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Abstract

The Galois lattice of an effectivity function is defined and its basic
properties are studied. In particular, the use of its length and width
as basic complexity measures of the underlying game correspondence is
presented by means of several examples.

1 Introduction

In the last few decades, the develoment of game-theoretic methods has produced
an enormous progress in our understanding of coalitional power in interactive
decision processes. Indeed, game theory has contributed two basic -and very
successful- models for the analysis of coalitional power, namely simple games
and effectivity functions. A simple game amounts to a list of all those coali-
tions that can force any outcome by a suitable coordination of their members’
behaviour ( see e.g. Shapley(1962), and Ramamurthy(1990) ). An effectivity
function describes - for each coalition S - the set of subsets within which S can
force the final outcome by means of some coordinate action of its members. Sim-
ple games are eminently suitable for the analysis of weighted majority voting
games and related decision procedures. However, they are definitely inadequate
to analyze interactive procedures whereby individual veto rights are allocated in
some non-trivial way. By contrast, effectivity functions are most appropriate for
the latter task ( which is indeed the main reason why they were first introduced
by Moulin,Peleg(1982)). On the other hand, they achieve their versatility at
the cost of being somehow exceedingly dependent on the outcome space, and its
description. Arguably, simple games and effectivity functions should be aptly
supplemented with other models of coalitional power that rely on an intermedi-
ate amount of information on the underlying decision procedures.



This paper ( which builds upon Vannucci(1998a,b,c) ) is devoted to the de-
scription and discussion of one such model, namely the Galois lattice of a game
correspondence. The Galois lattice of a game correspondence - a complete lat-
tice with a single atom - is made up of pairs consisting of ”closed” families of
coalitions and outcome-subsets, ordered by set-inclusion ( the interpretation be-
ing that the coalitions of a ”closed” family attached to a certain ”closed” family
of outcome-subsets are precisely those coalitions that are able to force the final
outcome within any set of the latter family ). Thus, lengths and widths of Ga-
lois lattices of game correspondences provide two natural structural complexity
measures of the latter, and allow some new interesting classifications of well
known game forms, games, and solution concepts with respect to the allocation
of decision power they embody. A few significant examples including bargain-
ing game forms, 2x2 strategic game forms, voting game forms, constitutional
effectivity functions, and solution concepts for private-good-economies will be
presented and discussed below. The structure of the paper is as follows: section
2 provides some relevant background and motivation. Section 3 is devoted to
the introduction of some basic results. Section 4 describes the Galois lattices of
several prominent game correspondences, and discusses the ensuing classifica-
tions of the latter in terms of Galois-latticial parameters. Section 5 offers some
short concluding remarks. The proofs are confined to an appendix.

2 Background and Motivation

Let us first consider two voting procedures, defined as follows. Under the first
procedure (V), the voters are asked to make proposals at a preliminary stage, in
some ordered way; then the proposals themselves are suitably ordered and the
players veto any proposal they consider not acceptable. The first proposal that
is not vetoed by anybody is chosen; if no such proposal exists then no action
is taken, and the status quo obtains. Under the second procedure (V*), the
voters are suitably ordered and asked to make one proposal at a preliminary
stage; then they proceed to veto exactly one alternative from the set consisting
of those proposals- including the status quo- that have not been previously
vetoed. The unique alternative that fails to be vetoed is the final outcome.

In many relevant aspects (V) and (V*) are very different. Under (V) veto
power is a free good. From a practical point of view, (V) is a recipe for inertia
except perhaps for small homogeneous assemblies with no relevant conflicts of
interest. By contrast, under (V*) veto power is a scarce good. The status
quo is not a specially privileged alternative, and reasonable outcomes are to
be expected - under several solution concepts- even when ”positive action” is
required (see e.g. Moulin(1983) ). However, (V) and (V*) share the same set W
of winning - i.e. all-powerful - coalitions, that reduce to the grand coalition of all
voters. Hence, (V) and (V*) are plainly indistinguishable if one looks at their
simple games, under the standard interpretation of the latter. By contrast,
looking at their effectivity functions enables an adequate representation and



analysis of the basic differences between (V) and (V*). Indeed, under (V) any
single player can force the final outcome to be the status quo, and intermediate
coalitions do not enjoy any supplementary decision power. Under (V*), no
coalition except the grand one can enforce the status quo and intermediate-size
coalitions do enjoy an intermediate amount of decision power.

Next, consider a neutral effectivity function F as defined on a finite outcome
space X: namely, E is such that for any coalition S and any pair A, B of
subsets of X having the same cardinality, S can force the outcome either in
both A and B, or in none of them. Now, suppose a further outcome z° is
added ( due possibly to a certain change of description of the outcome space).
Then, a new effectivity function E° can be defined by the following rule: for
any coalition S and issue B C X U {z°}, S can force B under E° if and only
if S can force B\ {z°}under E. Clearly enough, E and E° are two distinct
non-isomorphic effectivity functions, but the structure of coalitional power they
represent is arguably very much the same. Similar examples obtain from more
general basic transformations of effectivity functions ( see section 3 below ). This
is so because - while simple games focus on a single set of winning coalitions -
effectivity functions amount to a family of sets of ”locally winning” coalitions as
parameterized by the entire set of non-empty subsets of the outcome space. In a
sense, effectivity functions carry too many details for analyzing the structure of
coalitional power. We claim that Galois lattices of effectivity functions ( to be
defined below) provide us with the ”right” intermediate amount of information
that is required in order to accomplish the latter task in a proper way.

3 Model and Basic Results

Let (N,X) be a pair of non-empty sets ( the sets of players and outcomes,
respectively; we also assume #N > 2 and #X > 2 in order to avoid trivialities).
A (monotonic) simple game on N is aset W, () # W C P(N), such that S € W
and S C T entail T' € W. The coalitions belonging to W are meant to represent
the winning or all-powerful ones. An effectivity function (EF) on (N, X) is a
function E : P(N) — P(P(X)) such that :

EF1) E(N) 2 P(X)\{0}; EF2) E(0) =0; EF3) X € E(S) for any S,
0#SCN.

Moreover, F is a well-behaved EF if

EF4) O ¢ E(S)forany S, 0 € SC N is also satisfied.

An EF E on (N, X) is monotonic if for any S,T C N and any A, B C X

[A € E(S) and S C T entail A € E(T)] and

[A € E(S) and A C B entail B € E(5)].

In what follows we shall confine ourselves to monotonic EFs.

A monotonic EF E on (N, X) is regular if ) # A € E(S) entails X\A ¢
E(N\S) for any S C N and B C X, and mazimal if A ¢ E(S) entails (X\A) €
E(N\S) for any ) #S C N and ) # A C X. Moreover, an EF F on (N, X)
is superadditive if for any S, T C N and A,B C X, A € E(S), B € E(T) and



SNT =0 entail ANB € E(SUT). Finally, an EF E on (N, X) is simple if a
non-empty set W C P(N) exists such that for any S C N, AC X, A € E(S) if
and only if either A= X and S # () or A # () and S € W. Indeed, simple EFs
amount to simple games as endowed with a fixed outcome set.

In many relevant contexts, one may be focussed on EFs that treat ”sym-
metrically” players and/or outcomes. Such requirements are embodied in the
following properties. An EF E on (N, X) is anonymous if for any A C X, and
S,T C N such that #S =#T: Ac E(S)ifandonly if A€ E(T) . AnEF E
on (N, X) is neutral if for any S C N and any A, B C X such that #A4 = #B
: Ae E(S) if and only if B € E(S).

We are mainly interested in those EFs that can represent the decision power
of coalitions under a certain decision mechanism, or game correspondence. A
game correspondence on (N, X) is a correspondence G : D —— X where D C
[Licn Si , and S; is the set of "interactive behaviours” available to player i € N.
A game form is a single-valued game correspondence.

Now, the notion of decision power admits at least two distinct interpreta-
tions, namely ”guaranteeing power” and ”counteracting power” that in turn
correspond to the ability to force maximin and minimax outcomes, respectively.
Thus, the allocation of ”guaranteeing power” under game correspondence G
with domain D is represented by the o — EF of G - denoted by E,(G)- as
defined by the following rule:

for any non-empty S C N,

AC X:at®€];cq S exists such that (t5 sV\59) € D
and

(Ea(G))(S) = G(tS,SN\S) CA

for any sV\5 ¢ [Tienns Sis

Conversely, the allocation of ”counteracting power” under game correspon-
dence G with domain D is represented by the 3 — EF of G, denoted by Ez(G)
and defined as follows :

for any non-empty S C NV

AC X : for any sV\5 e HieN\S S; some t° € [Lics Si

(Eg(@))(S) = exists such that (+°,sV\%) € D

and G(t%,sNV\9) C A

It is easily checked that E,(G) is regular, Eg(G) is maximal, and both of
them are monotonic and - provided that G is non-empty valued- well-behaved .
Also, it is well-known that superadditivity and monotonicity of an EF E imply
that a game correspondence G exists such that E = E,(G) : see Moulin(1983),
and Otten,Borm,Storcken, Tijs(1995)) . Indeed, monotonicity of o — EF's and
(8 — EF's of game correspondences is our main reason for confining the ensu-
ing analysis to monotonic EFs (as mentioned previously). Furthermore, the
foregoing distinction between « — EF's and 3 — EF's brings us to the general
notion of a polarity operator for EFs, implicitly defined as follows (see e.g. Ab-
dou,Keiding(1991)): the polar E of a monotonic EF E on (N, X) is an EF on
(N, X) such that :

i) E(0) =0 and ii) for any non-empty S C N and A C X, A € E(S) if



and only if X\A ¢ E(N\S).

(It should be noticed here that E = E if and only if F is both regular and
maximal ).

In Vannucci(1998a) it is observed that : i) the set of all EFs on (N, X)
is bijective to a set of binary relations on (P(N),P(X)) : hence any EF on
(N, X) can be equivalently regarded as a binary relation ; ii) therefore, the
classic Birkhoff theorem on so called Galois connections applies. It follows that
the functions fz : P(P(N)) —»— P(P(X)), gg : P(P(X)) —»— P(P(N)) as
defined by the rules

fe(S)={AC X:Aec E(S) for any S € S} for any S CP(N), and

gr(A)={SCN:Aec E(S) forany Ac A}

enjoy the following list of properties:

a) the functions Kg =ggofr and K}, = frogr are closure operators on
(P(N),2) and (P(X), D), respectively (we recall here that a (Moore) closure
operator on a preordered set (Y, >) is a function K : Y — Y such that for any
y,2€Y 1 K(y) Zy; y = zentails K(y) > K(z) ; K(y) 2 K(K(y)) ).

b) the corresponding closure systems - i.e. sets of closed sets - C(Kg) =
{SCP(N):S=Kg(S)}, C(Kr) ={ACP(X): A=Ky(A)} are (dually
isomorphic) complete lattices under the join and meet operations defined as
follows:

for any {Si},c; € O(Kr), {Ai}e; C C(KR).

VierS: = Kp(UierSi), NierSi = NierSi, VieiAi = Ki(UierAg), NgrAq =
NicrAg

(we recall that a lattice is a partially ordered set (L, >) such that for any
pair {z,y} C L, both a greatest lower bound (glb) -or meet- A{z,y}and a
lowest upper bound (lub) - or join - V {z,y} exist; a lattice is complete if any
subset of L has both a glb and a lub ).

¢) the lattices under b) are dense, i.e. have a unique atom and - if E is well-
behaved- co-dense, i.e. have a unique co-atom ( an atom of a lattice (L, >) is
a >-minimal non-bottom element of L, and a co-atom is-dually- a >-maximal
non-top element of L).

The Galois lattice of an EF E is L(E) = (Iso[C(Kg) x C(K},)],2) , where
Iso[C(Kg) x C(K7%,)] denotes the set of canonically isomorphic pairs of the
closure systems of E,

and for any {(S;, A;)icr} C Iso[C(Kg) x C(K7},)]

Vier (8;:As) = (Kp(UierS:), NierAi), Nic(Sis Ai) = (MierSi, Kp(UierAy)).

Clearly enough, the Galois lattice L(E) ( that is also sometimes called a
concept lattice) is lattice-isomorphic to the closure systems of E. Hence, L(E) is
complete, has a unique atom and, if F is well-behaved, a unique co-atom. Those
basic facts concerning L(F) can be summarized by the following proposition (see
Vannucci(1998a) for more details):

Proposition 1 Let E be an EF on (N, X). Then, a complete lattice L(E) -
the Galois lattice of E, uniquely defined up to isomorphisms- can be canonically
attached to E. Moreover, i) L(E) is dense ; ii) if E is well-behaved, L(E) is
co-dense; i) L(E) is finite whenever either N or X is finite.



Remark 2 [n view of Proposition 1 it must be the case that L(E) = 1¢&B(L(E))®
1 for some lattice B(L(E)) if E is well-behaved , and L(E) = 1¢&B(L(E)) oth-
erwise (where 1 denotes the degenerate 1-element lattice, and & denotes the lin-
ear or ordinal sum operation: see e.g. Birkhoff(1967), or Davey, Priestley(1990)).
In any case, we shall refer to the lattice B(L(E)) as the bulk of L(E) .

Now, it is to be checked whether the Galois lattice of an EF does indeed
satisfy - as claimed above- the outcome-invariance property described above in
section 2. In order to accomplish this task we provide a formal definition of a
suitable family of uniform expansions of an EF.

Definition 3 Let E be an EF on (N, X), and Y a set such that X NY = ().
The Y-uniform expansion of E- written E vy - is the EF on (N, X UY) defined
by the following prescription : for any S C N, AC XUY , A€ Ev(S) if
and only if A\Y € E(S) .

The following proposition establishes the required property of Galois lattices
of EFs.

Proposition 4 Let E be an EF on (N, X), and E;y the Y-uniform expansion
of E. Then L(E,y)=L(E).

Thus, as mentioned above, Galois lattices of EFs - and their bulks- provide
us with an algebraic invariant that allows some significant new classifications of
game correspondences. ( Of course, a game correspondence G is entitled to -
at least- two Galois lattices, the a-Galois lattice and the (-Galois lattice, that
correspond to E,(G) and Eg(G) , respectively. We shall refer to the Galois
lattice of game correspondence G when E.(G) = E3(G)). Indeed, the Galois
lattice L(E) also provides -at least- two natural complexity measures for the
underlying EF E, namely its length and width. We recall here the relevant
definitions ( see again Birkhoff(1967), or Davey,Priestley(1990) ).

Definition 5 The length (L) of a lattice L is the least upper bound of the set
of lengths of chains included in L (a chain is a totally ordered set; the length of
a chain of k+ 1 elements is k).

Definition 6 . The width w(L) of a lattice L is the size or cardinality of its
largest antichain ( an antichain is a set of pairwise incomparable elements ).



A most useful notion of rank for coalitions ( and issues) can be introduced
relying on the length {(L(E)) of the Galois lattice of an EF E as defined above.

Definition 7 Let E be an EF on (N, X). The height hg(z) of = = (C,C’) €
L(E) is the least upper bound of the set of lengths of chains in L(E) having x
as their mazimum. The rank r(S) of a coalition S C N is the height hg(x) of
the highest x = (C,C’) € L(E) such that S € C ( a dual definition obtains for
an issue A C X ).

A few fundamental properties of an EF E on (N, X) - hence of a game
correspondence G when E,(G) = E3(G) - can be readily expressed using the
notion of rank ( see again Vannucci(1998a)):

i) E is consensual (CO) if rg(N) > rg(S) for any coalition S # N (in
words, E is CO if the grand coalition is uniquely endowed with maximum rank);

ii) E is fully distributed (FD) if rg({i}) > 1 for any ¢ € N (in words, FE is
FD if each single player is endowed with some non-communal decision power);

iii) E is unspecialized (USP) if rg(S) =rg(T) entails E(S) = E(T) for any
S,T C N, and specialized (SP) otherwise (in words, E is US if having the same
rank entails having exactly the same decision power).

iv) E is strictly hierarchical (SH) if rg(S) = rg(T) entails S = T for any
S,T C N (in words, the coalitions are linearly ordered w.r.t. their rank in E).

Moreover, simplicity of an EF as defined above can also be characterized
in terms of the rank function. Namely, an EF E is simple (SI) if rg(.) is
two-valued.

Clearly enough, the foregoing properties are -generally speaking- not inde-
pendent. In particular, SH entails USP and not SI ; SI entails USP ; CO and
FD jointly entail not SL.

The following basic result can be easily established (see Vannucci(1998a)):

Proposition 8 Let E be an EF on (N, X). Then, i) E is simple and consensual
if and only if B(L(E)) =1 ; i)E is simple and not consensual if and only if
B(L(E)) = 2 ( the two-element Boolean lattice); i) if E is simple, regular and

not consensual, then B(L(E)) = B(L(FE)) = 2.

Thus, the unanimity rule (whose a-EF is the unique simple and consensual
EF on (N, X) ) turns out to be -somehow- uniquely connected to the degenerate
lattice 1, while simple and not consensual EF's are -somehow- uniquely connected
to the simple Boolean lattice 2 ( we recall here that a lattice is simple if and
only if its congruences reduce to the trivial ones i.e. the identity congruence
and the universal congruence ).



4 Computing Galois Lattices of Game Corre-
spondences: Some Examples

Computing the Galois lattice of a given game correspondence or effectivity func-
tion may well involve a heavy computational burden (see e.g. Gritzer (1998),
especially Appendix H by Ganter and Wille). The present section is devoted
to the computation of the (bulks of) Galois lattices of some prominent and
well-known game correspondences that are simple enough to allow for ”man-
ual” calculations (including two solution concepts for private-good-economies,
that can indeed be regarded as a special example of a ”revelation” game corre-
spondence). Comparing such Galois lattices, and their parameters, will enable
us to classify such game correspondences according to the properties introduced
in the previous section.

4.1 Bargaining Game Forms

A bargaining game form on (N, X) is a tuple GZ = (N, (X;)ien ,2*) where
X; =X forany ¢ € N, and z* € X denotes the conflict outcome. The players
in N can unanimously agree on any outcome in X. The conflict outcome z*
obtains if the players fail to agree on any other outcome.Therefore, E,(G?)
is given by the following rule: for any S,B , ® # S C N, () # B C X,
B € (E,(G?))(S) if and only if either S = N or 2* € B. The following result is
easily established:

Proposition 9 Let GP be a bargaining game form as defined above. Then, 1)
E.(GB) = E3(GP), and B(L(G®)) = 2. Thus, GB is simple ( hence unspe-

cialized) and consensual (but neither fully distributed nor strictly hierarchical).

4.2 Voting Game Forms

As mentioned above, voting game forms have been largely studied by analysing
their simple games, which amounts to regarding the EF's of the former as sim-
ple. It should be emphasized again that this is only appropriate for certain
voting procedures. Indeed, majoritarian-like voting schemes rely on a sharp
distinction between all-powerful - or winning - and powerless - or losing- coali-
tions. Hence, the EFs of such schemes are indeed simple ( and their Galois
lattices are as described above under Proposition 3). Unfortunately, it is well-
known that majoritarian-like voting procedures are -generally speaking- unsta-
ble in that at many preference profiles their core is empty. By contrast, cer-
tain voting-by-limited-veto procedures ( as briefly introduced in section 2 above,
and thoroughly analyzed elsewhere, e.g. in Moulin,Peleg(1982), Moulin(1983),
Peleg(1984), Danilov,Sotskov(1993) ) enjoy several nice stability properties -
including general non-emptiness of the core- and rely on a considerably more



complex allocation of decision power. This is neatly reflected by the properties
of their Galois lattices. As a prominent example of a voting-by-limited-veto pro-
cedure that shares anonymity and neutrality properties with majoritarian-like
schemes we shall focus on a version of the proportional veto procedure, first intro-
duced by Moulin ( see e.g. Moulin(1983), Abdou,Keiding(1991)). Namely, we
consider a proportional veto procedure with endogenous agenda formation that
can be described as follows. A distinguished outcome x*- the ”status quo”- is
identified. Then, each player makes k proposals, is informed on the resulting set
of outcomes, and issues k vetos - according to a prefized order - on non-vetoed
alternatives. The unique non-vetoed outcome is selected. The corresponding
EF EfY ( that is regular and maximal, hence unambiguously determined) is
defined by the following rule:
forany SC N, AC X, A€ EFPY(S) if and only if
[(kn+1)2] >kn+1—a

where s =#S, n=4#N, and a =#A.

Since each coalition-size corresponds to a distinctive ”degree” of decision
power, the Galois lattice L(E*Y) is easily computed. Thus, it is straightforward
to establish the following result:

Proposition 10 Let EFV be the proportional veto EF as defined above. Then,
i) BIL(EPY)) =n (where n denotes the chain of sizen ). Hence, in particular
ii) BTV is consensual and unspecialized ( but mot simple, fully distributed, or
strictly hierarchical).

It should be noticed that the Galois lattices of both bargaining and
(neutral) voting game forms as considered above are invariably chains. The
following example shows that there also exist elementary game forms whose
Galois lattices are not chains.

4.3 2 x 2 Strategic Game Forms

Let us consider a 2 x 2 strategic game form G* = ({1,2},(S1,S2), h), where
51 = {81,t1}, SQ = {Sg,tz}, and h(Sl,Sg) = a, h(Sl,tQ) = b, h(tl,SQ) = C,
h(ti,t2) = d. Clearly enough, E,(G?) # Eg(G?). Let us consider the ” generic”
case (i.e. #X =4 ). The following proposition summarizes the situation :

Proposition 11 Let G?be a 2 x 2 strategic game form as defined above. Then,
i)B(L(E.(G?))) = B(L(Eg(G?))) = 22 (the 4-valued Boolean lattice) if G*
is “generic” i.e.#X = 4. Hence, in particular, both E,(G?) and Eg(G?) are
consensual, fully distributed, specialized ( and, of course, neither simple nor
strictly hierarchical); i) B(L(E(G?))) = B(L(Es(G?))) = 3 if #X = 3
and the replicated outcome is not on a diagonal, whereas B(L(E,(G?))) =
B(L(E3(G?))) = 3 if #X = 3 and the replicated outcome is on a diagonal;
i1i) B(L(E«(G?))) = B(L(E3(G?))) = 2 if #X = 2 and a diagonal exists
which does not include replicated outcomes, whereas B(L(E.(G?))) = 2 and
B(L(Es(G?))) =1 if #X =2 and each diagonal includes replicated outcomes.



Therefore, a “generic” 2 x 2 strategic game form provides a first elementary
example of an EF whose Galois lattice has a non-trivial width. More examples
are to be described below.

4.4 Constitutional Effectivity Functions

Modern representative democracies rely on governance structures whose archi-
tectures may vary in many relevant respects. The most significant distinction is
perhaps the one between parliamentary and presidential systems. Indeed, under
parliamentary governance structures executive-termination can be prompted by
a non-confidence vote on the part of the legislature. By contrast, under pres-
idential systems the executive is not subject to non-confidence votes and -as
a result- some degree of separation of powers between legislature and execu-
tive typically obtains. More often than not, under presidential systems the
head of executive is directly appointed by means of general elections, while the
opposite is the case with parliamentary systems. However, the nature of the
executive-appointment procedures is, in our view, largely immaterial to the ba-
sic distinction between parliamentary and presidential systems. Therefore, in
order to focus on the latter contrast, we shall single out for discussion a) the
EF of a presidential system with perfect separation of powers and b) the EF
of a parliamentary system with a directly elected premier and a fixed majority
(see also Vannucci(1998b,1999)).

Definition 12 (The EF of a presidential system with perfect separation of pow-
ers) Let 0% denote the elected president of the executive, and N = {1,..,n}
the set of parties- or wvoting blocs- of a legislature of size h. The parties have
weights- or number of seats- w;, i = 1,..,n. We also suppose that the weight
profile w = (w;)ien s strong (i.e. for any S € N either ) ;g w; > L%J +1
or ZieN\S w; > L%J +1 ). Moreover, we assume a sharp distinction between
the respective ”jurisdictions” of the executive and legislature. Therefore, the
outcome space is X =Y X Z , where'Y denotes the "jurisdiction” of the ex-
ecutive, and Z the "jurisdiction” of the legislature. Then, the EF EY%(w) of
a presidential system with perfect separation of powers and weight profile w is
defined by the following rule: for any S C NU{0*}, AC X, A€ (EP%(w))(S)
if and only if one of the conditions i)-iv) listed below is satisfied : i) A # 0,
0" €S and Y ;cqwi > | 2] +1 ;i) AD {y} x Z for somey €Y , and 0* € §
;i) ADY x {z} for some z € Z, and ), gw; > L%j +1;iw) A=X and
S £ 0.

Definition 13 (The EF of a parliamentary system with a directly elected pre-
mier and a fized majority) Let 0* denote the elected premier, N = {1,..,n} the
set of parties -or voting blocs- of a legislature of size h (whose allocation of seats
is represented by a n-dimensional strong weight profile w as under the previous
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definition), M = M(w) C N a (possibly minimal) majority coalition, X the
outcome set, and x* € X a "deadlock” outcome that corresponds to legislature-
termination, i.e. mew elections. Then, the EF EPA(W,]W) of a parliamentary
system with directly elected premier and fixed majority M = M(w) at weight
profile w is defined by the following rule: for any .S C N U{0*}, A C X,
A € (EPA(w, M))(S) if and only if one of the clauses i)-iii) described below is
satisfied : i) A# D and SO MU{0*} ;%) z* € X and SN(MU{0*}) #0 ;
iii) A=X and S # 0.

We are now ready to state the next result on Galois lattices, which admits
a quite straightforward proof.

Proposition 14 Let EXS(w) and EP4(w, M) be the presidential and parlia-
mentary EFs as defined above.

Then i) B(L(EY®(w))) =22 ;

i) B(L(EP4(w, M))) = 3 ( where 3 denotes the three-sized chain); hence,
in particular, ETS(w) is specialized whereas ET4(w, M) is unspecialized ( but
neither of them is consensual, fully distributed, strictly hierarchical, or simple).

4.5 Solution Correspondences for Private-Good Economies

The computation of Galois lattices is easily extendable to solution concepts
and correspondences. This is so because whenever the ”objects” to be ”solved”
include a description of non-verifiable individual characteristics (e.g. prefer-
ences), the latter can be regarded as the output of strategic behaviour. As a
result, the solution concept under consideration can be aptly interpreted as a
revelation-game correspondence. The Galois lattice of such a solution correspon-
dence provides, once again, a succinct description of the structure of coalitional
power when the actual behaviour of players is well predicted by the given so-
lution concept (hence, the coalitional power discussed here is of a conditional
sort) . This subsection is devoted to an application of those ideas to some do-
mains of pure exchange private-good economies. In particular, we shall focus on
a) core correspondences- and related solution concepts- on an unconventionally
large domain and b) a solution concept that combines Pareto-efficiency with un-
dominated diversity ( a mild fairness requirement that generalizes the no-envy
criterion ) on a standard domain.

To begin with, a few basic definitions are to be recalled. A pure exchange
private-good-economy is a tuple e = (N, (X;)ien ,(Fi)ien (wi)ien ) where
for each agent i € N, X; = ]Rf"; is her consumption set whose dimension k
denotes the number of available private goods, »=;is the total preference preorder
of i on the allocation space X = [[,.y X;, and w; is her endowment. We
denote by E(w) the set of all n-agent pure exchange private-good economies with
endowment profile w = (w;);eny . (We should emphasize here that we are not
imposing the usual selfishness, monotonicity, continuity, or convexity restrictions
on preferences: therefore- as mentioned previously - we are considering a much
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larger domain of economies than the standard one). A feasible allocation of
an economy e € E(w) is a profile of consumption programs x = (2;);eny € X
such that >,y 2; <>, ywi . The set of feasible allocations of an economy
e € E(w) will be denoted by F(w). We are now ready to introduce the solution
concepts mentioned above.

Definition 15 ( Consistent core correspondence on E(w) ) A consistent core
allocation of an economy e = (N, (X;)ien , (Zi)ien ,( i)ien ) € B(w) is a
feasible allocation x € F(w) such that i) for any S, § # S C N, and any
y € F(w) with 3 ;cqyi < > ;eqwi an allocation y' € F(w) exists such that
Yy =vy; foranyi € S, and x =; y' for some j € S, and i) for any S,
0 #S CN, and any y € F(w) such that y; = x; for everyi € N\S , x =; ¥
for some j € S . The set of consistent core allocations of e is denoted by
core(e). The consistent core correspondence C': E(w) —— F(w) is defined by

the rule C(e) = core(e) for any e € B(w) .

Remark 16 The consistent core correspondence as defined above is an exten-
sion to B(w) of the usual notion of core allocations, which is typically defined for
economies with monotonic - and selfish- preferences. Thus, consistency of core
allocations - i.e. core-stability of core-suballocations within their appropriate re-
duced economy, a property that is automatically satisfied by core allocations of
economies with selfish monotonic preferences- has to be explicitly incorporated
into the definition. It should also be mentioned that the foregoing definition
implicitly assumes -as usual- that any coalition can be freely formed. Obvious
adaptations can be introduced in order to cover the case of restricted sets of
feasible coalitions. In particular, it can be shown that a general version of the
results on Galois lattices of consistent core correspondences as presented below
obtain, provided that the set of feasible coalitions is a complemented lattice ( see

Vannucci(1998c)).

Another solution concept for private-good economies - perhaps the most
widely used- is provided by the notion of a Walrasian equilibrium.

Definition 17 (Consistent core Walrasian-extension on E’ (w) ) A Walrasian
equilibrium of an economy e € E(w) is a pair (p*,x*) € le_ x X such that
p* £ 0, x* € F(w) and x* =y for anyi € N and any y € F(w) with
p*-y <p*-w . A feasible allocation x € F(w) is a Walrasian allocation of the
economy e € E(w) if (p,x) is a Walrasian equilibrium of e for some non-null
non-negative price vector p . The set of Walrasian allocations of an economy
e € E(w) is denoted by w(e). It is easily checked that Walrasian allocations of
e are in the core of € . Hence, a Walrasian subcorrespondence of the consistent
core correspondence - or, equivalently, a consistent core Walrasian extension
WC - can be defined by the following rule : W€ (e) = w(e) if w(e) # 0, and
W¢(e) = C(e) otherwise. Of course, both C and W are locally empty-valued.
Therefore, their a-EFs and 3-EFs are not well-behaved ( see the definitions in
section 3 above).

12



The consistent core correspondence and its Walrasian subcorrespondence
are meant to capture the operation of two distinct coordination devices that
may be available to optimizing agents, but none of them is explicitly concerned
with fairness criteria. By contrast, a combination of efficiency and fairness
under selfish preferences is the main rationale for the undominated efficient
correspondence to be defined below ( see e.g. Roemer(1996)). We recall here
that the set E (w) C E(w) of economies with selfish preferences consists of all
economies € = (N, (X;)ien, (Zi)ien » (wi)ien) such that for any ¢ € N , and
X,y € F(w), x = yif and only if (z;, (w;)j2i) =i (yi,(25)j2) for any
(wj)jis (23)j#i € [jenqsy Xi (indeed, under selfish preferences x »=;y can
also be written x; >=; y;

Definition 18 (Undominated efficient correspondence on E’ (w)) Lete= (N,

(Xi)ien, (Zi)ien, (Wi)ien ) € E’ (w) be an economy with selfish preferences. An
allocation x € F(w) is undominated in e if for no j € N both [z; =; x; for all i € N]

and [x; #; x; for alli € N] hold true. An allocationx € F(w) is Pareto-efficient

in e if for no allocation’y € F(w) both [y; =; x; for all i € N| and [x; #; y; for some j € N]
obtain. The set of undominated and Pareto-efficient allocations of economy

e is denoted by uPF(e). The undominated efficient correspondence UPE :
B’ (w) —— F(w) is defined by the rule UP¥(e) = uf'F(e) for any e € B (w).

We are now ready to state our results concerning the Galois lattices of the
foregoing solution correspondences.

Proposition 19 Let C, W, UPF the solution correspondences for private-
good-economies as described above. Then, i) B(L(E,(C))) = B(L(Eg(C))) =
B(L(E(WO))) = BL(Es(WO)) = 2°; it) B(L(Ea(UF))) = B(L(E3(U**)))
=2.

Hence, Proposition 8i) provides a further example of a specialized EF (of
width n) .Obviously, the underlying environment consisting of private-good
economies is somehow conducive to EFs of this sort. Proposition 8ii) how-
ever confirms that a private-good-economy setting is also consistent with simple
EFs.

5 Concluding Remarks

The present paper has—hopefully— made a case for the relevance of Galois lat-
tices of effectivity functions as basic invariants for the classification and analysis
of game correspondences. The emphasis of the paper has been on the ”struc-
tural” complexity measures for game correspondences that are provided by such
lattices. Further insights on the interplay between those ”structural” properties
and (core-)stability may arise from studying the Galois lattices of convex effec-
tivity functions ( as done in Vannucci(1998a)). It is also worth noting that -
while EFs having non-distributive Galois lattices can certainly be devised (see
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again Vannucci(1998a))- distributivity seems to be the rule for typical game cor-
respondences ( just as with the lattices of truth values of most logics). Those
arguments however are best left as a possible topic for further research.

6 Appendix

Proof of Proposition 3. Obvious, since the relevant closure systems — e.g. C(E)
and C(E,y )— are isomorphic. Indeed, let S € C(E), ie. S€8S if A€ E(S)
for any A C X such that A € E(T) for each T € S. Now, let S C N |
B e Eiy(S’) for any B C X UY such that B € E4y(T) for each T' € S, and
S" ¢ S. Then, A ¢ E(S’) for some A C X such that A € E(T) for each T € S.
Since —by hypothesis— ANY = (), it follows that A € E,y(T) for each T € S,
and A ¢ E,y (S") (by definition of Ey), a contradiction. Hence, S € C(ELy).
Conversely, let S € C(E;+y)\C(E). Hence, a S’ C N exists such that A € E(S’)
for any A C X such that A € E(T) for each T € S,and S’ ¢ S, while for any
SCN if Be E.y(T) for any B C XUY such that B € E,y(T) forany T € S
then S € S. Now, take B C X UY such that B € E;y(T) for any T € S.Then
B\Y € E(T) for any T € S, whence B\Y € E(S'), i.e.B € Ey(5’). It follows
that S’ € S, a contradiction. As a result, C(E;y) = C(F),and the identity
function Id is the required latticial isomorphism. []

Proof of Proposition 8. i) It is well-known that for any strategic game form
E.(G) = E3(G) iff E,(G) is maximal (see Peleg(1984), lemma 5.1.17). Now,
take ) # A C X, # S C N such that A ¢ E,(GP)(S). Then —by defi-
nition of GB— S # N and 2* ¢ A : hence N\S # ) and 2* € X\4 ie.
X\A € Eo(GB)(N\S). Moreover, the definition of GP clearly entails that
S = N is the sole coalition such that A € E,(G?)(S) for each A € P(X)\ {0}
(this fact also implies that GP is consensual). Indeed, S = N is the sole coali-
tion such that A € E,(G?)(S) for some A € {B C X : 2* ¢ B} while —by
definition of GP—A € E,(G?)(S) for any coalition S # () and any A C X with
x* € A (hence in particular 75, (gs)({i}) = 1 for any i € N). It follows that
B(L(GP)) = (({N}, P(X\{0}), (P(N)\ {0} .{B € X : 2" € B})) = 2 (mod-

ulo isomorphisms) . [

Proof of Proposition 9. i) Notice that for any S C N such that #S =n — h,
[(kn+1)2] > kn+1—aif and only if a > kh,ie. A€ EPV(S)iff #A > kh.It
follows that B(L(EXY)) = ({SC N :#S>n—h},{AC X : #A > kh}),h=
0,..,n — 1) = n (modulo isomorphisms) .

In particular, E¥'V turns out to be consensual ( N is the only maximum
rank coalition) and unspecialized( since its Galois lattice is a chain). O

Proof of Proposition 10. Let G? be a 2 x 2 strategic game form with outcome
function h as described in the text. Clearly enough, by choosing rows and
columns, respectively, 1 can (a«— and —)enforce {a, b} ,{c,d} (and supersets),
whereas 2 can (a—and §—)enforce {a, c},{b,d} (and supersets).
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i) It is easily checked by direct inspection that the only difference between
E,(G?) and Eg(G?) — in the “generic” case i.e. with #X = 4— reduces to the

fact that
{{a,d} {b,c}} € [Ep({1}) N Eg({2})] \ [Ea({1}) U Ea({2})]-

It follows that
(N} {AC X A£0}),
({Na{l}}a{A CX:A= {aab}7A: {Cad} or #A > 3})7
({N7{2}}7{AgXA:{a’c}’A:{b7d} or #A23})7
(N, (1}, (21} {A € X : A4 > 3})

B(L(Eq(G?))) =

and

(N} {ACX:A#£0}),
B(L(E3(G?))) = (NA1}{AC X #A>2, A% {a,c},A#£{bd}}),

But then, modulo (latticial) isomorphisms, B(L(E,(G?))) = B(L(E3(G?) =
22,

ii) When #X = 3,three subcases may be distinguished: a) a = b, or ¢ = d
(i.e. the identical outcomes are in the same row), b) a = ¢, or b =d ( i.e. the
identical outcomes are in the same column), ¢) a = d, or b = ¢ (i.e. the identical
outcomes are on a diagonal) . It should also be noticed that under both a)
and b) E,(G?) = E3(G?): this is so because whenever a (2-dimensional) row
or column has (two) identical entries —say xz— the following facts are easily
checked by direct inspection of the game(-form) matrix: 1) z is an element
of both diagonals, 2) each diagonal replicates a distinct row (column) if the
double z is on a column ( a row). But then, {{a,d},{c,d}} C E,(G?)({1}) N
E,(G?)({2}). Thus, E,(G?) = E3(G?) = E(G?) follows from our previous
observation on the relationship between E,(G?) and E(G?) in the “generic”
case: we denote by L(E(G?)) their Galois lattice, which is determined as follows.
Under case a) it is checked by direct inspection that if we denote by z the
replicated outcome, and by ¥, z the remaining outcomes then

EG*)({1}) ={Ac X : A2 {a}} U{{y.2}}, and
EGH({2}) ={AC X :AD{z,y} or AD {z,2}}.
Hence,
(N} {ACX:A£0)),

BIL(G) ={ (IN.{1}{ACX: A= {2} ,or A2 {a}}),

(AN A1}, {2} {AC X - AD {a,y} or AD {z,2}})

Similarly, under case b)

(IN}.{AC X :A£0))

BIL(GY) =4 (INA2H{ACX: A= {y,2}, 00 A2 [a}}),

(N A1}, {21 {AC X - A D {a,y} or AD {z,2}})
where, again, = denotes the replicated outcome. Thus, under cases a) and
b) B(L(E(G?)) = 3.

Under case ¢), it is immediately seen that for each row there is (exactly) one

column that includes the same elements, and vice versa. Moreover, no row or
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column amounts to a pair of duplicated outcomes, and none of the diagonals
can possibly be replicated by a row or a column ( because that would entail
#X < 3). Hence, if we denote by z the replicated outcomes, and by y, z the
other outcomes
Ea(GP)({1}) = Ea(G)({2}) = {AC X : #4> 2, A # {y,2}}, and
Ep(G*)({1 b = Ep(G*)({2}) = {A CX:A#0A#{y}, A# {z}}.
Thus, B(L(E.(G?))) = B(L(Es(G?))) =
iii) If #X =2, four cases may be dlstlngulshed : a) an outcome z € X and
a strategy profile (u,v) € 51 x Sy exist such that x = h(r,w) iff (r,w) # (u,v)
; b) each row is made up of replicated outcomes ; ¢) each column is made up of
replicated outcomes; d) each diagonal is made up of replicated outcomes.
Under case a) it is immediately checked that
Eo(G*)({1}) = Ea(G?)({2}) = Ba(G*)({1}) = Es(G*)({2}) =
={ACX:A#£0,A#{z}}.
It follows that B(L(E.(G?))) = B(L(E3(G?))) =
Under case b) ,
Eoé(G2 (
(

)

Eo(G %)

) =

Similarly, under case c)

Hence, B(L(E.(G?))
Eo(G*)({2})

=Eg ) C
Eo(G )({1}):E ( 2)({1 ) = {X}.
Thus, again, B(L(E.(G?))) = B(L(E3 2.
Under case d),

{1}) =
{})

E.(G?)({1}) = Ea( 2)({2}) = {X}, and
Ep(G*)({1}) = ( 2)({2}) ={AcC X A#V)}
It follows that B( (Ea(G?))) = 2, while B(L(E3(G?))) = 0

Proof of Proposition 13. i) It is immediately checked that — by definition
of EFS(w)— B(L(EFS(w))) -

({SCNU{0*}:0" €S, and >, qw; > [2] +1} {AC X : A#£0})
{SCNU{0}:00€ S}, {ACX:AD{y} x Z for some y € Y}),
{SCNU{0"}: Y cqwi > [4] +1},{ACX:ADY x {z}for some z € Z})
(S CNU{07): 8 £ 0} (X))

Hence B(L(E?%(w))) = 22 (modulo isomorphisms).
ii) It follows from the definition of EX4(w, M) that B(L(ET4(w, M))) =
{ ({SCNU{0"}} {ACX:AF#D}), }
{SCNU{0*}:SN(MU{0*}) #0},{AC X :2* € X}),
({S S NU{07}: S # 0}, {X})
Hence B(L(EP#(w, M)) = 3 (modulo isomorphisms). O

Proof of Proposition 19. i) see Vannucci (1998¢) ;
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ii) It is easily checked that for any i € N , and any x € F(w), F(w)\{x} ¢
(Ea(UPENN\ {i}) U (Es(UT)(N\ {i}). Indeed, let (=;)jen (yany N\ {i}-
profile of (selfish) total preorders on X = [[,.y Xi , and ‘=;a selfish total
preorder on X such that =z, =; y for any h € N, and y € Ri. Then, x
is both Pareto-efficient and undominated, and. the thesis follows immediately
from monotonicity of both E,(UP¥) and Eg(UTF) O
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