordinates yi and Ψi of the points in the intersection between Nε and the
plane through  Q (bold segment) which has every y co-ordinate equal to y*, except yi , Ψi +
Ψj = 2/L and every other Ψ co-ordinate equal to 1/L.



2.a



2.
Figures 2.a, 2.b illustrate how the ability to learn is conditional upon a positive, but sufficiently low learning
rate h. In fig. 2.a the trajectory {yt, kt} first approaches and then visits a small neighbourhood of a closed orbit
around (y*, y*/γ). The trajectory is eventually repelled from the orbit. In fig. 2.b the learning rate at t = 0 is
ten times larger than in fig. 2.a, but is controlled through the mechanisms explained in the text and
formalized in footnote 11. Fig. 2.b shows a {yt, kt} trajectory eventually converging to (y*, y*/γ).


