QUADERNI

Universita degli Studi di Siena
DIPARTIMENTO DI ECONOMIA POLITICA

Serena Sordi

Persistent and irregular growth

cycles when workers save:

A reformulation of Goodwin's

model along Kaldorian - Pasinettian lines

n. 263 - Settembre 1999






Persistent and irregular growth cycles when
workers save: A reformulation of Goodwin’s model
along Kaldorian-Pasinettian lines

Serena Sordi



Abstract

The purpose of this paper is to study the influence of workers’ savings on
the dynamics of Goodwin’s growth cycles. This is done by noticing, along
Kaldorian-Pasinettian lines, that if workers save, then they hold part of the
capital and earn some profits, which vary over the cycle. Thus, a correct
specification of such a case requires the consideration of an extra variable
— the share of capital held by workers. It is shown that, without having
to impose any special conditions on the values of the parameters, a Hopf-
Bifurcation analysis establishes the possibility of persistent and bounded
cyclical paths for the resulting 3-dimensional dynamical system. The paper
concludes with an investigation of the possibility of further bifurcations as
a route to more complex behaviour.



1 Introduction!

Quietly — outside mainstream macroeconomics — Goodwin’s growth cycle
model [28] has emerged over the years as a powerful and fruitful “system for
doing macrodynamics”. This is hardly deniable given that still today, more
than thirty years from its publication, one can often find new contributions
that adopt its structure in the attempt to generalize it. Yet, despite the
many — more than one hundred — existing contributions that have tried
to generalize it in all possible directions, there is an aspect that still seems
to deserve further investigation, namely, the problem of the proper way of
relaxing Goodwin’s extreme assumptions about savings behavior and wage
rate dynamics.

As is well known, Goodwin crucially assumed (7) a classical saving func-
tion, according to which all wages are consumed and all profits saved and
invested, and (i) a Phillips curve in real terms (w/w = f(v) = —vy + pv,
v, p > 0) according to which real wages (w) vary linearly with the employ-
ment rate (v).

Another way of describing Goodwin’s assumption about savings behavior
is to say that he assumed that the two propensities to save out of profits and
out of wages (s, and s, respectively) are different and such that s, > s,,.
Then, as a limiting and simpler case, he chose to work with s, = 1 and
sy = 0.2 An immediate possible generalization, thus, is to consider the case
in which 0 < s, <1 and 0 < s, < 1 and this is indeed what a number
of authors have tried to do over the years® To the best of my knowledge,
however, only van der Ploeg (see, for example, [42]) has done it in a manner
that tries to take account of Pasinetti’s criticism of Kaldor’s approach to
differential savings.

On the other hand, with regard to the assumption about the real wage
dynamics, it is safe to say that Goodwin meant it only as a first approx-
imation, required — we could add — to obtain in his model a dynamical
system of the Lotka-Volterra type. It is therefore easy to think of possible

!The author is indebted to Fabio Petri who some time ago had the basic idea and
sketched the mathematics required for the local stability analysis of the dynamical system
of a model similar to the one investigated in this paper. Thanks are also due to Massimo
Di Matteo for his helpful comments. I am however the only one responsable for the views
expressed herein and, needless to say, for any errors.

?This interpretation seems correct given that Goodwin himself writes that the assump-
tion could be relaxed to constant proportional savings, “this changing the numbers but not
the logic of the system” [28, p. 54; my emphasis].

3The first author to mention the possibility of incorporating into the model a positive
propensity to save out of wages is Atkinson [4], already in 1969. Other contributions that
have tried to generalize the model in this direction are Velupillai [51], Glombowski-Kriiger
[24, 25, 26, 27], van der Ploeg [40, 41, 42, 43], Flaschel-Kriiger [18], Fitoussi-Velupillai
[17], Ferri-Greenberg [16], Sportelli-Cagnetta [48] and Sportelli [47], to mention only a
few.

*See Kaldor [31] and, for example, Pasinetti [38].



generalizations of this assumption also and indeed, in this case too, this
is what has happened over the years. Different authors have considered a
number of different more general cases, for example, with a nonlinear f(v)
(see Velupillai [50]) or with the function f depending not only on v, but also
on its variation rate (see Cugno-Montrucchio [8], Sportelli [47]).5

The purpose of this paper is to take the problem of differential sav-
ings and the problem of a more general formulation of the Phillips curve
up again and to investigate the full consequences of them for the dynam-
ics of Goodwin’s model when they are jointly introduced into the original
formulation. Our purpose in particular is to show that — if one takes ac-
count of Pasinetti’s criticism of Kaldor’s approach to differential savings —
their joint consideration has important consequences for the dynamics of
the model. Indeed, a persistent cyclical movement can emerge, that can
be interpreted as a first step in a route to more complex (irregular) behav-
ior. This appears to be a result that paves the way for further interesting
research.

The paper is organized as follows. Section 2 contains a brief description
of the original model and of the standard way in which the two more gen-
eral assumptions just described have usually been introduced into it. The
alternative formulation — along Kaldorian-Pasinettian lines — is then intro-
duced in Section 3, where the 3-dimensional (3D) dynamical system of the
modified model is derived and analyzed. Section 4 attempts to show — by
use of the Hopf Bifurcation Theorem with s,, as the bifurcation parameter
— that the model can produce persistent cyclical behavior. In doing this,
we will also compare our approach and results with those obtained by other
authors who have recently used the Hopf Bifurcation Theorem in the same
or in a similar context. The section ends with an attempt to investigate
the conditions for further bifurcations. A few concluding and summarizing
results are finally given in Section 5.

2 The original model with s, # 0 and a more gen-
eral formulation of the Phillips curve

The following symbols and basic assumptions are used throughout the pa-
6
per:

q, output

% Above all, however, starting with Izzo [30] and then Desai [10], the Phillips curve has
been modified by writing it in money rather than real terms and then introducing into
the model an equation for price dynamics. Although we will not consider this kind of
generalization of the original model, we will have something to say about it at the end of
the paper.

®The dot over a variable (&, for example) indicates the derivative with respect to time
(dz/dt).



[, employment

q/l = a = ape™, a >0

n = nge’t, labor force, 5> 0

gn=a+f

w, real wage

u=wl/q = w/a, share of wages

v =1/n, employment rate

k, capital stock

k. = €k, capital held by capitalists

kyw = (1 —¢) k, capital held by workers

o = k/q, constant

P,, capitalists’ profits

P,,, workers’ profits

P, total profits

r = P/k, rate of profit

sp, propensity to save out of profits

Sw, Sw, workers’ propensity to save and workers’ savings respectively
Se, Se, capitalists’ propensity to save and capitalists’ savings respectively
S, total savings

Sp— 8y >0

As =8, — 54 >0

g=q/q=k/k=1I/k=S/k=(1—-u)/o, (warranted) rate of growth

In Goodwin’s original model [28] — where it is assumed that s, = 1 and
sy = 0 — a specification of the dynamic behavior of wages is all that is
needed in order to obtain from these definitions and basic assumptions the
dynamical system of the model.

Choosing, for example, as Goodwin does, a Phillips curve for the rate of
growth of real wages:

Z = fw), f'w) >0 (21)

the dynamical system of the model becomes:

1 1
= = =g-—gn==—gn——u (2.2)
ag ag

= f(v) —« (2.3)

| o~

| 3
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which, with the linear f(v) of the form —vy+ pv (v, p > 0) used by Goodwin
— in the case in which the parameters are such that (1/0) — g, > 0 —
is equivalent to the dynamical system of the Lotka-Volterra prey-predator



model:”

(a1 — agu) v

u = (—bl + bgv) U

where a1 = (1/0) —gn >0, a2 = (1/0), by =a+~y>0and by = p > 0.

The unique positive equilibrium (v¢,u¢) of system (2.2)-(2.3) is such
that v¢ = f~!(a) and u® = 1 — 0g, and, moreover, as in Kaldor’s theory
of growth and income distribution, it implies a steady-state growth of the
model economy at a (warranted) rate equal to the natural rate?®

9° = gn (2.4)

As is well known, the roots of the characteristic equation at this equilib-
rium point are purely imaginary and such that:

1
A2 =+ ;Ueuef’(ve) (2.5)

where i = /—1.

As a consequence the local stability analysis cannot be used to decide on
the type of dynamics of the original system. Thanks to the equivalence with
the Lotka-Volterra model, however, we know that the equilibrium point is a
center. This means that the model describes persistent fluctuations of v and
u around the equilibrium, the amplitude of which fully depends on initial
conditions.

This important qualitative feature of the model does not change if, leav-
ing unchanged the rest of it, we take 0 < s, < 1 and 0 < s, < 1, with
Sp > Sw-

In this case, we have for the warranted rate of growth:

~ sp(L—u)q + syuq _ Sp— (sp — Sw)u

= 2.
9 z > (2.6)
so that the dynamical system of the model becomes:
b, o), (2.7)
v o o
= ) 23
- = v) —« .

Clearly, equations (2.7)-(2.8), if we choose the same f (v) as before, still
form a dynamical system of the Lotka-Volterra type. The only difference

"See Goodwin [28, p. 54-55], Gandolfo [23, pp. 449-464] and Medio [34, pp. 34-38].

8 As we shall stress at greater length later, however, it is worth noticing that, along such
an equilibrium growth path, in Goodwin’s model there is a constant rate of unemployment
rather than full employment as in Kaldor’s model. Moreover, the system persistently
fluctuates around it rather than approaching it.



in comparison with the original model is that now the u-coordinate of the
center is:

Sp —O0gn
uee:p g —1—

Sp — Sw Sp

Ogn — Sw

- (2.9)

Having noticed this, however, things change drastically if, in the attempt
to go further in our generalization of the model, we add — either to the
original model or to its extension with s,, # 0 — a more general formulation
of the Phillips curve, according to which labor’s bargaining power not only
depends on the level of employment as in (2.1), but also on its rate of
change.” Indeed, it is easy to show that, in this case, the positive equilibrium
point becomes (locally) stable.

To prove this, let us assume that:!*

S-; (v, %) — F(v,u) (2.10)

where:
fo>0,f >0,0=0/v
so that:
o6
Fv = fv+fﬁ_v:fv>o
ov
F, = v@ - _ ﬁw <0
ou o
In this case the model becomes:
vo_ S_p_gn_Mu (2.11)
v o o
U
E = F(mu) -« (2.12)

with non-trivial equilibrium (v, u®¢), where u® is still defined by (2.9),
whereas v°¢ is that value of the rate of employment for which:

F,0) =0

This is the case considered by Phillips himself, who, at the end of his 1958 contribution,
writes that: “The statistical evidence in Sections I to IV above seems in general to support
the hypothesis stated in Section I, that the rate of change of money wage rates can be
explained by the level of unemployment and the rate of change of unemployment.” [44, p.
299; my emphasis]

'0This formulation was introduced by Cugno and Montrucchio [8, pp. 97-98]. See also
Sportelli [47, pp. 43-44].



The characteristic equation at (v, u®) becomes:

2 (,€€ (Sp _ S’LU) ee ee (SP — Sw) ee, ee __
?A,),+ fo (v°¢,0) —u A+ fy (v°¢,0) —u U =0 (2.13)
J’_

(+) +)

which, given the signs of the coefficients, has two negative roots. This proves
that, whatever the sign of its discriminant, the movement is convergent.!!

Thus, neither of the two extensions of the original model we have con-
sidered seems worth pursuing, the first simply “changing the numbers, but
not the logic of the system”, the second destroying its cyclical features.

Yet, the conclusion is drastically different if — taking account of Pasinet-
ti’s [38] criticism of Kaldor’s [31] theory of growth and income distribution
— we notice that a correct consideration of a positive propensity to save
out of wages does not only simply imply a change in the equation for the
warranted rate of growth — from g = (1 —wu) /o to (2.6) — but also an
increase in the dimensionality of the dynamical system. The reason for this
is that, given that workers save, they own a share of the capital stock and
earn some profits from it. Clearly, this workers’ share (or, alternately, the
share owned by capitalists) is not constant, but rather varies with v and «
over the cycle.

To investigate the implications of such a simple consideration is the main
purpose of what follows.!?

3 The model when workers save: A correct for-
mulation
3.1 Derivation of the dynamical system

Using the notation introduced in the previous section, we can take account
of Pasinetti’s point about the implications of a positive propensity to save

1Tndeed, this is the case considered by Lorenz [33, pp. 67-73], in his textbook on
Nonlinear Economic Dynamics and Chaotic Motion, to show the structural instability of
Goodwin’s model; to prove, in other words, that the behavior of its dynamical system
is very sensitive to variations in the functional structure such as a change from f(v) to
F(v,u). We will have more to say on this at the end of the paper.

12Tn doing this, we are following very closely some of van der Ploeg’s contributions, in
particular van der Ploeg [42, 43]. In a sense our analysis, although based on a simpler
extension of Goodwin’s model, put together two van der Ploeg’s insights, one taken from
[42] — where the model, as in our case, becomes 3D because of the consideration of a
varying workers’ share of the capital stock, but the analysis is confined to local stability
— and another one taken from [43] — where, with a constant workers’ share of the capital
stock, the increase in the dimensionality of the model, from 2 to 3, is due to a different
reason (namely, to the fact that a more dynamic view of technical change is adopted,
with the capital-output ratio varying with the cost of labor over the cycle), but, as in this
paper, the Hopf bifurcation theorem is applied to the resulting dynamical system.



out of wages™ by writing:

g = wl+P,+ P, (3.1)
Sw = 8w (Wl + Py) = sy (Wl +1ky) (3.2)
S, = s.rk. (3.3)
P q-wl (1-uwq 1-u
"TEF TR Tk o (34
For this modified version of the model, we obtain:
w (Wl + 7ky ke 1
=2 (Wi rhy) + ser = — [sw + As(1 — u)e] (3.5)
k o
from which:
w A A
EZ(S——gn>+—56——Sug (3.6)
v o
Thus, we now have:
U v
—_ = —_) — = F — .
- f(v,v) «@ 1(v,u,e) — (3.7)

Then, with regard to the dynamics of the proportion of capital held by
capitalists, we have:

& ke ko ke
e ke k ke Y
where:
ke _ Scpc—sr—s 1—u
ke ke ¢ 7€
so that, given (3.5):
- 1
g == (1 —e)As+u(—sc+ Ase)] (3.8)
Thus, introducing the new notation:
A
As, = 23
o
Sw
Swe = —
o
Sc
Sco = —
o

the 3D dynamical system of this version of the model — in the variables v,
u, and € — can be written as:

(Swo — gn + Asge — Asque) v = @ (v,u,€) (3.9)

u = [Fi(v,u,e) —aju =y, (v,u,¢) (3.10)

= (Asy; — Seott — Asye + Asyuc)e = g3 (v, u,€) (3.11)

3See, for example, Pasinetti [38]. Notice, in particular, the change in notation —
required in order to take account of Pasinetti’s criticism — from s, to sc.



3.2 Singular points

Apart from the trivial singular point (0,0, 0), system (3.9)-(3.11) has a pos-
itive singular point (equilibrium) (v*, u*,e*) such that:

Swo — gn + Asge™ — Assue® = 0 (3.12)
f@,0—a = 0 (3.13)
Asy — Seot™ — Asge™ + Asye™u* = 0 (3.14)
From (3.12):
* gn — Swo
=1-<= - 1
u ASUE* (3 5)

Inserting in (3.14) and solving for e:

x _ Sc (gn — Swo)

= 1
€ Ao, (3.16)
Then, inserting (3.16) in (3.15):
w=1-2 (3.17)
Se

Finally, v* = v, as in the previous elaboration of the model, is that
value of the employment rate that satisfies (3.13).

It is easy to check that these equilibrium values imply all steady-state
results that follow from Kaldor-Pasinetti’s theory of growth and income
distribution; in particular:

e given (3.5), (3.16) and (3.17) guarantee a steady-state growth of the
system at a warranted rate equal to the natural rate:

g* = Swo + ASU(l - U*)é‘* = Swo + Asg <g_n> M = gn
Sco Asggn

e unlike what was the case for the version of the model with differential
savings we considered in the previous section, they imply the so-called
Cambridge equation, according to which the steady-state rate of profit
is determined by the natural rate of growth divided by the capitalists’
propensity to save, independently of anything else:'

R e T 9n

[/ A— =
o Se

1See, for example, Pasinetti [39, pp. 121-122 and 127-128].



e in order to be economically meaningful (i.e., such that 0 < «* < 1 and
0 < e&* < 1), they require that:

0< 80w <0gn <8 <1 (3.18)

which is nothing else that the well-known condition that Kaldor’s orig-
inal model too must satisfy.'?

Notice that, as already stressed, there is however a basic difference be-
tween the two approaches: whereas in the Kaldor-Pasinetti model the steady-
state growth path continuously guarantees the full employment of labor, in
the Goodwin model it is characterized by a positive (constant) rate of unem-
ployment equal to (1 — v*). Moreover, and more importantly, it is possible to
show that Goodwin’s model, in the more general case of differential savings
and in the case in which condition (3.18) is satisfied, admits closed orbits
solutions (limit cycles). In other words, it describes persistent fluctuations
of the variables rather than a convergence to the steady-state solution.

This can be rigorously established by applying to system (3.9)-(3.11)
the Hopf Bifurcation Theorem (HBT, thereafter). As a preliminary step, we
study the (local) stability of the model at the non-trivial singular point.

3.3 Local stability analysis

Linearizing system (3.9)-(3.11) at the non-trivial singular point (v*,u*,e*),
we obtain:

) v —
uw | =J | vw—u*
€ e—¢*

where the Jacobian matrix:

0 a2 a3
J* = ag1 a2y a3 (319)
0 a3z ass

given the basic assumptions introduced at the beginning of the previous
section and condition (3.18), is such that the signs of all its coefficients are
unambiguously determined:

ala = % . —Asgé*v* <0
U (v,u,e)=(v*,u*,e*)
1,
a3 = % =As; (1 —u*)v* >0
€ (v,u,e)=(v*,u*,e*)

5See, for example, Pasinetti [38, p. 269].



as] = % :Ffvu*:f:lb* >0
OV | (v,u,0)= (0" ut %)
0
agy = a2 = Flu* = —fiAsse™u* <0
OU | (0, ,0)= (0% ur %)
0
a3 = X2 = Flu* = fiAss(1 —u")u" >0
02 | (v,u,6)=(0" u %)
0
ase = 9o = (—8¢o + Asge™)e™ = e Mt < ()
Bu (v,u,s)z(v*,u*,i*) gn
0
asz = ﬁ = _ASU(]_ — U*)é‘* <0
02 | (v u,0)=(v*,u" %)

Thus, the characteristic equation of our system becomes:

ML AN+ BA+C =0 (3.20)
where:
A = —tr (J*) = —a9g —azz >0 (3.21)
= )
B — | @2 az 0 ap
as2 ass3 a1 a2
= 22033 — 412021 — a3a32 > 0 (3.22)
=HE G HG)
N N N’
(+) (=) (=)
C = —det (J*) = @91a12a33 — A21a13a32 > 0 (323)
HEE (EHEHE)
N e N
(+) (=)
Moreover:
AB - C (3.24)

AV
o

= (a2 + aszz)(azzaze — azazs) + azi(a13aze + azaiz)
= = BHE () ) HE ()
S U N N’

) (=) (+) (=) (+)
) ©)

Given that — by (3.21), (3.22) and (3.23) — A, B, C are always posi-
tive, the implication of what we have obtained is that in the case in which
condition (3.24) holds with the “>" sign, all Routh-Hurwitz (necessary and

10



16 are satisfied.

sufficient) conditions for the local stability of the equilibrium
This, as was the case for the extension of the model we have considered
in section 2 (see equations (2.11)-(2.12)), would be the “end of the story”
and we could conclude that the model economy (locally) converges toward
(v*,u*,e*). However, given that condition (3.24) can also hold with the
equality sign, things are not so simple! Indeed, this implies that the dynam-
ical behavior of the model can drastically change, from the qualitative point
of view, as one or more of the parameters vary.

Our purpose is now to use the HBT to show that, choosing, for example,
Swo as the bifurcation parameter,!” persistent cyclical behavior can emerge

as Sy varies.

3.4 Application of the Hopf Bifurcation Theorem

In the past few years, the HBT has been often utilized to prove — both in
2D and 3D continuous-time dynamical systems — the existence of closed
orbits.

Restricting our attention to the applications of the HBT to 3D dynamical
systems,'® we can say that usually only the existence part of the theorem
has been applied, the reason for this being that the stability part requires
conditions (involving third order mixed partial derivatives) to which it is
hard to give any economic interpretation. This, for example, is stressed by
Asada [1, p. 48, f. 14], who writes that “...the stability of the closed orbit
depends on the third order partial derivatives of the relevant functions, but
the economic implications of such stability conditions are quite ambiguous’
and by Franke [20, p. 251], who, with regard to the problem of the stability
or instability of the closed orbit, stresses that “...which case holds (if any)

16See, for example, Gandolfo [23, pp. 221-223].

'"Given that o is assumed to be constant, that is tantamount to choosing the workers’
propensity to save as the bifurcation parameter.

'8 This is the case — we believe — in which the HBT really adds value to the standard
theory (e.g., Poincaré-Bendixson theorem), that can on the contrary be applied to show
the existence of closed orbits only to 2D systems. Although we will not consider them,
the interested reader, as examples of applications of the HBT to 2D dynamical systems,
is referred to Torre [49], Benhabib-Nishimura [6], Medio [35], Semmler [46], Feichtinger
[15], Flaschel-Groh [19], Sportelli [47] and Kind [32]. Moreover, Benhabib-Nishimura [7]
and Franke-Asada [21] contain applications of the HBT to higher than 3D systems (nD
and 4D respectively). There are then a number of contributions — notably by Farkas
and co-workers (see, for example, Farkas-Kotsis [14]) and more recently by Fanti and
Manfredi (see, for example, Fanti-Manfredi [11, 12, 13]) — in which the HBT is applied
to higher dimension extensions of the Goodwin model. We notice, however, that in the
latter extensions (see, for example, Fanti-Manfredi [13, pp. 383 and 385]), the higher
dimensionality is the result of the consideration of lagged relations — together with the
application of the so-called “linear-chain trick” — rather than of a truly more general
structure of the model. Finally, with regard to applications to models formulated in
discrete-time, we simply refer to Gandolfo [23, pp. 491-499] and Medio [36, pp. 67-69]
and to the literature mentioned therein.

11



depends on the higher-order nonlinear terms in the Taylor expansion of the
right-hand side (of the equations) of the dynamical system... This procedure
is so complicated that the resulting conditions for orbital stability would
no longer be accessible to economic interpretation”.'Y However, what has
hardly been noticed is that the simple application of the existence part of
the theorem is not uninfluential for the specification of the model either. On
the contrary, as shown by the contributions I have just mentioned, it often
requires assumptions that are introduced for no other reason than that of
satisfying the conditions of the theorem.?’

In our application, on the contrary, this is not the case because, as
shown in Proposition 1 below, for the version of Goodwin’s model we are
considering, the application of the existence part of the HBT requires only
that condition (3.18) — resulting from Kaldor-Pasinetti’s theory of economic
growth and distribution — is satisfied.

For our model — with dynamical system (3.9)-(3.11) and characteristic
equation (3.20) — to prove the HBT is tantamount to proving the following
proposition.?!

Proposition 1 When condition (3.18) is assumed, there exists a critical
value of the workers’ propensity to save — Syy = TSwen — that satisfies it
and is such that (3.20) evaluated at (v*,u*,e) has the following properties:

(HB;) it possesses a pair of pure imaginary roots (Ag3 = 6 £ iw); in other
words, at Sywe = Swon -

A(S’LUO'H)B(S’LUO'H) - C(S’LUO'H) =0

(HB3) the real parts of the complex roots cross the real axis at non-zero speed;
in other words, at Sy = Swou-

db

dSweo S

£0

=Swon

Proof.
(HB;) In terms of the parameters of the model, given (3.24), we can
write (see Appendix A.1 for calculations):

AB — C = Asqe™ i [fau" + (1 — u")] [Asou* Syoe™ (3.25)
+Asse U Asy (1 — u*)e™] + Asqy fru'e™ (—v sy + fiu*Asqze™v™) =0

v

9See also Asada [2], Asada-Semmler [3], Benhabib-Miyao [5], van der Ploeg [43],
Sasakura [45], Gandolfo [23, pp. 476-477].

20See, for example, assumption (A.8) in Sasakura [45, p. 437] or assumptions 1 and 2
in Franke [20, pp. 246 and 250].

?1See Gandolfo [23, pp. 257-258 and 475-488].

12



which is satisfied by the following value of s, (see Appendix A.2 for calcu-
lations):

_ fiseo L+ (ff = D] + f5 fiurv™/(1 — u)

T s L+ (Fr = D] + favr + fy frurorJ(1— )
= Dg, (3.26)

n

The denominator of the fraction in (3.26) is certainly always greater than
the numerator, so that:

D<1—>5ng<gn

Moreover:

(fq”); - ]-) (SCU - gn)

=[5 [8co + (f5 = 1) (Sco — gn)] = [5 [8co + [3 Sco — Sco — f59n + n]
= f5 [f3 (Sco — gn) +gn] >0

f;SCU {1 + (f; - 1)U*} = fgsca 1+

so that:
D>0— syoy >0

This completes the proof of the first part of the Proposition.

(HB2) By using the so-called sensitivity analysis, it is then easy to show
that the second requirement of the Proposition is also met.

First of all, we notice that the coefficients of the characteristic equation
are such that (see Appendix A.3 for calculations):

A = algn — Sws),a >0 (3.27)
B = b(gn— Swo),b>0 (3.28)
C = c(gn— Swo),c>0 (3.29)
so that we also have:
0A A
= —ga=———<0
aswa Swo — Ggn
0B B
8511)0 Swo — Gn
oC C
= - = — < 0
8311;0 Swo — Gn

Second, we know that, apart from A > 0,B > 0 and C > 0 that is always
true, for sywe = Swen, one also has AB—C = 0. Thus, when sy = Swou, One
root of the characteristic equation (A1) is real negative, whereas the other
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two are a pair of pure imaginary roots (Ag3 = 6 & iw, with § = 0). This
means that we have:

A = —(>\1—|—)\2+)\3):—()\1+29)
B = A+ A3+ A3 = 2)\10+92+w2
C = —XMXd3=-X)\ (92 —|—w2)

so that, differentiating with respect to s, in the case in which g3 are
purely imaginary (6 = 0), we obtain:

0A o, 00
85wa - 8swg aswa
0B 00 Ow
O0swo = M 05uo i 0Swo
oC L, 0n o
05uo - Swo - 2)\1w85w0
or:
-1 -2 0 i 8)\1/8sw
0 2\ 2w 00 /0swo
—w? 0 —2\w ] Ow [0Sy
8)\1/8swg i —a
A | 96/0sws | = | —b
Ow/08yo | —c

such that at Sye = Swon:
IA| = dw( N +w?) >0 (3.30)
and (see Appendix A.4 for calculations):
A, | = 2aw® >0 (3.31)
Given that, by Cramer’s rule:

[Asy,| _ 00
|A|  Oswo e

=Swon

conditions (3.30) and (3.31) prove the second part of the Proposition. m

Thus, system (3.9)-(3.11) admits closed orbits solutions (persistent and
bounded fluctuations of the variables) for values of s, in the neighborhood
of Swon-

Before discussing at greater length the implications of this result, it is
interesting to notice that, once the possibility of closed orbits has been
proved, an important property of the cyclical behavior of the model follows,

14



consisting in the fact that the u*- and the e*-coordinate of the singular

point are equal to the average values of the respective variables over a whole
22

cycle.

Proposition 2 For the dynamical system (3.9)-(3.11) of Goodwin’s model
with differential savings, the average values of the income share of labor
and of the share of capital owned by capitalists are equal to the respective
coordinates of the singular point (i.e., to u* and £* respectively).

Proof. (see Gandolfo |23, pp. 463-464] for the analogous property of
the original Lotka-Volterra model)

To show this, let us rewrite equations (3.9) and (3.11) as

d
= logv = Swo — gn + Asee — Asgue (3.32)
jt loge = Asy — Seott — Asye + Asqyue (3.33)

from which, integrating over a period T equal to the period of the oscilla-
tions:

T T
edt — Asgy / uedt = 0 (3.34)

(SwU - gn) T + ASO’ /
JO

J0

T T T
As,T — Sw/ udt — Asg/ 5+A50/ uedt = 0 (3.35)
JO JO J0

From (3.34)-(3.35):

T

(Swo — gn) T + Asy /
JO

T

edt = —AsyT + S¢o /

udt+Asg/ €
Jo

J0

from which, in average over a cycle:

T .

l/ udt = (280 + (Suo = gn) 1=
Sco Sco
Then, from (3.34):
T
(Swo — gn) T + Asg / e(l—u)dt=0
J0
Thus, in average over a cycle:

= / cdt — Sco gn Swa) —
ASogn

22 As is well known, this is a property that is also satisfied by the original model. With
regard to v*, it is not possible to draw an analogous conclusion because we have not
specified a functional form for the generalized Phillips curve.
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This completes the proof of the Proposition. m

Moving on to the economic interpretation of the result contained in
Proposition 1, we can say that the bifurcational approach we have used
in this paper seems to be very useful in that it has allowed us to go beyond
the conventional steady state results one easily obtains from local stability
analysis.?? Although for a low workers’ propensity to save — less than the
critical value syoy and in the limit equal to zero — the positive steady-
state solution of the model is (locally) stable,?* increasing such a propensity
destabilizes the model. However, this does not lead to an unrealistic situa-
tion with fluctuations of ever increasing amplitude, neither does it require
the use of the “saddle-point trick”. Rather, through an Hopf bifurcation,
the result seems to be that of persistent and bounded fluctuations of the
employment rate, the income share of wages and the proportion of capital
held by workers and capitalists. Having proved only the existence part of
the HBT, however, we do not know whether the resulting closed orbits will
be stable (super-critical) or unstable (sub-critical).

This does not appear to be too big a problem, though, for at least two
reasons. First, as in a number of previous contributions,?® following Ben-
habib and Miyao [5, p. 593], one can say that this does not matter too much
because both cases are interesting and open to clear-cut economic interpre-
tation. Second, and — we believe — more importantly, it is possible to say
that which case prevails does not matter too much if the bifurcation from
the stable steady-state growth to closed orbits around it is seen as only the
first step in a route to more complex behavior rather than as the “goal” of
the analysis. To investigate a bit longer the meaning of this second claim is
the main purpose of the next section.

4 Numerical simulations

Traditionally, limit cycle behavior in extensions of Goodwin’s growth cycle
model has been the result of the quest for structural stability. Examples
of this approach can be found in Medio [34, pp. 40-53|, Funke [22] and
van der Ploeg [43], to mention only a few. Rather than going into the
details of the discussion of all the problems associated with this important
property of dynamical systems, we prefer to take a different point of view
and to stress that both the original Goodwin model and the extensions just
mentioned (including ours!) are — in a sense — unsatisfactory. The reason

230n this point, see also Benhabib-Miyao [5, p. 591].

*"From the calculations given in Appendix A.2, it follows that AB — C % 0 as Swo §
Swon, 80 that for values of sy, less than the critical value all Routh-Hurwitz conditions
for the local stability of the singular point are satisfied.

*5See, for example, Cugno-Montrucchio [9, p. 6], van der Ploeg [43, pp. 9-10] and

Franke [20, p. 251].
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for this is that they all imply fluctuations of the variables of the model
that are of a periodic nature.?® On the contrary, it is a fact that, although
bounded, the economic fluctuations observed in the real world are highly
irregular (aperiodic). These two observations, however, are reconciled when
it happens that the Hopf bifurcation, the existence of which we have just
proved, turns out to be the first step in the route of the system from regularity
to a chaotic regime.

To end this paper, we try now to give an idea of how this may happen by
resorting to numerical simulations. In doing this, our purpose is first to show
that the results we have obtained in the qualitative analysis of the model are
confirmed by the numerical simulations; and, second — in the attempt to
understand which “route to chaos” prevails, if any — to see what happens
when the parameter is further increased.?”

First of all, we need to choose a functional form for Fi (v, u,e) = f (v,0).
In the simplest case in which f is additive and linear in both variables, we
can write:

f (v, %) ==y 4+ pv + 6 [Swo — Gn + ASy (1 — u) €] (3.36)

which is such that:

vt = (3.37)

Then, an aid for choosing plausible values of the parameter to be used in
the simulations is given by a recent contribution by Harvie [29], where the
author applies Goodwin’s model to all major OECD countries. Choosing,
for example, his results for the UK economy, the parameter estimates are
the following [29, p. 24, Table 6]:

a=0.0221 B=0.0037
o=257 y=1854
p=21.90

From these values and condition (3.18) above, it also follows that the
two propensities to save must satisfy:

Sy < 0.0663606 < s

26In the version of the model we have considered, for example, we know that the result
of the Hopf bifurcation are closed orbits of period approximately equal to 27r/\/§.

2TFor a discussion of the concept of “bifurcation” and of typical “routes to chaos” — the
so-called scenarios — see, for example, Medio [36, pp. 59-69 and 149-177, respectevely].
There (p. 68), the conditions for the Hopf (or Neimark) bifurcation for maps are also
given. In the case in which the map is nothing else than the Poincaré map of a higher
order continuous-time dynamical system, the Hopf bifurcation is the bifurcation (or loss
of stability) of the limit cycle of the corresponding flow. For this reason, this bifurcation
is often referred to as a secondary Hopf bifurcation.
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Sw v* u* e*

0.001 0.847584 | 0.889490 | 0.986563
0.002 0.847584 | 0.889490 | 0.973080
0.003 0.847584 | 0.889490 | 0.959553
0.004 0.847584 | 0.889490 | 0.945980
0.005 0.847584 | 0.889490 | 0.932362
0.006 0.847584 | 0.889490 | 0.918697
0.007 0.847584 | 0.889490 | 0.904987
0.008 0.847584 | 0.889490 | 0.891230
0.009 0.847584 | 0.889490 | 0.877427
0.0091 0.847584 | 0.889490 | 0.876044
0.00919 | 0.847584 | 0.889490 | 0.874799
0.009195 | 0.847584 | 0.889490 | 0.874730

Table 1: Convergence to the steady-state for values of the workers’ propen-
sity to save less than the critical value s,y

Finally, after having chosen a value for the parameter § (= f;) — for
example § = 0.02 — and for the capitalists’ propensity to save — for example
sc = 0.6 — it is possible to use (3.26) to calculate the critical value of the
workers’ propensity to save, for which the Hopf bifurcation occurs. Doing
this, we obtain:

Swon ~ 0.0035780

or:

Swi ~ 0.0091954 (3.38)

8 con-

Using these values for the parameters, the numerical simulations®
firm the qualitative results we have obtained in the previous section; in

particular:

o for values of s, less than the critical value (3.38), the system converges
to the steady-state, with the values for v*, «* and £* shown in Table 1.
As can easily be checked, these values are the same as those resulting
from the qualitative analysis of the model and given by (3.16), (3.17)
and (3.37). In particular, we notice that, as was to be expected, only

the steady-state value of € proves to depend on s,,;2

Z8For some information about the simulations, see Appendix B below.
29From the simulations, it also follows that the convergence to (v*,u*,e*) is very slow
(the slower, the larger is s.) and cyclical.
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Figure 1: Limit cycle in the (v,u)-plane, with s,, = 0.0092

e for s, = 0.0092, the numerical simulation given in Figure 1 confirms
the implications of Proposition 1, namely the existence of persistent
and bounded fluctuations of the variables.

In addition to this, the simulations also show that as s, is further in-
creased new phenomena appear. In particular, the bifurcation diagram given
in Figure 2 suggests that, for higher values of the parameter, the original
Hopf bifurcation is followed by other bifurcations in a route to chaos.

To confirm this result we have calculated the dominant Lyapunov ex-
ponent of our dynamical system for different values of s,,. The resulting
Lyapunov exponent bifurcation diagram given in Figure 3 shows that, for
values of the workers’ propensity to save greater than a given critical value
— approximately equal to 0.0095 — the Lyapunov exponent is positive, and
therefore the system possesses sensitive dependence on initial conditions.
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5 Concluding remarks

In this paper, an extension of Goodwin’s growth cycle model has been set out
that considers the case of differential savings along Kaldorian-Pasinettian
lines. Notwithstanding its simplicity, the exercise we have performed allows
us to draw some interesting and encouraging conclusions, worthy, in our
opinion, of further investigation.

In summary:

1. The extension of the model we have considered attempts to integrate
Kaldorian and Goodwinian elements. From this point of view, the
result we have obtained is that the steady-state features of the mod-
ified Goodwin model are the same as those of Pasinetti’s version of
Kaldor’s model. However, interestingly enough, along the equilibrium
growth path of our model there is not full employment but, rather,
a constant rate of unemployment. Moreover, for values of the work-
ers’ propensity to save above a certain critical value, the system —
either periodically or aperiodically — persistently fluctuates around
it, rather than converging to it.

2. The existence part of the HBT we have employed for the qualitative
analysis of the dynamics of the model is a powerful tool, by now stan-
dard in economic dynamics. Yet, there are three aspects of our appli-
cation that are worth stressing. First, as we have seen, our application
does not require the introduction of any ad hoc assumption about the
values of the parameters, apart from the one about the relative values
of the two propensities to save implied by Kaldor-Pasinetti’s theory:
in our model this condition is all that is needed to ensure both that
the steady-state values of the variables are economically significative
and that the conditions of the HBT are satisfied. Second, the results
we have obtained strongly suggest the importance of “going from lo-
cal to global analysis”. From this point of view, the limit cycle — the
existence of which we have proved by using the HBT — must be seen
as the starting point rather than as the “goal” of the analysis. Indeed,
more important then is, as we have tried to do with the numerical sim-
ulation, to investigate the existence of a “route to chaotic behavior” as
the crucial parameter is further increased. Third, we have introduced
the hypothesis of differential savings in the original formulation of the
model. In doing this, we have neglected a number of interesting exten-
sions of the model — available in the existing literature on the topic
— which give rise to a higher order dynamical system, for example
all those extensions in which the Phillips curve is written in monetary
terms and then an equation for price dynamics is introduced into the
model. However, as is well known — and as is testified to by some
of the recent contributions quoted above — the existence part of the

22



HBT can be easily applied to higher than 3D systems as well, and the
same, clearly, is true for the many numerical simulation techniques
nowadays easily applicable even with an ordinary personal computer.
For this reason, then, there are no limits to the analysis of further
generalizations of the model along the lines suggested and sketched in
this paper.

A Appendix: Basic calculations

A.1 Derivation of (3.25)
AB — C = (ag + asz)(a3aze — axazs) + azi(a13az2 + a22a12)

= [~ fiAsge™u™ — Asqy (1 —u™)e™| [fi Asa (1 — u*)u*(—sﬂswg)e*

9n
—fiAsse™u" Asy (1 — u*)e™] + fou*[Asy (1 —u*) v*(—sgﬂswg)é*
n
+fiAsge*u" Asye™v™]

= Asee™ fi [fiu" + (1 —u")] [Aseu™syoe™ + Asge™u* Asy (1 — u*)e’|

+fou* (—Asev" swoe™ + fiAsse"u* Asye™v™)
= Aso fie" [fou" + (1 —u")] [Asgswoue™ + Asque* Asy (1 — u*)e”|
+faAssu e (—v*sye + fiu*Asye™v™)
A.2 Derivation of (3.26)

AB-C % 0 Asee™ fi [fou" 4+ (1 — u™)] [Asgu™syoe”

+Asse U Asy (1 — u*)e™] + fru'e*Ase (—v*sye + fi Asge™u™v™) =0

AV

from which:
folfiu™ + (1 —u")] [Asou*swoe™ + Asge™u* Asy (1 — u*)e*]
+fou [V swe + f3 Asge utv”] % 0
or:

T ek % ok Sco — Yn Sca(gn_sw(r)
F fou = (1= )] Ay (=0, erlfn )

Sca(gn - Swa) (SCO' - gn> * Sca(gn - Swo)
+AS AS 1y )————=
7 Asagn Sco U( ) ASUQTL }

S0 (g — o) ((Ser —gn) o1 2
NSNS i G EUEL
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or:

f2 e+ (1— )] (g";—s“’”){(sw ) S+ (e — ) O

* ok * * — S8 *
— (8co = Gn) Swo] + fou[—v" Swe + va (8co = gn) V"] %
n
or:
fo L+ (f5 — Du'] (8eo — gn) (Gn — Swo)
—
+fu* [0 Sye + I (n g wo) (Sco = gn) V'] % 0
n
or:
fo L+ (f5 — Du*] scou™ (gn — Swo)
— s
bt s+ O g0 20
n
or:
fosco [1+ (f5 — 1u'] (gn — Swo)
s
e (R L (e KAEL
n co
or:
fosco [1+ (f5 — 1)u'] (gn — Swo)
s
+f v Swe + fi (1 - %) Seot U] % 0
or:
fgsco {1 + (fqi;k - 1)1’/*} 9n — fgsca []— + (fg - 1)U*] Swo
Xk * * * ok * *S X ok
—fov" Swo + [y [38cou™ v — fvf@fswu v %0
n
or:

* * * E % *S X ok
{fﬁsw 1+ (ff —Du*] + fov +fvf'f)fu v }Swa
n

VIIA

* * * * *SCU * ) %k
{f (1 (= )+ R A }gn
Thus:
>
AB - C = 0
according as to whether:

< Jiseoc 14+ (7 —Du'l+ fifjurv /(1 —u”)

SwoH = fgsca [1 n (f},k — 1)u*] 4 f;’U* + f;fgu*v*/(l — u*)

n
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A.3 Derivation of (3.27), (3.28) and (3.29)

A= —ag —asz = fiAsze"u* + Asy (1 — u*)e”

o f*AS Sca(gn - Sw(r)u* + As (1 . u*)sca(gn - Sw(r)
= Jp o o —

Asagn Asagn
_ f:k Sca(gn - Swa)u* + (1 . U*) sca(gn - Sw(r)
v gn gn
«Sco x %\ Sco
= {fq} —Uu + (1 —u )_} (gn - Swo)
dn gn

= (M + 1> (gn — Swo) = a(gn — Swo)

1 —u*
N——
a>0

B = asoass — a12a21 — a93as32

= fiAsee™u Asy(1 — u*)e™ + Asge™v™ fou® + fiAsq(1 — u*)u*sﬂswge*

n

S (gn — Swd) Sca(gn - SwU)
= frAg, =2t U *As,y (1 — f) =t TRes
fiAso Asogn so(l =) Asggn
Sco(Gn — Swo) « px x * *\ xSco Sco(Gn — Swo)
Seo\In — Swa) *Ag (] — Seo o Zeo\dn T Swo)
Asggn v Uu + f’U SU( “ )u gn Swo Aso—gn

* *

u U
m(gn - Swa) + (gn - Sw(r)v* :1 o

+Asy

= fg(gn - Swa)
k u*
+f® 1 _ u* Swa(gn - Swo)

u*

= T (90 = 5w0) [ (9n — swo) + V" f + fi 5uo]

*

U # * p
= 1 _ u* (ff)gn—i_v fv)(gn - Swd) = b(gn - Sw(r)

b>0

C = az1a12a33 — az1a13a32
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= fou*Asye*v* Asy (1 —u*)e™ + fouAsy (1 —u*) v*Sﬂswgg*

gn
S (gn — SwU) sca(gn - Sw(r)
— *A co *A 1— *
fou*Asg —Aso—gn v Ass (1 —u )—Aso—gn
+f*u*AsU (]_ —U ) *S_ wo Sca(gn - SwU)
gn Asogn
- « Sco (gn ) Sco (gn - Swa)

+ f*u*v*swg
9n gn
f*u*v*gns U(gn - Swa) f*u*v* Swo ca(gn - Swo)
9n In
Sco (gn - Sw(r)

gn

= fvu (gn - Swa)v

+f*u*v* wo—

f*U*U*SCU( gn Swa) = C(gn - Swa)

c>0

A.4 Derivation of (3.31)

-1 —-a 0
’A'Swa" = O _b 2w
—w? —¢ —2\w
_ —b 2w ta 0 2w
N —c —2\w —w? —2\w

= — (2w + 2we) + 2a0®
At Sypo = Swou:

AB—-C=0,0=0,A=—-)\,B=uw?

Thus:
|As,,| = — (20w + 2we) + 2aw?
= —2w(—bA +¢) + 2aw?
B
= —2uw( A-— ¢ ) + 2aw3
Swo — dn Swo — gn
2w 3 3
= ——(AB—-C) +2aw” = 2aw” > 0
In — Swo ~=—~—"

=0!

B Appendix: Simulations

To perform the numerical simulation, we have used the computer program
DYNAMICS 2, contained in the second edition of the book by Nusse and
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York [37]. To do this, we had, first of all, to add our own process following the
procedure described in Ch. 13 (“Adding your own process to DYNAMICS”)
of the book [37, pp. 491-518]. The resulting file (with extension “.dd”),
which stores our model, is the following:

OWN /* process defined below; 1 for map and 0 for Diff. Eqn.: */

0

“GOODWIN 1967 WITH KALDOR-PASINETTI DIFFERENTIAL SAV-
INGS

GKP model

X'=((c1/c2)-c3+((cd-c1)/c2)*Z*(1-Y))*X

Y'=(-(ch+c6)+cT*X+c8%((cl/c2)-c3+((cd-c1) /c2)*Z*(1-Y)))*Y

Z'=(((c4-c1)/c2)-(c4/c2)*Y-((cd-cl)/c2)*Z*(1-Y))*Z

“g’ ;= 1! this is time
x’ = ((c1/c2)-c3+((cd-cl)/c2)*z*(1-y))*x

= (-(cb4c6)+cT*x+c8%((c1/c2)-c3+((cd-c1) /c2)*2*(1-y))) *y
7' = (((cd-cl)/c2)-(cd/c2)*y-((cd-cl)/c2)*z*(1-y))*2"
“=0x:=0y:=.5z:=.5

= 1;_Zilower =10

cl (= sw)

c2 (=0)

3 (= gn)

c4 (= se)

b (=)

cb (= a)

<7 (=p)

c8 (=9)

step := .01”
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