Social Networks and Efficient Evolutionary
Selection in Common Interest Games. Three
Simple Models

Stefano Vannucci



1. Introduction

In the last decade or so there has been a remarkable growth of interest in “informal”
coordination and decision procedures. This is arguably due to a newly established large
consensus on the pivotal role of institution building processes as combined with a
growing appreciation of the limited effectiveness of a simple-minded “top-down”
approach to institutional reforms. Moreover, the now widely held view that incomplete
contracts are indeed a pervasive reality provides additional theoretical arguments for
focussing on the role of trust and informal agreements or conventions in determining the
actual outcomes of contractual arrangements. Be it as it may, there seems to be now a
largely shared presumption that social networks arising from memberships in certain
associations, organizations or communities might positively affect the efficiency of
economic and political institutions. If true, that effect would obviously contribute a
significant factor to the explanation of well-known - and sometimes striking — examples
of differential performance concerning either private firms or public agencies operating
in different areas under largely similar legal frameworks. Also, it would suggest that
certain social networks might indeed embody a positive externality, thereby implying a
clear policy prescription to the effect that, ceteris paribus, the relevant associations should
be encouraged and supported in any suitable way by public agencies.

Thus, the present paper tentatively probes the idea that some “informal” interaction
structures and decision rules might indeed enhance the performance of ‘‘formal’
institutions. This is done by treating the working of institutions as a coordination
problem, and by modelling the role of certain social networks as effective coordination
devices. In order to accomplish this task, a few basic simplifying assumptions and
modelling choices are made concerning social networks and the coordination problem to
be solved. Indeed, the following strong restrictions and assumptions will be introduced
below:

* “horizontal’ social networks of civic associations are singled out for analysis : this
restricted focus will help us to stick to a reasonably specific and especially plausible case
( see e.g. Putnam(1993) for a most inspiring case study on the putative efficiency-
enhancing impact of “civic” social networks on local political institutions ) .

e social networks of civic associations are taken to result in a set of repeated pure
coordination (PC) games i.e. games involving coordination efforts but no relevant
conflicts of interest : these are in a sense the simplest interactions that can be safely
expected to evolve towards efficient outcomes with no need whatsoever for explicit,
formal decision rules. Therefore, “horizontal” social networks are modelled as certain
labelled hypergraphs, having players as nodes, associations as hyperedges, and certain
sets of (repeated, symmetric) PC games as labels of hyperedges.

e the coordination problem to be solved is represented by means of a recurrent
common interest (CI) game of the Stag Hunt variety, namely a game with a unique



unanimously preferred outcome and at least another — inefficient but possibly less risky
or risk-dominant- symmetric strict Nash equilibrium. The underlying intuition is of
course that a smooth functioning of the relevant institution is most desirable for each
player, but requires adoption of “cooperative” behaviour, which turns out to be
ineffective and costly if some player “defects”.

Under the foregoing assumptions, the general issue of our concern on the possible role of
social networks in improving the performance of economic and political institutions
reduces to a problem in reverse comparative statics, namely: by what means players
engaged in a set of repeated PC games could be plausibly more successful than their
“socially disconnected’ counterparts in coordinating on the efficient outcome of a
recurrent Stag Hunt CI game ?

Therefore, our basic issue is converted into a certain equilibrium selection problem, i.e.
the “selection” of the efficient outcome in a recurrent Stag Hunt game ( we recall here
that a recurrent game is a game repeatedly played with varying opponents) . Moreover,
we confine ourselves to simple evolutionary models, endorsing the now widely held view
that evolutionary reasoning is by far the most promising approach to equilibrium
selection. This paper presents three simple evolutionary selection models. Each of them
provides a distinct mechanism that delivers a social-network-based “efficient selection”
of sorts in a recurrent CI game (though — as we shall see below — the notions of
“selection” and “evolutionary” are admittedly to be taken in a quite broad sense as far as
our third model is concerned).

The first mechanism relies on opponent-discriminating behaviour within interactions:
strategies can evolve that selectively cooperate with their copies while defecting against
“others”, thereby undermining (semi-neutral) evolutionary stability of inefficient
strategies. Here, thick social networks operate as reliable information transmission
channels that effectively help a large population of farsighted players to tell
“cooperators” from “defectors”.

The second mechanism is based upon the hypothesis that under certain conditions -
involving a population of “busy” boundedly rational agents that play simultaneously the
Stag Hunt and many similar and hardly-distinguishable (CI) games — playing schemas
(i.e. families of strategy-types, as opposed to strategies ) are the relevant replicating
units. Whenever this is the case, it is easily shown that — in a noisy environment —
“horizontal” social networks can favour the selection of the efficient fully “cooperating”
state as uniquely stochastically stable for an underlying monotonic dynamics even if the
inefficient equilibrium of the Stag Hunt is risk-dominant. Here, social networks resulting
in a suitably large set of repeated PC games provide a favourable environment for the
evolution of “cooperative” playing schemas within recurrent CI games. This effect works
by lowering the threshold frequency of “cooperating” players required for fixation of
cooperation in the ultralong run (i.e. the time horizon required for mutation-driven
transitions between absorbing states ).

The third mechanism deals with a scenario where boundedly rational players are
repeatedly matched to play a 2x2 Stag Hunt game, and at each round — due to an inertia
factor — have to stick to a fixed strategy of their choice. Here, players are endowed with
aspiration levels that are determined by their participation patterns in the given
“horizontal” social network (namely, a player’s aspiration level is the projection of her



expected payoff from efficient play of the repeated PC games that correspond to her
memberships). We focus on the short run adjustment dynamics which obtains when
players stick to the current strategy if their current payoff is at least as high as their
aspiration level, and shift to the other one if not. This amounts to a non-monotonic non-
deterministic selection dynamics, and the resulting short run evolution of population
states is clearly dictated by the prevailing profile of aspiration levels. It can be shown
that for (almost) any profile of aspiration levels the fully efficient “cooperating” state is
absorbing (indeed the only absorbing state), while the fully “defecting” state is not.
Hence, the given short-run dynamics — while not providing a full-fledged efficient
selection result- embodies a definite pro-efficient bias.

The paper is organized as follows. Section 2 introduces the models and the results.
Section 3 discusses some related literature. Section 4 concludes with some remarks on the
significance and limitations of our results. The (simple) proofs are confined to an
appendix.

2. Models and results

Let N be a non-empty set (the player set) endowed with a measure p: P(X) — R (if N is
finite, p is the usual counting measure ; we also assume #N>2 in order to avoid
trivialities). We say that (N,u) is large if p is non-atomic i.e. for any S N s.t. u(S)=0 a
TN exists s.t. 02(T) < p(S). Let us now consider a set I' of two-person [infinitely
repeated] pure coordination games with a two-valued payoff matrix. A (I'-labeled) social
network on N (on (N,I) )is a hypergraph (N,E) (a labeled hypergraph (N,E,L)) with
set of nodes N, set of hyperedges EC{ SN : #S >1} | ( and labeling LESP(DNM @t );
thus, nodes are players while each hyperedge EcE represents an association of players
(playing the games in L(E)). The type of a player in (N,E) is a function 7. E —> 90,1}, For
any ieN, the fype 7 of player i is fully determined by the set 7;'(1) of memberships of i,
namely the set E(i) of hyperedges E€E s.t. icE. We denote by p(7) the relative frequency
of 1-type players in a social network (N,E) with population (N,pt) (i.e. p(0)=(uN)"
[n@ieN : 1, =t)] ). A social network (N,E) is thick w.r.t. p - or p-thick — if (N,p) is
large and p(U E(1))#0 for any ieN.

We shall consider the following general scenario. At any time teZ,, players in N play
(repeated) pure coordination games as specified by the given labeled social network, and
are (pairwise) randomly matched to play the symmetric 2x2 Stag-Hunt game G°=(LIIf,
@s,trist £),(u, uyr) ) with payoff matrix

I1(G°)= l

a ¢
where a>b>d>c.
b d

Hence, the efficient and inefficient strict Nash equilibrium payoffs of G° are a=ui(s,s) and
d=ui(t,t) (i=LII ), respectively. The basic selection dilemma for G° : the “cooperating”
strict equilibrium outcome (a,a) is uniquely Pareto-efficient, but the “defecting” strict
equilibrium outcome (d,d) is risk-dominant or “less risky” whenever (d-c)>(a-b).

As mentioned in the text above, we shall consider three distinct models that can provide
a social-network-driven efficient selection result for a recurrent Stag Hunt.



First model. Semi-neutral evolutionary stability and “handshakes” between farsighted
players: social networks as reliable information transmission channels. -
In this model, the focus is on strategies for recurrent play of G° within a large
population (N,it) of players. Strategies for recurrent games are identified with the
minimal (Mealy) automata that implement them. A (deterministic) initial Mealy
automaton is a t-uple
A= (Q(A), q*(A), Y(A), 0(A), X(A), h(A) ) where Q(A) is the (finite) set of states,
q*(A)eQ(A) is the initial state, Y(A) is the input set, 6{A). Q(A)xY(A) — Q(A) is the
state dynamics, X(A) is the output set, and h(A): Q(A)xY(A) — X(A) is the output
function. We shall consider automata for recurrent play of G° with limited observability

(and no discounting ), ie. Mealy automata A with Y(A)=U(S / {0 *})" , and
k=0

Q(A)=X(A)=SxN, where 0* denotes “unobserved action™ and S is the common strategy

set of players of G°. A strategy for recurrent play of G° in discrete time Z, is a function

c: U(S U{o *})" — S mapping finite strings of elements of (Sw40*¢)into S.

k=0
A strategy o for recurrent play of G° is obviously implementable by a suitable initial
Mealy automaton A=A(c) . Moreover, minimal Mealy automata having such a property
can be canonically described by standard techniques. We denote by A(G®) the set of
(minimal) initial Mealy automata implementing strategies for (G%)}_, , i.e. for recurrent

play of G°. Each player ieN of a social network (N, E) is endowed with a recall function
pi JEx N - JSU{*D* defined as follows: for any finite string (xi,..,xi) &(SXN),

k=0 k=0
pi(X1 .. Xk )=(x1%,...x*) where xy*=s if x,=(s,j) and EG)E(j)=J, and x, =0* if x, =(s,j)
with EG)NE(G)=3, h=1,. .k . In words, player i “recalls” a previous (e.g. the initial )
action of another player j if and only if i and j share the membership of at least one
“association”. Hence, the recall function profile p=(p; )iex of recall functions is fully
determined by the social network (N, E), i.e. p=p(N, E). By definition, recall functions

model the role of “horizontal’social networks as reliable information transmission
channels.

It is easily seen that- given (N,E)- any sequence of matchings between automata in
A(G®) fully determines a sequence (s}, s} )., of plays (i.e. strategy profiles) of G° in the

following way. Let A,BeA(G®) the automata of players i,j — respectively- that are
matched at time k, and 0=0(A), 6’=c(B) the strategies they induce for recurrent play of
G°. Having played previously at times 1,..,k-1 both A and B have output histories (of
length k-1) x and x’, respectively. Then, s’} =0(Q), s’ =6’(D) , s'=0(pi(c’(D).})),
sln=c(pj(0(®),i)) , and so on. The payoffs of i and j at time k after respective output
histories x,x’ are as follows :
(0, 07 ;%,X,Pi,Pj )= u1 (A,B; X,X°,p;,p))=
= ui( h(A)[(o(pi(x")).] ).(x7,0° (pi(x)N], W(B)(”(pi(x)):1 ), (x,6(pi(x")N] ), and

7;(0,0°;%,%’, Pi,0))= un( A,B ; X,X°, pi,pj).

Clearly, at any time k and for any pair of players i,jeN , the expected payoff



IT(A,B/P) of automaton AecA(G®) as chosen by player ieN - when playing with
automaton BeA(G°) as chosen by player j - depends upon the (joint) probability
distribution p* of pairs of output hlstorles of length k-1, that in turn is determined by the
current population of automata P (i.e. px=p“«(P) ). Hence

I4(AB [P)- [u,(4,B,x,x'; p,, p,)p!
oo

Now, following Binmore,Samuelson(1992) among others, we shall regard choices of
automata-strategies in A(G®) as outcomes of a suitable Jong-run evolutionary process,

and define a (pure) semi-neutral evolutionarily stable strategy (SNESS) of (G%) 7., -at

recall function profile p=p(N, E )- as an automaton AeA(G°) such that for any
(“mutant”) Be A(G®), for any i,j €N, and for all k>k*

either i) nk,, (AA | Pao) > TI¢ U(B A|Pay)

or i) ITy(AA|Pac)=IT5(B,A|Pa) and TT4(AB|Pas)> 1% (BB| Pas)
or else iii) TT%(A,A | Pac) =115 (B,A | Pa.), IT5(AB| Pag)=I1Y; (B,B| Pa,), and

#Q(A) < #Q(B)

( where k* is an arbitrarily fixed positive integer, € is a suitably “small” positive real
number, and Pa¢ is an arbitrarily fixed population of automata such that, for some
injective function FN—A(G°), n( i) : fi)zAlt)=¢ ).

The following Proposition holds true :

Proposition 1. Let (N,ut) be a /large population of players that are embedded in a u-thick
social network (N, E). Then, an automaton A is a semi-neutral evolutionarily stable

strategy of (G%) ., at recall function profile p=p(N, E) only if (6(A),6(A)) is a Pareto-
efficient strategy profile of (G°%);., (ie. a positive integer k* exists such that, for any
k >k*, (6(A),6(A)) induces the uniquely Pareto-efficient strict Nash equilibrium of G° ).

Thus, the efficient selection result just established is independent of non-ordinal
properties of payoff-parameters and rests upon the role of social networks as reliable
information transmission channels that enable the players to enact a discriminating
behaviour within interactions. The main subsidiary assumptions are : i) a large
population, a requirement that is needed in order to make sense of ( semi-neutral)
evolutionary stability as a solution concept, and to provide thick social networks with a
significant role; ii) perfect farsightedness of the players, which makes free their
opponent-discriminating behaviour; iii) virtual irrelevance of implementation-complexity
costs of strategies as compared to prospective payoff-benefits ( a requirement embodied
in semi-neutral evolutionary stability ).



Second model. Stochastic stability and the power of successful episodes for busy
boundedly rational players: social networks as a pro-efficient environment.

This model is focussed on playing schemas as opposed to strategies, and produces a

parameter-dependeiit efficient selection. The population (N,u) of players is small, i.e.
N={1,.,nt is finite. Players are envisaged to play many games simultaneously, while
being generally unable to perceive the exact nature of the games being played, or the
identity of the opponents. Therefore, they are assumed to rely on a certain shared
repertoire T of strategy-types, e.g. “cooperate”, “defect” and so on (we also assume #T >
2 in order to avoid trivialities). Indeed, a strategy-type teT may be regarded as a function
that maps each member G of a given family of symmetric games into a subset t(G) of its
strategy-set S(G) .[Asymmetric games can be “symmetrized” in the usual fashion, i.e. by
taking role-conditional actions as strategies of the “symmetrized” game. The choice of a
given strategy-type teT for game G on the part of player i results in the mixed strategy
o(t(G)) corresponding to the uniform distribution on t(G).] A game G is said to be T-
nontrivial if t(G)#S(G) for any teT. Moreover, the repertoire T of strategy-types is said
to be complete for a family I"” of symmetric games- or I”’-complete- if \1t(G)=S(G)
for any GeI”. Two symmetric games G,G’ are said to be T-similar whenever )T is
complete for G and G’, and ii) for any t,t'eT, iei{l2¢, set(G), s’ et’(G), tet(G),
t’et’(G’): (s, s)=i(s’, 8”) if and only if (t, t)>(t’, t).
A playing schema for a set I of games under a I'’-complete repertoire T of strategy-
types is a function P: I’ T such that P(G)=P(G’) whenever G and G’ are T-similar ( a
playing schema could be easily implemented by a simple classifier system: see e.g.
Holland,Holyoak, Nisbett, Thagard(1986) ).

Now, let (N,E,L) be a I'-labelled social network, and I'*=I"U{ Gt the set of games to
be played by players in N. It is assumed that each game G I'* is T-nontrivial. Also, we
model the previously mentioned inability of players to discriminate between games in I'*
by assuming all such games to be T-similar (perhaps the players perceive Common
Interest as the focal property of those games). But then, playing schemas for T*=I"U3 G° ¢
have a singleton-domain and reduce therefore to a single strategy-type teT. Since all
games in I'* are- by hypothesis- 2x2-games, it follows that a set P(I'*) of playing
schemas for I'* under repertoire T is bijective to a set T*cT such that #T*=2 (i.e.
P(T*)={ t,t’ T, modulo bijections).

All this allows the frequency distribution — or population state - of playing schemas for
T'* to be represented by a single integer number xeX =90,1,..,n t denoting the number of
players that are currently employing, say, the efficient “cooperating” playing schema t
that is conducive to the unique Pareto-efficient payoff a of the recurrent Stag-Hunt
game G°eI™.

In that setting, it is quite plausible that the more games are being played where
individual “‘cooperating” behaviour pays in terms of valuable resources the better
“cooperating” playing schemas thrive. Hence, it should be the case that a social network
resulting in a set of (repeated) pure coordination games helps the evolution of the
“cooperating” playing schema by establishing a more favourable environment for the
latter. The present model probes this general idea under the “busy-boundedly-rational-



players” —scenario outlined above, and using stochastic stability of population states —to
be defined below- as a solution concept (see Foster,Young(1990),
Kandori,Mailath,Rob(1993)).

Here, population states are to be regarded as (discrete-)time-varying realizations x; of a
random variable X. The evolution of the population state is affected both by a certain
monotonic selection dynamics £ X—X (i.e. according to f the strategy-type or playing
schema with the highest payoff either stays put or increases its frequency at the next
period) and by noise( a small, positive and constant-across-states probability of error or
mutation). In order to analyze the role of a I'*-labeled social network (N,E,L) in that
connection we take I'*= UL(E) \AG°t ( ie. T'* consists of the repeated pure
coordination games that provide the “labels” of the given social network and the
recurrent stag-hunt game G° under consideration ) . Moreover, we normalize by
attaching a null payoff to the inefficient (pure) outcomes of the pure coordination games
in UL(E): therefore the payoff matrix of a game G in UL(E) is

a. O
[ N ] where ag > 0 .
0 0

Under the previous simplifying assumptions an (N, E, L)-situated monotonic selection
dynamics on T* is a function f: X — X that satisfies the following condition :

fx) - w if [a(xeD+e(n-0) -1+ T o) Ya, -<#L-’(G)-1>Z

Ge{L(E)r(E)=1}
>
[bx +d(nx-1)]-(@-1)"
<

( where p(t) denotes the relative frequency of t-type players in (N,E) ).

( If (N, E, L)=(N, &, &) we shall also say that f is trivially situated, or unsituated).
Indeed, the terms of the second set of inequalities above are to be interpreted as expected
payoffs to playing schemas. Of course, such an interpretation makes sense if players are
involved in a large number of interactions (games) at any time.

Now, consider a small probability of “mutation” & that is —as mentioned above-
constant across population states. Then, take the probability transition matrix M(fg)
(between state-pairs) which is canonically induced by f and &, and observe that €>0
implies that the comresponding stochastic process is an irreducible aperiodic Markov
chain on the finite state space X. Hence, by the elementary theory of Markov chains, it
follows that the long-run behaviour of the process can be summarized by a unique
stationary probability distribution p(fg) which is invariant with respect to the initial
population state. Also, it can be shown that — since X is finite- a (unique) limit
distribution p*(f)=lime,o p(fie) exists ( see e.g. KandoriMailath,Rob(1993), Vega-
Redondo(1996)) . A population state xeX is a stochastically stable state of a (either
situated or unsituated) monotonic selection dynamics f if it is in the support of p*(f), i.e.
(p*(0)(x)>0 . A stochastically stable state under f can be shown to be necessarily
included into an absorbing set of M(f,0) , and is fully determined by the basins of
attractions of the absorbing sets of M(f,0); ( a set AcX is an absorbing set of M(£0) if
i) for any (x,x)eAxX (M(f0))(x,x’)>0 implies x’€A, and ii) for any (x,x’)eAxA a
nonnegative integer k exists such that (M (£0))(x,x’)> O ; the basin of attraction of an



absorbing set A of M(f,0) is the set DfA)= xeX : (Mk(f,O)}{x,x’)>O for some
nonnegative integer k and some x’€A¢ : see e.g. Kandori,Mailath,Rob(1996), Vega-
Redondo(1996) ) .

Proposition 2. Let (N,u1) be a finite population of players, I a set of repeated 2-person 2-
valued PC games, (N, E, L) a I'-labeled social network, I'*=I"{ G°F, T a shared I'*-
complete set of strategy types such that all games in I'* are T-similar for any ieN, and
* an (N, E, L)-situated monotonic selection dynamics on the shared set T* of playing
schemas for T'* as defined above. Then, the efficient fully “cooperative” population state
neX is the unique stochastically stable state of f* if and only if
2:(n-D-3 p(x):  Da; FLYG)-1) > n-(d-c-a+b)+2-(a-d).
T Ge{L(E)r(E)=1}
Hence, in particular, neX can be the unique stochastically stable state of £* even if the
efficient equilibrium of Stag Hunt game G° is risk-dominated: this is the case whenever
(d-c¢)>(a-b) and

k* > [(d~c—a+b)+(a~d)-%}3.—(§_—l)

(where K*=k*NEL)=Y p(z)- Y a,-#L(G)-1) ).

Ge{L(Eyr(E)=1}

Clearly, the efficient selection result embodied in the foregoing proposition is payoff-
parameter-dependent and thus is in a sense weaker than the one encapsulated within
Proposition 1 above. Indeed, Proposition 2 relies heavily on “bounded rationality”
considerations as combined with the assumption that all the players be persistently
simultaneously engaged in many similar games, and endowed with the same classification
scheme of strategy-types across such games. The last requirement amounts, in fact, to
assuming that the players share a culture that makes possible a common understanding
of the relevant behaviour in their interactions. While this assumption is arguably both
plausible and implicitly required by most game-theoretic constructs, it also puts a severe
restriction on the scope of the present model. Moreover, it should also be remarked that
Proposition 1 — and its method of proof - are confined to the hyper-stylized world of 2x2
games. :

Third Model. Short run absorbing states and the establishment of demanding
standards by aspiration-level-driven boundedly rational players: social networks as
pro-efficiency-biased benchmark providers.

This model focuses on a non-monotonic and non-deterministic short run dynamics,
wherein “boundedly rational players” are repeatedly matched to play a Stag Hunt CI
game but have to stick to a fixed strategy of their choice at each round. The players are
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equipped with a fixed exogenous aspiration level that controls their choices. Thus,
bounded rationality is essentially modelled here in terms of short-run-inertia and-
consistently with that emphasis on short run behaviour- attractors duly replace stochastic
stability as a solution concept. The suggested role of (I'-labelled) social networks reduces
to determining the profile of aspiration levels ( through projection of the players’
expected payoff from the relevant repeated PC games ) .

The model to be presented below provides no efficient selection result as such but,
rather, a much weaker pro-efficient discrimination, in that it makes -for almost any
profile of aspiration levels -the efficient fully “cooperating” state a (possibly unique)
stationary or absorbing state, and the fully “defecting” state rot absorbing ( and possibly
the only transient or aperiodic state : a state is transient if it belongs to the basin of
attraction of an absorbing set to which it does not belong). However, other absorbing sets
—namely cycles of period 2- do typically exist. Thus, the efficient strict equilibrium
outcome of G° is “selected” for only in the admittedly weak sense that the Jormer -as
opposed 1o the inefficient strict equilibrium outcome- is Ypically retained among the
possible solutions (attractors) of the relevant selection dynamics. Moreover, at a certain
profile of aspiration levels the monomorphic state that corresponds to universal adoption
of the inefficient strategy may belong to the basin of attraction of the efficient fully
“cooperating” state, while the converse is never the case.

Here, we consider again a finite population of boundedly rational players such that at
every round each pair play a Stag Hunt game G°- without being able to change strategy
within a given round ( an inertia-hypothesis : see e. g. Kandori,Mailath,Rob(1993) for a
similar assumption, and for an extensive discussion of the possible underlying
motivations). As in the previous models, the recurrent Stag Hunt game G° is to be
explicitly contrasted with a set T of repeated PC games — the “civic” games- that are
efficiently played and establish the relevant standards- i.e. the projective aspiration
levels (ci=ay(N,E,L), i €N) that — by hypothesis- control the players’ choices and amount
10 the (time-invariant) expected payoff that players enjoy by playing the PC games in I”
that correspond to their memberships ( i.e. for any 1eN .=} gerip0c ). If the possible
individual payoffs of G° are {a,b,c,d} with a>b>c>d , five relevant types of aspiration
levels are to be distinguished w.rt.G% i) (“exacting”) t*(G°)={ 0.eR : ac(a, ©)f , i)
(“demanding”’) t°(G°)={ a.cR: ae(bal ¢, iii) (“mild’) t™M(G°)=3 aeR : ae(c,b] t, v)
(“permissive”) t*(G°)={ a.eR: ae(dc] t, v) (“flar’y t7(G°)={ aeR: ae(-o,d] t .

Thus, we envisage here a two-stage sequential process. First, a profile a=a(N,E,L) of
projective aspiration levels for games in I'° is induced through the I'-labelled social
network of repeated PC games. Then the projective-aspiration (PA) selection dynamics
f=f{a(N,E,L)) operates on the set X={0,1,..n} of population states as characterized by
the frequency of the players that choose the efficient “cooperating” strategy s* of the Stag
Hunt game G°. Namely, under the PA dynamics Players stick to their strategy if the
payoff they achieve is not lower than their aspiration level, and shift to the other strategy,
otherwise (see e.g. Nowak,Sigmund(1993) for a discussion of the merits of this sort of
behaviour — which they dub “Pavlov” - within a version of the repeated prisoner dilemma
game). Clearly, the selection dynamics fla(N,E,L)) is best regarded as a short run
dynamics, and is both non-deterministic and ron-monotonic ( see e.g. the case of an
aspiration profile made up of one G°-flat type and (n-1) G°-demanding ones ). Now,
suppose that profile a(N,E,L) has no G°-exacting components ( i.e. for any ieN the
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aspiration level of player i is not G®-exacting). Then, the fully “cooperating” population
state n is an absorbing state of M(f(a(N,E,L))) ( the degenerate probability transition
matrix of fla(N,E,L))) By contrast, the fully “defecting” state 0 is not an absorbing state,
unless a(N,E,L) is a G°-permissive-flat profile( i.e. ai(N,E,L) is either G°-permissive or
G°-flat for any 1eN). Moreover, if the profile a(N,E,L) is G°-demanding then state 0 is
transient, and is in the basin of attraction of n. These facts may be summarized as
follows:

Proposition 3. Let (N,u) be a finite population of players, I a set of repeated 2-person
2-valued PC games, (N,E,L) a T-labeled social network, a(N,E,L) its projective-
aspiration profile, G° the Stag Hunt game, and f(a(N,E,L)) the projective-aspiration
dynamics for G° as defined above. Then,

1) the fully “cooperating” state n is an absorbing state of M(f{o(N,E,L))) iff -for any
ieN- ai(N,E,L)2t™(G°) (i.e. it is not GC-exacting ),

i1) the fully “defecting” state O is an absorbing state of M(f(a(N,E,L))) iff — for any ieN
- o4(N,E,L)et’ (GOt (G°) (i.e. o(N,E,L) s either GC-permissive or G°-flat),

iii) when a(N,E,L) is a mixed G°-demanding/G°-flat profile, with an odd number of
players having a G°-demanding aspiration level, the fully “cooperating” state n is the
unique absorbing state of M(f(a(N,E,L))) . Moreover, at a monomorphic G°-demanding
praofile the fully “cooperating” state n is absorbing with basin of attraction 4n,0¢ .

Thus, the present model only delivers a comparatively weak — if definite- pro-efficient
bias. Hence, its relevance to the topic of efficient selection proper might be arguably
regarded as rather tenuous, However, I think it proper to introduce this model here in that
it indeed provides a definite and social-network-induced pro-efficient discrimination
between the two strict equilibria of a Stag Hunt game under the following significant — if
highly stylized- conditions : i) absorbing sets are used, that is an attractor-like solution
concept that -by definition- operates over a much shorter time horizon than stochastic
stability; ii) the underlying projective-aspiration dynamics is (generally speaking) non-
monotonic and —by definition- exhibits a minimal amount of learning or, equivalently, a
conspicuous path-dependency of outcomes ( indeed, it can be regarded as a short run
dynamics ). Again, such a pro-efficient bias operates even if the efficient outcome is risk-
dominated..

To best appreciate the strict asymmetry between 0 and n established by this result, and
the role of social networks in that connection, consider again the attractors of a
projective-aspiration selection dynamics under alternative profiles of aspiration levels,
when the Stag Hunt game G° has a nonnegative payoff matrix. Proposition 3 suggests
that the strongest pro-efficient discrimination obtains when every player has a G°-
demanding standard. This is, of course, an extreme hypothesis. But consider other
monomorphic profiles, namely the uniformly G°-permissive profile, and the uniformly
G°-flat profile. The uniformly G°-permissive profile is in a sense the most favourable to
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the inefficient equilibrium strategy, in that a player with a G°-permissive aspiration level
will invariably stick to s, but not necessarily to s*. Nevertheless, at that profile both 0 and
n are obviously absorbing states. Finally, consider the uniformly G°-flat profile that
results- under our stipulations- from lack of social networks at all: namely, a profile of
zero aspiration levels. Now, if each player has a zero aspiration level (and the Stag Hunt
game G° has a nonnegative payoff matrix), then any player is of a “passive” type and
thus — as it is easily checked — any state xe$0,1,.., nf is absorbing. An extreme version of
path-dependency prevails here: no discrimination at all between states is achieved.
Summing up, Proposition 3- while not conducive to a full-fledged efficient selection
result — does tell us that the efficient fully “cooperating” state is in a sense “more likely”
to obtain than the fully “defecting” state under the projective-aspiration dynamics.

3. Related literature

The main theme of the present paper is the efficiency-enhancing potential of certain
social networks as modelled in terms of an efficient equilibrium selection problem in
common interest games. Moreover, the latter problem is tackled using simple
evolutionary game theoretic models and is therefore reduced to a special case of the
evolution of cooperation when the component game has multiple equilibria . The amount
of related work is therefore simply enormous. Hence, in what follows we have to confine
ourselves to a short discussion of a few basic connections with the relevant literature.

i) Social networks and institutional performance.

The potential role of social networks — and especially “horizontal” social networks — in
improving the efficiency of economic and political institutions has been widely
recognized in the last decade or so ( see eg Putnam(1993),
Ostrom,Gardner, Walker(1994), Bowles,Gintis(1998) among others ). Arguably, one of
the main sources of this widespread interest in social networks is the growing consensus
on the view that a) incomplete contracts - as opposed to complete ones- are the rule
rather than the exception , and b) the range of enacted incomplete contracts — and the
quality of their outcomes — may largely depend on the network of informal coordination
and decision procedures into which they happen to be embedded.

More generally, one salient point frequently made in the recent literature is that the
most relevant role of social networks must reside in their contributions to the effective
solution of current coordination and decision problems, as opposed to -say- mere
transmission of traditional norms (see e.g. Bowles,Gintis(1998)). The thrust of the
present paper totally concurs with this suggestion. After all, traditional norms can be
good or bad, and their ability to provide resources for solving efficiently current
coordination problems ( e.g. by abating asymmetric-information-related agency costs)
certainly qualifies as a pivotal criterion in order to assess their quality including perhaps
their prospective stability.

However, the mechanisms that produce the putative pro-efficient effect of “horizontal”
social networks are apparently not yet well understood. Indeed, in his extensive study on
the positive correlation between the “density” of networks of “civic” associations and
the performance of local political institutions, Putnam(1993) offers a tentative list of
possible effects of such networks that might explain their role in fostering reciprocity
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and coop. :...ive norms, namely:

¢ increasing the scope for repeated interactions and interdependence :

¢ producing templates for the relevant cooperative behaviour ;

eestablishing a favourable environment for the evolution of cooperative Liehaviour ;
oproviding a reliable information transmission system .

Each one of the effects listed above does in fact embody some suggestive if vague
intuitions on the nature of possibly relevant mechanisms. The bulk of the present paper
has been in fact devoted to probing the strength and scope of those intuitions within some
simple evolutionary game-theoretic models. In that connection, it is quite remarkable that
all the items in Pumam’s list have a well-defined counterpart in some of the models
presented in Section 2 above. In fact, the existence of a tight relationship between social
networks and repeated interactions is a basic assumption in all of our models, and the role
of “horizontal” social networks as reliable information transmission channels is a key
feature of the “handshake” model. Moreover, the “busy-boundedly-rational-players”
model provides a mechanism through which both the pro-cooperative-environment and
the cooperative-template effects might plausibly operate in a pro-efficient manner.
Finally, the “projective-aspiration” model presented above suggests a JSurther “short-run”
mechanism (#ot included in Putnam’s list), that relies on social networks as benchmark
providers.

ii) Efficient equilibrium selection in common interest games.
There is of course a large body of literature on efficient equilibrium selection in CI
games ( with no role at all for social networks). It may be useful to distinguish between
unconditional efficient selection results, and parameter-dependent ones (i.e. those
selection results that consist in specifying some sets of values of suitable parameters that
support the efficient outcome ). Indeed, many unconditional efficient selection results
have been obtained by focussing on repeated CI games, where earlier interactions can
be somehow used as effective communication devices that may even come for free if the
players are farsighted : see Binmore Samuelson(1992), from which the solution
concept, the farsightedness assumption, and the “handshake” mechanism of our first
model are borrowed; see also Aumann,Sorin(1989), Maskin,Fudenberg(1990),
Anderlini, Sabourian(1995) for some interesting variants of this general signalling
principle, and Tadelis(1995) for an efficient selection result on certain repeated extensive
CI games that relies on a version of Von Neumann-Morgenstern stable sets — namely,
“nondiscriminating optimistically stable standards of behaviour” - as a solution concept.
In the non-repeated case, many unconditional efficient selection results for CI games
have been obtained by adapting the solution concept itself in a more or less radical
manner and/or by embedding the relevant CI game in a larger two-stage game with a
preliminary communication phase. Thus, Harsanyi,Selten(1988) plainly advocate priority
of payoff-dominance over risk-dominance as an equilibrium selection criterion.
Robson(1990) — inspired by some ideas previously advanced by Dawkins on genetically-
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based signalling ( the hypothetical “green beard” effect: see e.g. Dawkins(1982))- obtains
an early “secret handshake”-driven efficient selection result relying on unamended
evolutionary stability, but assuming the (supposedly genetically-based) evolution of
strategies endowed with distinctive costless signals, and the ability to detect them..
Sobel(1993) and Vega-Redondo(1996) obtain other efficient selection results for general
CI games by adding a pre-play communication stage and introducing new non-
equilibrium (static) notions of evolutionary stability that are meant to capture the role of
drift. Matsui(1991) adds a pre-play communication phase and relies on “cyclically stable
sets” 1.e. essentially the absorbing sets of the best-reply dynamics. Kim,Sobel(1995) also
add a pre-play communication stage and focus on a class of payoff-monotonic adjustment
dynamics using (nonempty, minimal) absorbing sets as a solution concept.

Further unconditional efficient selection results for CI games in the non-repeated case
have been provided by means of group selection arguments of sorts, i.e. models whereby
many distinct —but virtually identical — interaction loci exist, and players may move
among them (in a possibly constrained way). Thus, Mailath(1997) and Dieckmann(1997)
obtain unconditional efficient selections in terms of asymptotically stable sets of the
replicator dynamics and of stochastic stability, respectively, working under largely
similar scenarios where several interaction loci exist, and players are able to choose their
locus and to observe — with a positive probability — strategy profiles at every locus.

In that connection, our first model shows how — under farsightedness of players — social
networks can be instrumental in extending “handshake”-driven unconditional efficient
selection results to recurrent one-shot CI games without appending to them a
communication phase, invoking group selection effects, or embarking on major reforms
of the solution concept. Indeed, the selection result offered by our “handshake”-model is
very much like the result of Robson(1990) as quoted above. In a sense, our result
amounts to a particular “implementation” of such “handshake”-principle. Such
“implementation”- relying on social networks as opposed to an undocumented and
apparently rather implausible genetic adaptation- offers what is arguably a more sensible
basis for an explanation of efficient interactive behaviour than a direct appeal to genetics.

Turning to parameter-dependent efficient selection results for CI games, we face another
quite varied landscape. A few efficient selections have been produced relying on (some
variety of ) non-random interactions, including of course group-selection processes.
Thus, Eshel, Cavalli Sforza(1982) pursue an extension of the notion of evolutionary
stability in order to accommodate the case of non-random interactions resulting both
from spatial constraints on the matching process ( or “viscosity” of the population
structure) and from the ability of players to discriminate between prospective partners
and selectively choose or avoid encounters after matching (relying presumably on some
available signals) . They show that the efficient outcome of a CI game is uniquely
evolutionarily stable (in their extended sense) provided that a) the combined effect of
spatial constraints on interactions and localization of “mutations” is strong enough to
produce a sufficiently high proportion of non-random encounters between identically
behaved units, or b) the foregoing effect is weak or even negligible, but is compensated
by the ability of players to choose their partners after matching, as combined with a
sufficiently large expected number of meetings. In a similar vein, Myerson,Pollock,
Swinkels(1991) rely on ecological considerations concerning the spatially constrained
structure of interactions in order to motivate “fluid equilibria” as limits of suitably
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defined “viscous equilibria”, thereby producing an efficient selection in CI games in
terms of the latter equilibria for a large enough value of the viscosity parameter. With a
standard-setting problem as their main motivation, Goyal Janssen(1997) combine a
spatially  constrained matching structure, that generates a dimorphic locally
homogeneous population, and certain flexibility-cost parameters (i.e. the cost of
acquiring the ability to adopt either standard ): the efficient equilibrium outcome of a CI
game is selected as the wumique stationary state of a suitable deterministic monotonic
dynamics for sufficiently low values of those cost parameters. Boyd,Richerson(1990)
obtain a parameter-dependent efficient selection in CI games by means of a group-
selection model, namely by assuming the existence of several interaction-loci with
associated subpopulations or “demes”, and a persistent variation among them. The latter
is sustained by the local intrademic “conforming” pressure — possibly enhanced by
“conformist” cultural transmission - provided that such pressure is strong enough to
overcome random migration effects. Then, efficiency of the outcomes of that group-
selection process obtains if a large enough fraction of the founders of newly formed

“demes” come from the same old “deme” ( see Boyd,Richerson(1990)).

Several powerful parameter-dependent selection results have been recently produced by
introducing various sorts of “trembles” with quite different motivations, typically not
related to non-randomness of the matching structure ( see Kim(1996) for a most useful
critical survey ). Sfochastic stability has been the most prominent solution concept within
that literature. The typical result established by means of such models is that the efficient
outcome of a 2x2 CI game is selected as uniquely stochastically stable for a payoff-
monotonic dynamics only if it happens to be risk-dominant as well: otherwise the
inefficient  risk-dominant  outcome  prevails (see  Kandori,Mailath Rob(1993),
Young(1993)). This is apparently a quite robust —if definitely “long run” — result. Indeed,
adding a spatially constrained (i.e. localized) interaction pattern to these models
essentially results in speeding-up convergence to the (uniquely stochastically stable )
risk-dominant outcome ( see Ellison(1993), Vega-Redondo(1996))). Moreover, a similar
selection result favouring the risk-dominant equilibrium has been replicated by means of
models whose “trembles” and solutions are nof phrased in evolutionary terms (including
the incomplete-information model proposed by Carlsson,Van Damme(1993) - to be
discussed below — that uses iterated strict dominance as a solution concept ).

Two notable apparent exceptions are Binmore,Samuelson,Vaughan(1995) and
Robson,Vega-Redondo(1996). In fact, both of them provide models wherein the
population state corresponding to the efficient outcome of a 2x2 Stag Hunt game can be
uniquely  stochastically stable even if it fails to be risk-dominant. The
Binmore,Samuelson,Vaughan(BSV) selection result is based upon a “muddling” model
where even the selection component of the evolutionary dynamics is randomized and
non-monotonic : while switching to more successful strategies is more likely than the
opposite, as long as a strategy is used by some player there is a positive probability that it
will attract more players, however poor its comparative performance in terms of current
payofts ( see Binmore,Samuelson,Vaughan(1995) and Samuelson(1997) ). A major
feature of such a “muddling” adjustment dynamics is that all states except the
monomorphic or boundary ones belong to the basins of attraction of both the
monomorphic states themselves: mutations are only required to escape the latter.
Moreover, a single mutation is needed for that, as opposed to the combination of
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simultaneous mutations that is typically required in order to escape the basin of attraction
of a boundary (absorbing) state under a monotonic selection dynamics of the Kandori-
Mailath-Rob (KMR) type. Incidentally, this also implies that, for small mutation rates,
long run ( or rather ultralong, in BSV-terminology) convergence to the unique
stochastically stable state is typically much fasfer in a “muddling” model than under a
KMR dynamics. In the BSV selection model the efficient outcome of a 2x2 CI game is
uniquely stochastically stable if the population is large enough and the ratio between the
probabilities of switching away from the “efficient” and the “inefficient” equilibrium
strategies, respectively, is sufficiemly small ( see Samuelson(1997)). A similar pro-
efficient selection result obtains if the underlying dynamics is a convex combination of
the “muddling” dynamics described above and an entirely random ie. payofi-
independent imitation dynamics. When the weight of such a random imitation dynamics
is large enough, the foregoing result may be interpreted in terms of “background
payoffs”. Namely, it can be said that the efficient outcome turns out to be selected
whenever the “background payoff “ is low enough to confer adequate prominence to the
CI game under consideration. Conversely, if the selection dynamics consists of a convex
combination of the “muddling” and the best-reply dynamics — with a suitably large
weight put on the latter — then the risk-dominant outcome reemerges as uniquely
stochastically  stable (  see again Binmore,Samuelson,Vaughan(1995), and
Samuelson(1997) ). Clearly enough, the BSV-efficient selection result is indeed driven
by reliance on a “muddling” selection dynamics as opposed to a monotonic one.

By contrast, the model proposed by Robson,Vega-Redondo(1996) sticks to a
monotonic selection dynamics of the KMR type. In that model the population is finite but
allowed to grow indefinitely large, and the probability of mutation is taken as usual to be
vanishing. However, it is assumed that a possibly large but fixed finite number of rounds
is to be played by every player at each period with one strategy of her choice. Thus,
whenever the population is /arge enough, at each period every player necessarily
interacts with a small sample of the entire population of players. As a result, maiching-
noise ( hence the prevailing, typically non-uniform matching structure ) is allowed to gain
prominence over mutation-noise, and a small-“deme”-effect of sorts is produced
enabling the efficient outcome to emerge as uniquely stochastically stable given a large
enough overall population. Thus, the Robson-Vega-Redondo selection model apparently
shares some key general features of certain group selection models ( see Robson,Vega-
Redondo(1996), and Vega-Redondo(1996) ).

The foregoing parameter-dependent efficient selection models can be fruitfully
contrasted with the second social-network-based model for busy boundedly rational
players as presented above. Indeed, it should be recalled here that such a model provides
a parameter-dependent efficient selection result for 2x2 CI games that is consistent with
lack of risk-dominance of the efficient outcome, relies on a standard monotonic selection
dynamics, and does not invoke locally constrained interactions or group selection
processes. This is not the place to dwell on the respective merits and drawbacks of these
general properties of my second model, and of alternative assumptions. My point here is
rather to emphasize again that, arguably, social networks as modelled above may have
after all a distinct contribution to offer for a solution of the equilibrium selection problem
in Stag Hunt games.
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iii) Evoluttion of cooperation and common interest gaines.

The evolution of cooperation is of course a major topic in game theory, in economics,
and in evolutionary biology. However, it should be emphasized that under this genera!
heading at least two quite distinct issues have been typically referred to. More often than
not, the evolution of cooperation has been formalized as the problem of “altruism” i.e. the
emergence of “cooperative” behaviour in a repeated and/or recurrent Prisoner-Dilemma-
like game ( see eg Maynard Smith(1982), Axelrod(1984), Dawkins(1939) ).
Alternatively, the evolution of cooperation can be of course equated with the selection of
efficient outcomes in certain coordination games ( see e.g. Eshel,Cavalli Sforza (1982),
Boyd,Richerson(1990), Maynard Smith,Szathmary(1995) ). While the models proposed
in the current paper are only concerned with the latter —and essentially weaker- version of
the evolution-of-cooperation-problem, it turns out that some of them bear similarities
even to models produced in order to solve some version of the “altruism”-problem.
Therefore, this subsection is devoted to a short discussion of some relevant work and
ideas on the evolution of cooperation under its most comprehensive interpretation.

To begin with, it should be emphasized again the obvious fact that our “handshake”-
model builds heavily on previous “handshake” ideas and models as mentioned and
discussed above (i.e. Dawkins(1982,1989), Robson(1990), Binmore,Samuelson(1992)).
Kandori(1992) advances two further ideas that are somehow related to certain aspects of
the “handshake” model presented above. Indeed, Kandori explicitly states that
“observability in the community is a substitute for having a long-term relationship with a
fixed partner” ( Kandori(1992), p.68 ). Moreover, he emphasizes the focal contribution of
certain reliable information transmission mechanisms ( including social memberships) in
sustaining a// feasible individually rational payoff vectors of certain component games as
perfect equilibrium outcomes of the corresponding recurrent games with discounting.
However, the focus of that work is on collective enforcement and on extensions of folk
theorems for repeated games to recurrent ones, hence on multiplicity of equilibria as
opposed to selection among them.

Simon(1990) proposes to explain “altruism” as a bounded-rationality-induced by-
product of “docility”(i.e. a certain propensity towards “social learning”), hence in a way
that bears a certain similarity to our “busy-boundedly-rational-players” model. However,
on top of other significant differences in scope, detail and concern, Simon’s emphasis on
“docility” apparently evokes a special role for “conformist” cultural transmission, which
is not implied at all by the general monotony requirement for the selection dynamics of
our model. It should also be mentioned here that the basic scenario underlying the
selection model proposed in Carlsson,Van Damme(1993) involves boundedly rational
players that play many different games without being able to distinguish them from each
other. Such a model — which, as mentioned above, is not phrased in evolutionary terms
and uses iteratively strictly undominated strategy profiles as a solution concept — provides
a sharp selection result favouring the risk-dominant equilibrium outcome in Stag Hunt
games. This should be contrasted with the opposite result provided by our second model,
that also relies on a somehow related scenario. Indeed, apart from other significant
technical differences, this contrast between the respective predictions of Carlsson-Van
Damme (CVD) and our model can be essentially traced to the fact that in the former
model the class of indistinguishable 2x2 games is definitely Jarger than in the latter. This
is so because the class of indistinguishable games in the CVD equilibrium selection
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model h: - to include both games where a strategy — or rather strategy-type - is strictly
dominan: and games where the other strategy has such a property. In a sense, CVD-
players are “busier” or “less rational” than the busy boundedly players of our second
social-network-based selection model.

Concerning our projective-aspiration “selection” model, it should be recalled here that it
builds upon the so called “simpleton” (or “Pavlov”) strategy as first introduced by
Rapoport (see e.g. Rapoport,Chammah(1965)) for the repezted Prisoner Dilemma game
and recently studied by Nowak and Sigmund as an alternative to tit-for-tat in the same
game (see Nowak,Sigmund(1993) ).

Finally, the literature on the evolution of cooperation provides some broad explanatory
principles that have been repeatedly mentioned above in discussing various models of
efficient evolutionary selection, namely a) discriminatory behaviour within interactions,
b) non-uniform patterns of interactions between players as engendered by non-
randomness of interactions, and —as a specially prominent case of b) — ¢) group selection
processes. 1t is remarkable that — as we shall further discuss shortly below in the next
concluding remarks — group selection has apparently no essential role to play in our
social-network-based efficient selection models.

4, Concluding remarks
This last section is devoted to a short discussion of the significance, scope and limitations
of the models and results proposed in the present paper.

To begin with, a general issue concerning the interpretation of our models and their
possible relevance is to be addressed here. It is probably fair to say that, according to
standard economic wisdom, the most obvious job for social networks would consist in
supporting collusion in oligopolies and related practices that are as a rule prejudicial to
overall economic efficiency. Now, collusion in oligopolistic markets can be possibly
modelled in terms of coordination games for the relevant subpopulation of agents (e.g.
producers ), but definitely not via common interest games ( except perhaps under far-
fetched assumptions). Hence, our models do not apply to the most typical textbook case
of collusive behaviour. However, if social networks do indeed favour efficient
coordination in any common interest game then they may well be occasionally
detrimental to the public interest. In general, when it comes to possible policy
implications of our models it all depends on the relationship between the population of
players that play the relevant Stag Hunt CI games and the constituency whose interests
the policy under consideration is meant to promote. According to the selection models
presented above it transpires that — as a rule - if the relevant constituency reduces to the
population of players then social networks are (ceteris paribus) “good”. If, on the
contrary, the population of players is a proper subset of the relevant constituency, then
social networks are typically “bad”. 1In the latter case the most obvious policy
implication of our results would be indeed against the relevant social networks, which
should be discouraged and possibly dismantled by public agencies. As a matter of fact in
the current paper the first —positive — interpretation of the role of “horizontal” social
networks has been consistently emphasized. There are in my view at least two sound
reasons for insisting on that somewhat single-handed attitude. Firstly, the denunciation
of the damaging effects of collusive behaviour has been —and is — a pervasive theme in
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econci s at least since Adam Smith’s notorious observations on market collusion. By
contrast, the relationship between certain social networks, the diffusion of trust, and an
effective performance of economic and political institutions has been by far less
prominent (to put it mildly) in modern economics and related disciplines. In that
connection the single-handed emphasis of the current paper on the pro-efficient case
reflects the intention to stress precisely the hardly obvious point that certain social
networks can possibly be instrumental in promoting efficiency from the point of view of
an entire polity. Secondly, contrasting collusive practices in an effective way definitely
requires a well-designed, stable and smoothly functioning institutional setup. To the
extent that “good” civic social networks do indeed support the smooth functioning of the
relevant institutions, they may arguably also contribute to check and counteract the
detrimental effects of “bad” social networks.

A first obvious limitation of the selection models discussed in Section 2 is that social
networks are treated as entirely exogenous. No attempt whatsoever is made at modelling
their origins or evolution ( see e.g. Mailath(1997), Barbera,Maschler,Shalev(1998) for
two interesting approaches to those issues ). This stance can be readily justified on
practical grounds, given the specific aims of the present analysis. However, it should also
be remarked that by taking social networks as parameters our models implicitly assume
that evolutionary processes involving civic structures are orders of magnitude slower than
the evolutionary dynamics of the main interactions to be analyzed. This may or may not
be a wise postulate. It is in any case far from being an indisputable assumption since the
selection processes which constitute the focus of our models are themselves — except for
the third one - long run (or perhaps ultralong run ) evolutionary episodes.

The time horizon required by our models in order to deliver their efficient selections
involves another crucial issue. Indeed, a general implication of the results established in
this paper is that — if given time to operate - “horizontal” social networks of civic
associations may really embody a significant positive externality and bring about
considerable benefits for both members and non-members. This in turn suggests an
obvious policy implication to the effect that — ceteris paribus — those “horizontal” social
networks should be encouraged and promoted in any suitable way by governments and
public agencies. However, the foregoing argument loses much of its practical appeal if
the putative beneficial effect of such social networks takes too long to materialize. Now,
this is certainly not a problem as far as the projective-aspiration model is concerned,
since its underlying dynamics is definitely short run. However, the other selection models
presented above rely on solution concepts that only make sense from a long run
perspective. In particular, stochastic stability - under its most natural interpretation that
involves transitions between absorbing states as driven by combinations of rare
“mutations”- refers to a very long run ( #/tralong is in fact the label suggested by some
authors as mentioned previously). It might be sensibly observed that the cultural nature of
the “replicators” involved could arguably speed-up the entire selection process. In any
case, it should be admitted that the long run character of the selection processes provided
by both the “handshake” and the “busy-boundedly-rational-players” models as described
above might well result in a major limitation to their practical significance.

In a more positive vein, a few significant aspects of the foregoing analysis should be
pointed out. Firstly, as discussed at length in the previous section all the reasons
typically mentioned in the informal literature in order to provide tentative explanations of
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the pro-efficient effects of some social networks have been given a precise counterpart in
some of the mechanisms described in Section 2. In fact, the list of such possible
explanatory mechanisms has been expanded by one item, adding the role of social
networks as benchmark providers. This suggests that, indeed, further additions might well
be available. Secondly, it should be noticed that the social-networks-driven efficient
selection models provided in the present paper rely on typical pro-efficient evolutionary
mechanisms in a definitely selective way. To see this, recall that in the previous section
three basic ingredients of efficient evolutionary mechanisms for CI games have been
distinguished: signalling-supported intra-game discriminatory behaviour, non-uniformity
of interaction patterns due to ( some source of) non-randomness of interactions, and
group selection. Intra-game discriminatory behaviour is of course a basic component of
our “handshake”-model. Non-randomness of interactions plays a comparatively minor if
pervasive role in our models. In fact — while social networks in all our models
correspond to non-random repeated interactions between players — the recurrent Stag
Hunt games that are the main focus of our analysis are invariably played according to
either random or uniform matching rules. Thus, non-random matching effects are
definitely ruled out as far as the latter (recurrent) interactions are concerned. Rather, our
models rely on two classes of interactions - non-uniformly and uniformly patterned,
respectively - and show the influence of the former on the latter. Finally, group selection
processes do not play any role at all in our efficient selection models.

It should also be emphasized again that our models provide some qualifications
concerning the validity of the proposed explanations of putative social networks’ pro-
efficient effects, namely : a) a large population of farsighted players, a long-run horizon,
a noiseless monotonic adjustment dynamics, and low-complexity costs for the first
model; b) a possibly small population of “busy” boundedly rational players, an ultralong-
run horizon, a noisy monotonic adjustment dynamics, and high-complexity costs for the
second model; c) a finite population of boundedly rational players, a short-run horizon,
and a non-monotonic — and non-deterministic -adjustment dynamics for the third model .
Since those qualifications point to quite different conditions, the results established in the
present paper suggest that some of the intuitive reasons previously advanced in order to
explain the pro-efficient effects of “civic” social networks might well apply to mutually
exclusive sets of situations. On balance, it seems to me that such preliminary results on
social-network-driven efficient evolutionary selection are promising enough to invite
further theoretical and experimental inquiry.
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Appendix

Proof of Proposition 1. Suppose not (i.e. A is a Pareto-inefficient SNESS of (G%)%,

within (N,E), which implies that the sequence of action-output profiles induced by (c(A),
o(A)) comprises a subsequence of Pareto-inefficient strategy profiles of G°).

Then, consider a “mutant” A’€A(G°) having the following properties:
a)o(A”) (D)= 6(A)D) ;
b) 6(A’)(x)=s* for any x=& such that (pi(x)); =c(A’)(x) (where s* is the “efficient”

strategy of G° and i denotes any player that plays A’ ) ;

¢)o(A’)(x)= o(A)(x) for any x# such that (pi(x))i=c(A’)(D) ( where ieN is any player
that plays A’ ).
( In words, A’ selects a first action-output that is different from the first action-output
selected by A, but subsequently replicates faithfully the behaviour of automaton A unless
it recognizes its opponent to be a “mutant” that has selected the very same output as
itself at the first period, in which case A’ selects the efficient action s¥).

Therefore, for any k>1

I (A%, A | Pag= p(N)" [ w(UE@D)a + (u(N) - n(UE®) ) TI5(AA | Pag)]
where a is the unique Pareto-efficient payoff of G°.

Since (N,E) is p-thick and [T (A,A | Pas ) < a for a suitable subsequence of positive
integers, it follows that for any k in that subsequence
IT% (A”,A” | Pag) > T (AA | Pag ) =TT A%A | Pac)=IT( A,A’ | Pag)
( where € denotes the probability density of “mutation” A”).
As aresult, A cannot be a SNESS of (G%);., in (N,E), a contradiction . U

Proof of Proposition 2. By definition of £, {n? is clearly an absorbing set of M(f,0), and
for any state xeX, xeD¢3n') whenever the expected payoff at x of the efficient playing
schema is greater than the expected payoff at x of the inefficient one, namely if

[ a(x-)+c-(n-x) ] =D +k*> [b-x+d-(n—x—l)]-(n~1)‘1 .
Thus, the critical state x* i.e. the greatest lower bound of Dg{nt) is

n(d-cy+a-d-k*(n-1)
a-c—-b+d

(") x*=

Using the combinatorial techniques due to Freidlin, Wentzell(1984) as presented by
Kandori,Mailath,Rob(1993) or Vega-Redondo(1996), it is easily checked that n is the
unique stochastically stable state of f if #Di(3n¢)> (n+1)/2 or, equivalently, if

(*%) x* < (n+1)/2 |

Then, the thesis follows immediately from some straightforward algebraic manipulations
after substituting the RHS of (*) for x* in (**). 0



Proof of Proposition 3. i) Let a(N,E,L) be a profile without G°-exacting types. Then, the
state n is an absorbing set because at n each player ieN gains the maximum payoff a >
o(N,E,L) - since by hypothesis a;(N,E,L)gt(G°) . Therefore, at state n each player
sticks to the efficient “cooperating” strategy, and n persists, i.e. it is an absorbing state.
Conversely, let a(N,E,L) be such that o;(N,E,L)et®(G®) for some ieN. Then, at n player
i shifts to the inefficient strategy s. Hence, f{lau(N,E,L))(n)=n .
i) if a(N,E,L) is a mixed G°-permissive/G°-flat profile, then by definition- for any
ieN oi(N,E,L) is a lower bound to {b,d, the set of possible G° -payoffs achievable by
means of the inefficient strategy s. Therefore, under f(a(N,E,L)) each player sticks to s if
this is her current strategy. Conversely, if - for some ieN - oi(N,E,L)et"(G°)u t* (G°)
then at O player i shifts to s*( because her payoff is d<o; (N,E,L) ).
iii) Let x=f(a(N,E,L))(xo), x#n, ( hence for some player jeN, j chooses— at x- the
inefficient strategy ts) . Let HCN — with h=#H - the set of players with a G°-demanding
aspiration level, and N\H the set of players with a G°-flat aspiration level. Hence, for any
ieH - m(G°)< oi(N,E,L)<maxuy { au(G°) b, where 7; (G°) is the payoff accruing to i from
her n-1 plays of G° at the given period. But then, at the next period t+1 s*! s} if and
only if ieH. Two cases are to be distinguished, i.e. x=0 and x#0. Indeed, if x=0, then
fla(N,E,L))(0)=h. In particular, it follows that at a monomorphic G°-demanding profile,
i.e. for h=n, fla(N,E,L))(0)=n , which is an absorbing state as observed above. Hence at
such a monomorphic profile state 0 is transient and belongs to the basin of attraction of n.
By contrast, if x=0 then - by the foregoing argument — yef(a(N,E,L))(x) iff y=h - h; +k;
where hy=#icH : s =st and k;=icN\H : s=s |, hence x=h,+k;. Therefore, if x#0
then xef(a(N,E,L))(x) iff hj+k;= h — h;+k; i.e. h=2'h;. Hence n is indeed the unique
absorbing state at profile o(N,E,L) whenever h is odd. In particular, it follows that if h=n
then nefla(N,E,L)(x) iff n=n — h; i.e. iff h; =0 or equivalently n=h=h; , a contradiction
<since}x;to . Thus, at a monomorphic G°-demanding profile the basin of attraction of n is
Onr . O



