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1. INTRODUCTION

Two main aspects characterize each development decision involving natural environment:

irreversibility and uncertainty. Renewable and exhaustible assets embedded in any economic activity

of both consumption and production of commodities are capable of providing a flow of services

indefinitely into the future, given at least a sustainable rate of exploitation. Nevertheless

environmental resources and goods such as biodiversity, rain forest, watersheds, and topsoil can be

degraded permanently by human exploitation.1 The process of environmental degradation may lead

to severe ecological disruption (global warming, greenhouse effect, deforestation in Amazonia), that

is economic development may induce consequences that are impossible to reverse. Moreover, the

permanent degradation of environmental assets might prevent the possibility to enjoy their potential

use values, which are actually unknown, such as the discovery of medicinal drugs that can be used to

treat and cure illnesses.2

Human beings have always exploited and managed natural environment adroitly. Since the

most fertile land has already been cultivated, human beings are converting wild land such as rain

forest, tropical wetland, and primitive forest for livestock, agriculture, and other development. As a

consequence four biological species perish a day, wild areas disappear at an increasing rate3, and

climate changes occur. Decisions of investing involve large wild land and entire ecosystems and, to a

large extent, man-driven changes cannot be reversed in any short period of time. As a result,

irreversibility of environmental modifications has to be explicitly considered and evaluated as an

output of economic activity. Irreversibility breaks the temporal symmetry between the past and the

future, this means that restoration to an original natural state can be technically impossible or

extremely expensive. The intuitive concept of irreversibility as a technological or physical constraint

can be generalized to include irreversibility as a restoration cost. Uncertainty is another key

characteristic of decision processes involving environmental assets and the distinction between
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different modalities of uncertainty is crucial for the analysis of environmental risk associated with

any economic activity. Uncertainty means that consequences of development decisions cannot be

fully determined ex-ante and all the uncontrolled variables of the decision process are random

variables, which only depend on the possible state of nature that will occur in the future. Moreover,

economic agents have imperfect knowledge and might improve their beliefs by learning as time

passes (independent learning). Risk alludes to the possibility that an unfavorable event occurs. Global

warming is a clear example of uncertain event. There is uncertainty about the link between pollution,

gaseous emissions and global mean temperature; moreover there is uncertainty about the relationship

between global mean temperature and climate. Floods, storms, droughts are risky events that global

warming could induce.4

In their seminal article Arrow and Fisher [1] introduce the notion of quasi-option value.

They argue that whenever uncertainty is assumed, “even where it is not appropriate to postulate

risk aversion in evaluating an activity, something of the feel of risk aversion is produced by a

restriction on reversibility of decision” [1, p.318]. Even under risk neutrality, they are able to

identify “a quasi-option value having an effect in the same direction as risk aversion, namely, a

reduction in net benefits from development” [1, p. 315]. In their two-period model, the decision-

maker has to choose between preservation and development. Assuming that the decision-maker

replaces the uncertain variables with their expected values, Arrow and Fisher show that “the

expected value of benefits under uncertainty is seen to be less then the value of benefits under

certainty” [1, p.317]. The value of this difference is called quasi-option value and is related to the

possibility of acquiring and exploiting the potential information in the second period.

In the same year, but independently of Arrow and Fisher, Henry [15, 16] publishes two

seminal articles that further clarify what Arrow and Fisher have called quasi-option value, although

from a slightly different perspective. Henry [16] proves that coexistence of uncertainty and
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irreversibility prevents the use of the certainty equivalence methods to solve intertemporal decision

problems, even if the payoff function is quadratic.5 Henry shows that replacing the initial random

problem by an associated riskless problem, i.e. an equivalent certainty case, the decision-maker may

obtain a non-optimal solution, even if she/he is risk neutral. In fact, ‘if the solution of the associated

problem doesn’t imply an immediate irreversible decision, then the solution of the initial problem

doesn’t either; but it may happen that the solution of the associated problems implies an immediate

irreversible decision, whereas the solution of the initial problem does not’ [16, p. 1008]. Henry

indicates that if the future is uncertainty, some indivisible actions are more irreversible than others,

the decision process is sequential, and uncertainty can be reduced by gaining better information, the

‘existence of a (positive) option value is a very general property, true whatever the number of

periods, the ways of coming to fuller information, the intertemporal shape of the utility function and

the lesser or greater the uncertainty of the benefits and costs’ [15, p.94]. Henry explains that only the

reversible act allows one to exploit additional information in the future. This asymmetry between

reversible and irreversible acts encourages a more conservative choice.6

In the 1990s, on the basis of the recent developments in decision theory (e.g., Vercelli [26])

with regard to the distinction between soft uncertainty (Knightian risk) and hard uncertainty

(Knightian uncertainty), Basili and Vercelli [4] and Basili [2] show the case in which the space of

future environmental states of the world is misspecified. In this case the decision-maker has

ambiguous beliefs and faces hard uncertainty. Basili and Vercelli [4] suggest a generalized notion of

quasi-h-option value (intertemporal h-option value), which extends the notion of quasi-option value

taking into account hard uncertainty. In fact, hard uncertainty is a more common condition when

unanticipated outcomes such as the virus Ebola, the melting of the polar ice or the use of genetically

modified organisms in food are involved. They also enlist some properties of quasi-h-option value,

regarding its sign and the relationship with the characteristic of prospective learning. Basili [2]
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indicates that quasi-h-option value is independent of risk attitude; indeed it is a sort of positive hard

uncertainty premium that derives from asymmetry between reversible and irreversible actions and

from independent learning process. Quasi-h-option value represents a further correction factor that

has to be introduced in the evaluation of total economic value of natural assets.

Some different methods of measuring quasi-option value have been suggested in the context

of empirical decision problems. The most notable of them is due to Pindyck [22]. Pindyck considers

an irreversible action as a financial call option, that gives up the possibility of waiting for new

information to arrive that might affect the desirability or timing of the expenditure. The analogy

between an irreversible action and a financial call option on common stock allows him to extend

standard pricing methods and to estimate quasi-option value.7

To the best of my knowledge, a measure of quasi-h-option value has not yet been suggested in

the context of empirical decision problems. In this paper I propose an approach that allows the

possibility of obtaining two quasi-option values for each investment project. I consider the greater

between them as an empirical measure of quasi-h-option value.

The plan of the paper is as follows. Section 2 describes the relationship between quasi-option

value and the option value derived by Pindyck. In section 3, hard uncertainty attitude and quasi-h-

option value are defined. A general empirical measure of quasi-h-option value is set in section 4.

Section 5 concludes.

2. AN EMPIRICAL MEASURE OF QUASI-OPTION VALUE

Henry [16] shows how large irreversibility effect involved in logging a forest might be, by

using a decision model with T periods. For the sake of simplicity I collapse all the future in one

period and consider a two-period process, i.e. the present and the future.8 In the two-period decision

process, the decision-maker faces either reversible or irreversible actions, i.e. preserving or logging a

rain forest. In the first period the decision-maker is uncertain about the state of the world Ω that will



5

occur. At the end of the first period the decision-maker obtains additional information about the

future state of nature that will occur, that is he has a finer partition F2 with respect to the trivial

partition on Ω. The decision-maker can choose at the beginning of both periods, but her/his second

period choice depends on the previous choice. Development is possible in both periods, that is it is

not a ‘now or never’ opportunity, but a ‘now or next period’ one. When the decision-maker faces

dynamic choice situations9 and asymmetric actions, she/he has to take into account the potential

learning derived from additional information, that only depends on the passage of time.

Henry [15, 16] derives the concept of quasi-option value by comparing the revenue of the

random problem with the revenue of the associated riskless problem. He compares the maximum

possible conditional10 expected value of future returns of a feasible action with the maximum

possible value of future returns of the same action. In fact, “to the initial random problem we will

associate a riskless problem where, for every period and every sequence of decisions affecting this

period, the random returns from this period given the sequence of decisions are replaced by their

expected value calculated at time 0, i.e., at time the decision-maker solves his problem in order to

decide what must be done immediately” [16,  p. 1007].

 Let S=2Ω be the set of all the mutually exclusive and exhaustive subsets (events) of

Ω={A,B,C} and let p:S→R be a probability (linear and additive) on all subsets or equiprobable

events of Ω, such that p(A)=p(B)=p(C) and p(A)+p(B)+p(C)=1. Consider a decision-maker having

two different investment opportunities each of them depending on her/his behavior with respect to

potential additional news.

 In the first scenario11, the decision-maker does not take into account the potential information

she/he can gather at the end of the first period, when independent learning occurs. This behavior

could be represented by a linear function. In this function d1 and d2, expressing the amount or level of

the irreversible act chosen in the first and the second period subjected to the constraints d1≥0, d2≥0
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and d1+d2≤1. The decision-maker faces the following production function V*=id1+max E(i(d1+d2)),

assumed iA=1, iB=0, iC=-1 and i=(pAiA+pCiC).

In the second scenario, the decision-maker takes into account learning, that is the F2 finer

partition, with respect to the trivial partition on Ω, occurs among {A,{B,C}}, {{A,B},C},

{{A,C},B}, respectively called F21, F22, F23, at the end of the first period. Let q1, q2, q3 be the

probabilities of F21, F22, F23, such that q1=q2=q3 and q1+q2+q3=1 (equiprobable information

structures). The decision-maker faces the following function V** =id1+E(max(i(d1+d2))), subjected to

the constraints d1≥0, d2≥0 and d1+d2≤1.

If the decision-maker disregards the prospect of additional information, she/he will replace

uncertain outcomes with their certainty equivalents, that is she/he will substitute the random problem

with the associated riskless one and she/he will evaluate the function V*. On the other hand, if the

decision-maker takes into account acquisition of potential additional news, she/he will consider the

random problem and she/he will evaluate the function V** .

In the first condition, the decision-maker solves V*=id1+maxE(i(d1+d2)), subject to d1≥0, d2≥0

and d1+d2≤1. The optimal solutions12 are d1
*=0 and d1

*=1, that is the corner solutions prevail. If i<0,

then d1
*=0 and V*=id2

*; if i>0, then d1
*=1 and V*=i[d1

*+d1
*]=2id1

*=2i.

In the second condition, the decision-maker solves V** =id1+(1-q2)[pCiCd1+pAiA]+q2i(d1+d2),

subject to d1≥0, d2≥0 and d1+d2≤1. The corner solutions prevail and the optimal solutions13 are d1
** =0

and d1
** =1.

 The corner solutions always prevail, that is either full complete irreversible or complete

reversible act holds, and Bayes’ rule holds. The expectation of a given random variable is always

equal to the conditional expectation of the random variable with respect to a finer partition on the set

of the states (iterative law of expectation), that is E(.)=E(E(.|F2.). As a result, it is possible to consider

the difference between the two outcomes. Consider the difference V** (d1
** ) −V*(d1

*).
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• When full development is chosen in the first period, the difference between the expected value of

the two options is  V** (1) −V*(1)=i+q2i+(1-q2)i-2i=0 and the decision-maker is indifferent with

respect to them.

• When preservation is chosen in the first period, the difference between the expected value of the

two options is  V** (0)−V*(0)=[(1-q2)pAiA+q2i]d2-id2=[(1-q2)pAiA+q2pAiA+q2pCiC]d2-pCiC+pAiA)d2=

=(pAiA+q2pCiC-pCiC-pAiA)d2=[-(1-q2)pCiC]d2≥0, that is the second option dominates the first one.

It is possible to obtain the quasi-option value as the difference between the outcomes of the

two alternatives. The two options are indifferent with respect to the solution d1
** = d1

*=1, because

learning has no value. The second option dominates the first one, if the solution d1
** = d1

*=0  is

chosen at the beginning and the quasi-option value, which measures this dominance, is always

positive (strictly positive for d2>0) and induces to make a more conservative choice. Quasi-option

value (QOV) is equal to the maximum difference between the expected revenue of the random

problem and the riskless one, that is QOV=max [V** (0) −V*(0), 0]. Quasi-option value has an effect

similar to soft uncertainty aversion, even if the decision-maker is risk neutral and her/his marginal

utility is constant. The concept of quasi-option value represents the conditional value of information,

conditional to the reversible action. The existence of the quasi-option value does not allow the

possibility to reduce a dynamic process to a timeless one.

Irreversibility and uncertainty are supposed to profoundly affect the decision to invest and

intertemporal flexibility encompasses the concept that “good current action may be those which

permit good later responses to later observations” [20, p. 42]. Strictly speaking, the option value is a

concept whose existence and magnitude rest on intertemporal flexibility preference. If an investment

decision is now or in the future opportunity, the investment expenditure can be delayed and

postponed. An investment decision entails sunk cost, that is the initial cost of investment can only be

partially recovered. The degree of investment reversibility depends on possibility of investment
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dismissing (disinvestment). Disinvestment depends on the resale price of the specific capital that

involves the existence of a secondary market for plants, equipment, and machinery industry-specific.

An investment opportunity is equivalent to a call option, where the investment expenditure is the

exercise price and the project value, that is the expected payoff from investing, is a share of the

underlying asset. The analogy between an irreversible investment decision and a financial perpetual

call option14 on common stock allows the extension of standard pricing methods to estimate quasi-

option value. Dixit and Pindyck [12] emphasize the option-like characteristics of investment

decisions by noting stochastic fluctuations in the investment expenditure and the expected payoff

may induce the decision-maker to revise the optimal timing of investment. Moreover, they consider

that “waiting allows a separate optimization in each of the contingencies of a price rise and a price

fall, whereas immediate action must be based on only the average of the two” [12, p.98]. In a two-

period model, applying dynamic programming and splitting the whole sequence of decisions into

immediate decision and the future ones, Dixit and Pindyck [12] derive the expected net present value

of all cash-flows, by the Bellman equation that maximizes the immediate profit and the continuation

value. As Henry [16] does, Dixit and Pindyck solve the random problem by applying the principles

of optimality in stochastic dynamic programming and the riskless problem by certainty equivalence

method. Dixit and Pindyck obtain “the value of the extra freedom, namely the option to postpone the

decision” [12, p.97] or quasi-option value, as the difference between the expected net present values

of random and associated riskless problems. The option to postpone is always positive because “the

maximum is a convex function, so by Jensen’s inequality the average of the separate maxima is

greater than the maximum of corresponding averages” [12, p. 98], as the model, which it is

introduced to represent the Henry’s approach, does.

Pindyck [22] observes that dynamic programming and contingent claims analysis give the

identical solution (rule that maximizes the market value of the investment opportunity), if the
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decision-maker is risk neutral.15 The only difference is that in the contingent claims solution the risk-

free interest rate replaces the discount rate. As a consequence, Pindyck determines the value of a

project and the decision to invest, that is the value of the option to invest in the project, by

constructing a dynamic portfolio of assets or an asset, whose holdings are adjusted continuously as

the underlying asset price changes. The price of this dynamic portfolio (replicating portfolio) has to

be perfectly correlated with the stochastic value of the investment project. It is supposed that the

markets are either complete or at least sufficiently complete16 (spanning assumption) so that “the

firm’s decisions do not affect the opportunity set available to investors” [12, p. 147]. The optimal

investment rule and the value of the investment opportunity can be derived as functions of the output

price (underlying asset price), by using option-pricing methods. Standard contingent claims analysis

can be considered a general method of measuring quasi-option value in the context of empirical

decision problems if capital markets are at least sufficiently complete. In some applications of

contingent claims analysis, Dixit and Pindyck [12] show the option value of an undeveloped oil

reserve and the value of the option of retrofitting a plant to reduce polluting emissions.

3. HARD UNCERTAINTY ATTITUDE AND QUASI-H-OPTION VALUE

Models explaining quasi-option value assume that environmental states of the world have an

additive probability of occurring, that is the decision-maker’s description of states of the world is

exhaustive. The decision-maker has (explicitly or implicitly) a unique and fully reliable probability

distribution over events; moreover she/he possesses an expected utility function linear in

probabilities.17

Consider a decision problem in which states of the world included in the model do not

exhaust the actual ones. A description of the world is considered as a misspecified model whenever

that omitted states are not explicitly included in the model. If the decision-maker does not know how

many states are omitted, she/he can represent her/his beliefs by means of a capacity or a non-additive
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measure µ on the set of events. The decision-maker faces hard uncertainty if she/he has a

misspecified description of the states of the world, she/he is unable to assign a reliable probability

distribution to states of the world because they are ambiguous, she/he has more than one probability

distribution, none of which is not fully reliable, over states of the world, she/he has ignorance of the

world in which she/he has to act and attaches an interval of probabilities to each event.

Let Ω={w1,...,wn} be a non empty set of states of the world and let S=2Ω be the set of all

events. A function µ:S→R+ is a capacity or a non-additive signed measure if it assigns a value 0 to

the event ∅ and value 1 to the universal event Ω, that is the measure is normalized, and for all

s1,s2∈S such that s1⊃s2, µ(s1)≥µ(s2), that is the measure is monotone. A capacity is convex or

supermodular (concave or submodular) if for all s1,s2∈S such that s1∪s2, s1∩s2∈S,

µ(s1∪s2)+µ(s1∩s2)≥(≤)µ(s1)+µ(s2). It is superadditive (subadditive) if µ(s1∪s2)≥(≤)µ(s1)+µ(s2) for all

s1,s2∈S such that s1∪s2∈S, s1∩s2=∅. Given a real-valued function f:Ω→R, f is a measurable function

if for every t∈R, ( ){ }twfw ≥  and ( ){ }twfw > are elements of S. Since µ is non-additive, the

integration of a real-valued function f with respect to µ is impossible in the Lebesgue sense. The

proper integral for a non-additive measures is the Choquet integral, originally defined by Choquet [9]

and discussed in Schmeidler [23], and it requires that states of the world are ranked from the most to

the least favorable ones with respect to their consequences. The Choquet integral of f with respect to

a capacity µ is defined as

( ){ }( ) ( ){ }( ) ( )[ ]dttwfwdttwfwfd ∫∫ ∫ ∞−

∞
Ω−≥+≥=

0

0
µµµµ

The Choquet integral with respect to a capacity is a generalization of the Lebesgue integral, moreover

capacities are a generalization of additive probabilities. As a result, the Choquet integral is a

generalization of mathematical expectation with respect to a capacity.
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The decision-maker expresses hard uncertainty aversion (preference) if she/he assigns larger

probabilities to states when they are unfavorable (favorable), than when they are favorable

(unfavorable), that is if her/his non-additive measure is convex (concave).  Hence, the convexity

(concavity) of the capacity, that implies superadditivity (subadditivity) of the Choquet integral,

captures the decision-maker’s attitude toward hard uncertainty.

The concept of quasi-option value is defined under soft uncertainty; nevertheless the decision-

maker can experience a lack of information and faces hard uncertainty. If uncertainty is hard and the

use of environmental assets entails irreversible effects, an individual has to consider that natural

assets get an additional value, which has been called quasi-h-option value (intertemporal h-option

value). Assuming a set of comonotonic feasible actions, that is a set of actions that induce the same

ordering of favorable state and the same permutation, Basili [2] shows the characteristics of quasi-h-

option value. Differently from Arrow and Fisher, who assume events have an additive probability to

occur and can thus derive the expected value associated to each possible action, in the Basili’s model

events have a non-additive probability of occurring. If the decision-maker ignores uncertainty, she/he

replays random variables by their Choquet expected values. As a result, ‘benefits under uncertainty

are at most equal to benefits under certainty and…the method based on Choquet certainty equivalents

also fails to solve decision problem characterized by hard uncertainty and irreversibility’ [2, p. 424].

Basili points out the existence of a positive quasi-h-option value, whenever the decision-maker is

either optimistic or pessimistic. In environmental economics, the quasi-h-option value is particularly

relevant because the uncertainty faced is typically hard, and irreversibility is a very serious matter.

For instance in the case of genetically modified food, quasi-h-option price might represent the

ecological hazards of genetically engineered crops and reliability of potential hazards.
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4. AN EMPIRICAL MEASURE OF QUASI-H-OPTION VALUE

Pindyck [22] considers that the decision-maker faces various forms of risk, such as

uncertainty over the future product prices, operating costs, future interest rates, cost and timing of the

investment itself. Uncertainty is represented by a finite set of states of the world, one of which will be

revealed as true and option pricing will determine the optimal exercise rule of an investment. In this

framework, Pindyck assumes that, given competitive markets, no arbitrage conditions and asset

prices that follow a particular diffusion process, there is a unique probability distribution on the

measurable space (Ω,S) such that market value of any asset is the expectation of its payments. In this

way the asset, which spans the stochastic changes in the project worth, may be considered a random

variable β:Ω→R of its payments and its unique market value equals ℘∂∫
Ω

β . As a consequence, there

is only one opportunity value of an investment project (e.g., Dixit and Pindyck [12]).

In finance it has been proved that if an agent has a non-additive measure on the measurable

space, the valuation of an asset will not be the Lebesgue integral of the asset payments (linear pricing

rule ) but it will be obtained by the Choquet integral of the asset payments (non-linear pricing rule). If

a non-linear pricing rule holds, there might be an interval of prices within which the agent neither

buys nor sells short the asset, that is they show either inertia or partial inertia (e.g., Dow and

Werlang [13], Simonsen and Werlang[25], Basili [3]).

Because of Knightian uncertainty, in this paper it is suggested of considering the bid and ask

prices of the perfectly correlated asset as respectively the worst and the best expectation of an

optimistic decision-maker.18 As a result of hard uncertainty attitude on an investment valuation, there

will exist two investment opportunity values. Let the decision-maker be ambiguity seeking (optimist)

and let she/he face an investment opportunity. Because of optimism, the decision-maker has a

concave capacity ν: S→[0,1] on the measurable space (Ω,S), such that normalization and
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monotonicity with respect to set inclusion hold. Moreover, the capacity ν is monotonely sequentially

continuous and compatible with a probability p, that is for all s1,s2∈S, p(s1)≤p(s2) implies ν(s1)≤ν(s2)

and  for all s∈S, sn↑s implies ν(sn)↑ν(s) and sn↓ s implies ν(sn)↓ν(s).

The optimistic decision-maker considers the ask price of the asset β as the maximum expected

value consistent with her/his beliefs. There exists a unique ν (e.g., Chateauneuf [6]) such that

∫∫
ΩΩ

∂=∂ pβνβ  with p∈P=core(ν) 

The Choquet integral of β with respect to ν is equal to the maximum of a family of Lebesgue

integrals with respect to the family of probability distributions P. Considering ν as an unanimity

game,  the core(ν) can be considered as the set P of additive probabilities on S, such that for all s1∈S

ν(s1)≥p(s1). This threshold value is the highest investment value or the maximum price that the

decision-maker can ask for the asset β (upper bound).

The optimistic decision-maker will wish to buy β at the lowest possible price, compatible with

her/his beliefs and by the asymmetry of the Choquet integral (e.g., Denneberg [11])

*∫∫
ΩΩ

∂−=∂− νβνβ

There exists a unique capacity ν* on (Ω,S) called the conjugate or dual capacity for ν (e.g.,

Chateauneuf [6]), such that

∫∫
ΩΩ

∂=∂ ** pβνβ  with p*∈P=core(ν)

The conjugate capacity ν* is defined by ν*(si)= ν(Ω)−ν(si
C) for all si∈S, where si

C is the complement

of si and it may be considered to what extent the decision-maker believes the negation of si. The

Choquet integral of β with respect to ν* reveals the worst expectation of the optimistic decision-
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maker. This threshold value can be considered as the lowest investment value or the minimum price

at which the decision-maker buys the asset  β (lower bound).

Roughly speaking, the decision-maker assumes that the true probability distribution of the

asset β payments is located in the set P, even if she/he has complete ignorance about its location. As a

consequence, the selling price of the asset β is supposed to be the supremum of the family of

mathematical expectation with respect to every probability distribution in P, whereas the buying price

is supposed to be the infimum of the same family of mathematical expectation. These two asset

values crucially depends on hard uncertainty and the lesser the faith in likelihood19 of events is, the

longer the interval is.

Once both ν and ν* are guessed and the two probability distribution p and p* have been

derived, it is possible to apply Pindyck’s method to assess the investment opportunity value. Because

of hard uncertainty there will exist two opportunity values F(V) and F(V*), the former valued with

respect to the maximum probability distribution in P, the latter valued with respect to the minimum

probability distribution in P. Like in Dixit and Pindyck, the two values of the decision-maker’s option

to invest, given by both contingent claims and dynamic programming, must satisfy some boundary

conditions [12, p.141] and one of them, indeed the value-matching condition, permits one to evaluate

the critical value of investment project either V or V*, that is the value at which it is optimal to

invest. Under Knightian uncertainty it is suggested considering F(V*) as a measure of quasi-h-option

value induced by the investment project. In this case, the value-matching condition is V*=F(V*)+D,

setting the value of the project equal to the full cost (direct cost D plus the quasi-h-option value) of

making the investment. As a consequence, the investment rule corrects the simple net present value

rule by including the greater option value, that is maximum opportunity cost F(V*), compatible with

the decision-maker beliefs.
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 Including the maximum opportunity value compatible with the decision-maker’s beliefs

increases the critical value of an investment project and might induce postponement of the

investment decision.

5. CONCLUDING REMARKS

This paper indicates some useful outcomes. It shows that the value of an investment

opportunity defined by Pindyck completely overlaps the concept of quasi-option value defined by

Henry. It has been shown that the option-like characteristics of investment decisions and the

contingent claims analysis used by Pindyck are able to give an empirical measure of quasi-option

value. These outcomes have a large relevance because they should induce modification of the optimal

rule of investment by considering the opportunity cost of killing an option to invest when soft

uncertainty, irreversibility and independence learning are involved.

Since hard uncertainty is a common condition for environmental investment decisions, this

paper suggests an empirical measure of the quasi-h-option value. This empirical measure exploits the

dual relationship that exists between capacities. Generalizing the option approach to hard uncertainty

condition and evaluating the dynamic replicating asset by the Choquet integral of its payments, it is

possible to obtain two investment opportunity values. These option values are derived by considering

the subadditive measure and its conjugate that the decision-maker attaches to ambiguous events. The

subadditive measure and its conjugate can be guessed by considering the bid and ask prices of the

replicating asset. The empirical measure of quasi-h-option value is obtained by considering the

minimum expected value of the investment, compatible with the decision-maker’s beliefs. As a

consequence under Knightian uncertainty, the critical value of an investment project increases.

Considering quasi-h-option value can induce a more conservative policy whenever investment

decisions involve depletion of natural resources and severe damage of ecosystems. As an example,

the possibility of obtaining new information about the effects (likely diseases) of genetically
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modified food on vital organs and immune system of rats could negatively affect the production of

genetically modified foods.
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APPENDIX A

When the decision-maker solves V*=id1+maxE(i(d1+d2)), subject to d1≥0, d2≥0 and d1+d2≤1, he

maximizes L=(pAiA+pCiC)[2d1+d2]-λ(1-d1-d2)+µd1+υd2.

By the First Order Conditions, assumed i=(pAiA+pCiC), 2i-λ+µ=0 and i-λ+υ=0, that is  υ=λ-i and µ=λ-

2i=υ-i. Moreover the First Order Conditions imply that: µ≥0, d1≥0 and  µd1=0; υ≥0, d2≥0 and υd2=0

and then (µ,υ)≠(0,0), that is no interior solution exists, then (d1
*,d2

*)∈(0,1]×(0,1].

It is possible to distinguish some cases:

d1
*∈(0,1], µ=0 and λ=2i, impossible if i<0

d2
*∈(0,1], υ=0, λ=i, impossible if i<0 and µ=-i impossible if i>0

d2
*=0, i<0, then d1*=0 and d1*∈(0,1], µ=0, i>0, λ=2i by the constraint d1*+d2

*=1 ⇒ d1
*=1

APPENDIX B

When the decision-maker regards prospective learning, he solves

V** =q1{id1+[pAmaxd2iA(d1+d2)]+[(pB+pC)maxd2(pB|(pB+pC))iB(d1+d2)+(pC|(pB+pC))iC(d1+d2)}+q2{id1+

     +pBmaxd2iB(d1+d2)]+[(pA+pC)maxd2(pA|(pA+pC))iA(d1+d2)+(pC|(pA+pC))iC(d1+d2)}+q3{id1+

     +pCmaxd2iC(d1+d2)]+[(pA+pB)maxd2(pA|(pA+pB))iA(d1+d2)+(pB|(pA+pB))iB(d1+d2)}=

     = q1{id1+pAiA(d1+d2)+pCiC(d1)}+q2{id1+(pAiA+pCiC)(d1+d2)}+q3{id1+pCiC(d1)+pAiA(d1+d2)}=

     =(q1+q2+q3)id1+(q1+q3)(pAiA+pCiCd1)+q2i(d1+d2)= id1+(q1+q3)(pAiA+pCiCd1)+q2i(d1+d2)

Then the decision-maker calculates max L=id1+(q1+q3)(pAiA+pCiCd1)+q2i(d1+d2)-λ(1-d1-d2)+µd1+νd2

By the First Order Conditions:

δL/δd1=i+(1-q2)pCiC +q2i-λ+µ=0; δL/δd2=q2i-λ+ν=0; moreover d1≥0, µ≥0, µd1=0;  d2≥0, ν≥0, νd2=0.

As a result, ν=q2i-λ and  µ=-i-(1-q2)pCiC -q2i+λ=-i-(1-q2)pCiC+ν
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If ν=0, then µ=-i-(1-q2)pCiC=-i-pCiC +q2pCiC<0, but µ<0 is impossible and (µ,ν)≠(0,0), there are no

interior solutions and (d1
** ,d2

** )∈(0,1]×(0,1].

If d1
** ∈(0,1], µ=0 and λ=i+(1-q2)pCiC +q2i , but this solution is impossible if i<0

If d1
** ∈(0,1] and µ=0, λ=i+(1-q2)pCiC +q2i, this solution is possible if i>0. By the constraint

d1
** +d2

** =1, then d1
** =1

If d2
** ∈(0,1], ν=0 λ=q2i, this solution is impossible if i>0, then µ=-i-(1-q2)pCiC, but this solution is

impossible if i<0; if d2
** =0, ν>0 then i<0 and d1

** =0

 

 



19

References

1. K. J. Arrow and A. Fisher, Environmental Preservation, Uncertainty and Irreversibility, Quarterly

Journal of Economics, 89, 312-319(1974).

2. M. Basili, Quasi-Option Value and Hard Uncertainty, Environmental and Development

Economics, 3, 413-417 (1998).

3. M. Basili, Capacities and quasi-option value: a measurement. Mimeo. Siena (1999).

4. M. Basili and A. Vercelli, Environmental option values, uncertainty aversion and learning, in

“Sustainability: Dynamics and Uncertainty”, (G. Chichilnisky, G. Heal and A. Vercelli Ed), Kluwer

Academic Publisher, Dordrecht (1998).

5. F. Black and M. Scholes, The Price of Options and Corporate Liabilities, Journal of Political

Economics, 81, 637-654 (1973).

6. A. Chateauneuf, On the Use of Capacities in Modeling Uncertainty Aversion and Risk

Aversion, Journal of Mathematical Economics, 20, 343-369 (1991).

7. A. Chateauneuf, Kast R., and A. Lapied, Pricing in slack markets, Document de Travail

G.R.E.Q.E. n. 92A05, Universités d’Aix-Marseille II et III (1992).

8. U. Cherubini, Fuzzy measures and asset prices: accounting for information ambiguity, Applied

Mathematical Finance, 4, 135-149 (1997).

9. G. Choquet, Theory of Capacity, Annales de l’Institute Fourier, 5, 131-295 (1954).

10. J. C. Cox and S.A. Ross, The valuation of options for alternative stochastic processes, Journal of

Financial Economics, 3, 145-166 (1976).

11. D. Denneberg, “Non-additive measure and integral”, Kluwer Academic Publishers, Dordrecht,

(1994).

12. A. Dixit and R. Pindyck, “Investment under uncertainty”, Princeton University Press, Princeton,

(1994).



20

13. J. Dow and Werlang S.R.C., Uncertainty aversion, risk aversion, and the optimal choice of

portfolio, Econometrica, 60, 197-204 (1992).

14. A. Fisher and M. Hanemann, Option Value: Theory and Measurement, European Review of

Agricultural Economics, 17, 670-693 (1990).

15. C. Henry, Option Values in the Economics of Irreplaceable Assets, Review of Economic Studies,

41, 89-104 (1974).

16. C. Henry, Investment Decision Under Uncertainty the Irreversible effect, American Economic

Review, 64,1006-1012 (1974).

17. M. J. Machina, Dynamic consistency and non-expected utility models of choice under

uncertainty,  Journal of Economic Literature, 27, 1622-1668 (1989).

18. M. J. Machina and D. Schmeidler, A more robust definition of subjective probability,

Econometrica, 60, 745-780 (1992).

19. E. Malinvaud, First order certainty equivalence, Econometrica, 37, 706-718 (1969).

20. T. Marschak and R. Nelson, Flexibility, uncertainty, and economic theory, Metroeconomica, 14,

42-58 (1962).

21. R. Merton, The Theory of Rational Option Pricing, Bell Journal of economics and management

Science, 4, 141-183 (1973).

22. R. S. Pindyck, Irreversibility, uncertainty, and investment, Journal of Economics Literature, 29,

1110-1148 (1991).

23. D. Schmeidler, Subjective probability and expected utility without additivity, Econometrica, 57,

571-587 (1989).

24. H.A. Simon, Dynamic programming under uncertainty with a quadratic function, Econometrica,

24, 74-81 (1956).



21

25. M.H. Simonsen and Verlang S.R.C., Subadditive probabilities and portfolio inertia, Revista de

Econometrica, 11, 1-19 (1991).

26. A. Vercelli, Hard uncertainty and environmental policy, in “Sustainability: Dynamics and

Uncertainty”, (G. Chichilnisky, G. Heal and A. Vercelli Ed.), Kluwer Academic Publishers,

Dordrecht, (1998).



22

                                                
1 A period between one hundred and five hundred years is expected to be necessary for the formation of one centimeter of

topsoil, under natural conditions of vegetation cover.

2 Seventy per cent of the three thousand officinal and medical plants classified by the National Cancer Institute (NCI) as

active anti-cancer substances come from tropical forest.

3 It is reported that 11.300.000 ha of forest are logged a year.

4 It is reported that damage induced by floods, storms, hurricanes, droughts were about ninety billions of U.S. dollars in

1998.

5 If ‘the criterion function is quadratic, the planning problem for the case of uncertainty can be reduced to the problem for

the case of certainty simply replacing, in computation of the optimal first period action, the certainty future values of

variables by their unconditional expectations. In this sense, the unconditional expected values of these variables may be

regarded as a set of sufficient statistics for the entire joint probability distribution, or alternatively as a set of certainty

equivalence’ [24, p.74]. Malinvaud [19] generalizes the applicability of certainty equivalent method to risky situations in

which payoff function is not quadratic but functions involved are twice differentiable. However, this approach is

inapplicable with irreversibility, which introduces discontinuity in the derivatives of either functions or payoff.

6 Fisher and Hanemann [14] provide a very simple model to represent the quasi-option value. In a two-period model with

independent learning, they point out that quasi-option value is always positive, by convexity of maximum operator, and it

does not depend on the decision-maker’s risk aversion.

7 A different method is based on a specific contingent valuation survey, in which the decision-maker has to answer to a

particular question, indeed ‘what would you be willing to pay for information about future benefits of preservation and

development, information that would be available before you had to decide whether to preserve or develop, assuming you

do not foreclose the option to preserve in the future by choosing to develop now?’ [14, p. 675]. Implementation of this

method might be very difficult because the contingent valuation survey has to elicit the decision-maker preferences for

information.

8 In appendix, Hanry [16] assumes that T=2.

 9 “A situation is said to involve dynamic choice if it involves decisions that are made after the resolution of some

uncertainty. This could occur for a couple of reasons. One is simply that the individual may not have to commit to a

decision until after some uncertainty is resolved. Another reason might be that the available set of choice depends upon



23

                                                                                                                                                                   
the outcome of uncertainty. In any event, a dynamic choice situation will include at least some choices that the individual

can (or must) postpone until after nature has made at least some of her moves” [17, p.1623].

10 Conditional refers to the state of the information available at time when the action is made.

11 For short pj=p(j) for every  j∈2Ω.

12 See APPENDIX A.

13 See APPENDIX B.

14 A disinvestment opportunity (partial reversibility) is equivalent to a put option and the act to disinvest is equivalent to

exercise such an option.

15 Risk neutrality means that the discount rate is equal to the risk-free rate (e.g., Cox and Ross [10]).

16 If spanning assumption does not hold, it is possible to value the investment project and the decision to invest by

dynamic programming  with an exogenous discount rate.

17 When the decision-maker “possesses a unique, well-defined classical probability distribution over events, possesses a

von Neumann-Morgenstern utility function over outcomes, and ranks subjectively uncertain acts according to the

expected utility of their induced probability distributions over outcomes... [she/he] is a probabilistically sophisticated

expected utility maximizer” [18, p.747].

18 Cherubini [8] uses continuous fuzzy measures, called gλ-measures, and introduces a fuzzified version of both the

Merton model [21] and the Black and Scholes model [5] to parameterize the upper and lower Choquet integrals by bid

and ask prices.

19 The faith in likelihood of events represents the weight of evidence and it can be measured by [1−ν(s1)−ν( s1
C)] for all

s1∈S. Obviously, if there is a unique and additive probability measure on S, the capacity will be equal to its dual, the

upper and lower Choquet integrals will collapse down to the standard Lebesgue integral and a unique investment

opportunity value will be obtained.


