1 Introduction

The proposal that demand is governed by utility leads to the
guestion of how to arrive at the utility, from evidence provided by
the demand. For while demand is in principle directly observable,
utility is not, but is dealt with hypothetically for its part in an
explanation of demand.

Pareto (1906) approached the question of utility construction
on the basis of a demand function, and remarked it could be done
by solving certain partial differential equations. These referred to
the inverse of the function. Volterra (1906) pointed out, in a
review of Pareto’s work, that the existence of a solution was not
always assured but required certain “integrability conditions” such
as had been provided by a theorem of Frobenius. Thereafter the
question became known as the “integrability problem”. Antonelli
(1886) had provided equivalent conditions, stated in the form of a
symmetry. Slutsky (1915) approached the question for a
differentiable demand function, with reference to a utility function
which is continuously twice differentiable, and brought into view
conditions in terms of coefficients formed from derivatives of the
demand function, instead of the inverse. Evidently, the question
stands perfectly well regardless of invertability. He obtained the
conditions by differentiation of first order Lagrange conditions,
and arrived at further necessary (in fact more than necessary)
second order conditions. The approach gained a currency after its
rediscovery by Hicks and Allen (1934). Besidgmmetry the
Slutsky matrix was required to have regativity condition,
intermediate between its being non-positive and negative definite
and different from both. That this negativity requirement must be
in part spurious is demonstrated by “The Case of the Vanishing
Slutsky Matrix® featuring a perfectly respectable continuously
differentiable demand function that has a utility, but the Slutsky
coefficients all vanish identically, as would be satisfactory to the
extent of Slutsky’'s symmetry requirement but altogether

1 Afriat (1972),Journal of Economic Theor$, 208-23.



impossible for the negativity. McKenzie (1957) identified the
Slutsky coefficient matrix with the matrix of second derivatives of
a utility-cost function, and so necessarily both symmetric and non-
positive definite?

Samuelson (1948) introduced the ‘revealed preference’
approach to the question for a demand function, taken further by
Houthakker (1950%.Should the general, and elementary, theorem
proved here, where utility enters as an arbitrary order, seem a
complete answer to the question they and the others subsequently
have dealt with, it could be wondered why their theory involved
undesirable additional restrictions and so much extra work, with
differential equations, problematic limiting processes, and so forth,
which are absent with this new theorem. But this cannot be a
complete answer. It could have been a satisfactory, and most
fundamental, first answer. But despite the “indifference map”
having taken over in the subject as being more essential, they still
sought a numerical utility. There is forgetfulness of the original
submission of a distinct merit for the revealed preference
approach, from its being free of the numerical aspect, that being a
“last vestige” of the obsolete measurable utility of classical
economics.

Samuelson and Houthakker approach the same question as
Slutsky, now without restriction on the utility function, and in
place of differentiability of the demand function is the requirement
that it be continuous and satisfy a Lipschitz condition in respect to
income. They brought into view necessary conditions for a utility,
and the issue then is sufficiency.

The argument of Samuelson for the case 2 , adapted for
n > 2 by Houthakker, has several features requiring comment. It
depends on construction by the method with ascending and
descending sequences of loci in the commodity space which are
assumed to be surfaces, whereas they could be manifolds of lower
dimension, even just single points. To avoid dependence on
invertability it is necessary to work in the budget space rather than
the commodity space, and construct a function in that space which
can be shown to be the indirect utility function for a function in the
commodity space. The ideas of the Samuelson and Houthakker
argument with ascending and descending sequences are adaptable

2 Sufficiency is the dedication of myemand Functions and the Slutsky Matrix Princeton
University Press, 1980.

3 Further attention is given by Afriat (1954, 1962, 1972), Uzawa (1959, 1971), Richter (1966),
Hurwicz (1971), Stigum (1973), and Mas-Collel (1976).



for that purpose.

In their argument, sequences are constructed corresponding to
a dissection of a line segment in the budget space. As the
dissection is refined, points associated with a particular ray form
sequences, and their argument depends on the convergence of
these, which remained problematic. Here, as a central feature, it is
argued that they are bounded and monotonic and therefore
convergent. Subsequent attempts at the convergence question are
by methods that fall down on boundedness arguments, which can
be properly supplied by monotonicity. But with the monotonicity
the convergence is settled, and the methods are not needed at all.
Also, the case dealt with by those other methods is where the
inverse exists and has domain the entire commodity space,
whereas here we have no such restrictions.

In the continuation of their argument, the limits of ascending
and descending sequences as the dissection is refined indefinitely
define two functions which satisfy a differential equation which,
because of the Lipschitz condition, has just one solution, so they
coincide. Here the Lipschitz condition is given also an earlier role,
where it is interpreted as determining a limit on the angle of
expansion, which assures that when the dissection is fine enough
the associated descending sequence will be well defined.

Even if the construction of the utility function in the
commodity space, on lines of Sameulson and Houthakker or as
done here, is granted, nothing is accomplished if the investigation
rests with it being established that the utility function has a
maximum under every budget constaint given by the
corresponding quantities determined by the demand function. For
the utility function which is constant everywhere and so a
maximum everywhere is always such a function. It is essential to
show the maximum is an absolute maximum. This comes directly
from the smoothness of the indirect utility function in the budget
space. Thus again it is seen to be important to proceed in terms of
constructions in the budget space rather than the commodity space.

For the sake of its history and its own interest, far from
abandonment, the original problematic method is here carried
through successfully, depending on peculiar mathematical
auxiliaries which are a main contribution of this paper, and
working in the dual budget space instead of the commodity space.
It is similar with proof of sufficiency of Slutsky conditions which
also proceeds from the dual.

Important in Samuelson’s approach is the idea, which amounts



to a general “revealed preference” principle, that in any act of
choice, that is, picking an element out of some set, if is chosen
while y is some other element in the set at the same time available,
then we have the preferencexof oyer , orreiealed . Treated
as generally available, as it seems to have been in some hands, the
unrestricted principle amounts to taking choice and preference to
be synonyms, or to make any choice a resultefbiciency in
respect to some hypothetical objective, or preference system.

An unrestricted appeal to the revealed preference principle,
whereby an efficiency is attributed to elections carried out by
voting, leads to the well known “Voting Paradox”. Attention to
this topic prepares for further considerations about preferences of
groups, in particular about ‘welfare’ in a market economy. Having
an election by means of voting is a way a group of individuals, all
of whom might have different ideas about what is good but are still
committed to act together, go about making a choice, picking one
element out of a set of possibilities, or candidates. The winner is
not thebest for the group, merely the elected one. Had there been
some available prior definition of best candidate there would have
been no need to have an election in the first place. But still we
have the Voting Paradox where there is determination to see the
winner as best, and some surprise at the result.

At the time | joined the Department of Applied Economics,
Cambridge, in September 1953, Houthakker’s famous paper was
being circulated; it must have been the first thing | read. |
immediately restated his “semi-transitivity”, now known as the
“Strong Axiom of Revealed Preference”, as the irreflexivity of a
transitive closure—the relatiofi;  that ocurrs here in Section 3. |
heard it declared and am pleased to accept that the transitive
closure was first introduced into this subject by Uzawa. | also
believe him to be the first to uncover and attempt to remedy
deficiencies in the original treatments. | submit this work, going
over more years than | care to count, as a continuation of that
attempt.

2 Demand & Utility

A demand elements any ( ,p)x B dor which px0 ,
showing a commodity bundlx demanded at priges , the
expenditurébeing px.Then with

u=(p¥~'p



which is the associatdzidget vector( ,u X issuchthat1 , so
it is anormal demand element, in this case th@malization  of
(p,x).4 Various conditions involving demand elements can be
stated well and more simply in terms of their normalizations.
A utility order is any RC Cx C which is reflexive and
transitive,
XRX, XRyRz= xRz

XRybeing the statement that has at least the utilityPof

The chain-extensiorof any relation Ris the relationR holding
between extremities of R-chains, given by

xRz= (V y-) XRyR- Rz,

This is the same as thmansitive closure , or the smallest transitive
relation containinR , being transitive, containiRg , and contained
in every transitive relation that contaiRs The extended condition

XRyR .- Rz= xRz

IS equivalent to transitivity, which therefore is equivalent to the
condition

_’
RCR

for Rto b_e identical with its chain-extension, or transitive closure.
With R as thecomplementand R the conversewhere

XRy= ~ xRy xR ¥ YRX
we have

(R)=(R/,
so there is no ambiguity in the expressﬁh for donverse
complement
The relation of equivalence R, or thedifference relation, is
the symmetric part
E=RNR,

an equivalence relation, symmetric, reflexive and transitive, since
Ris an order. The equivalence clas€gs , which are equally the

4In present notation, witl?  as the non-negative numitees, (2, isuthget space (non-
negative row vectors) and= 2" tlwmmodity space (column vectors). Then apy3

x € C determinepxe {2 for the value of the commodity bundle at the pripes  Sometimes
when dealing with demand functiofis  should be the positive numbers. For syntax, a scalar
usually multiplies a row vector on the left, and a column vector on the right.

SWith a binary relatiorR , beside the us@aly) € R  becaBse is set, also the statetRgnts

x € Ryor ye xRare available to assdrtix y is an elementRf , or tlxat has the reldtion to

y.



setsxE or theEx , these being the same from symmetry, are such
thatx € E, , so their union i€ , and

XEy & E. = E, xEy& EN E= O

SO0 any pair are either disjoint or identical. Hence they constitute a
partition of C, expressin@ as a union of disjoint subsets.
The antisymmetric part & , tharict preference relation, is

P=RNR,

which is a strict order, irreflexive and transiftve , siiRe is an
order.
The subrelationg and@ form a partition Rf

PNE=0O PU E= R.
An orderR iscompleteif
~ XRy = YRX

so for any pair of elements, if they do not have the relation one
way, then they have it the other, or they have it one way or the
other and possibly both. That R, CR ,and equivalerfehy, R.

A simpleorder Ris such that

XRyRx= x= .
For an order, this is equivalent to
XRYR -+ RXx= X y=---

Otherwise, this is the condition for any relati@n toaicyclic
or for the absence &- cycles of distinct elements. For a reflexive
relation, it is the condition for the transitive closure to be a simple
order.

The relationd and oflentity andistinction are given by

Xly=x=y, xDy= x££ y
For any simple orderR , the symmetric part =1 , so
equivalence irR reduces to identity. In this case the antisymmetric
part is identical with the irreflexive pa®,= RN D , from whiéh
Is recovered as the reflexive closurRe= PU .
A utility functionis any ¢: C— (2. It representghe utility

6Beale and Drazin (1956) bring attention to this commanlyoticed transitivity, basic for the
scheme adopted here. Also indifference, sometimes treated as absence of preference and then
problematic because without transitivity, is here taken to be a positive condition made from
preference comparison both ways, necessarily transitive, as required if we are to have an
equivalence relation.



orderR for which
XRy=o(x) > o(Y) -

In this case, for the symmetric and antisymmetric parts,

XEy & ¢(X) = ¢(y), xPys o( 3>o(y .
Any utility order so representable by a utility function is
necessarily complete.
Relations connecting a demand elemgntx) and a utility
orderR are defined by
"=py< px= xRy

which corresponds to theost-effectiveness familiar in cost-benefit
analysis, and assernts is as good as any bundle that costs no more,
and

H" =yRx = py> px

cost-efficiencythat any bundle as good as costs as much.

While H’ representstility maximization , makingk a bundle
that has maximum utility for the money speft] represeoss
minimization making x have minimum cost for the utility
obtained. These are equally compelling, generally independent
basic economic principles. A later issue involving stricter
conditions concerns whetha&r is the unique bundle admitted by
these conditions. The combination

H=H'AH"

definescompatibility between the demand and the utility. In terms
of normalizations, these conditions become

uy<1 = xRy, YR up1l ,
respectively.
The condition
H°=py < pxA YRX= ¥ X

here put symmetrically, has alternative statements,

() py < pxA y# x= ~ YyRX
which exposes a relationship with | and

(i) YRXA y# X= py> px
with H”.
We also consider
H* =py< pxA y# X= XRW ~ YRX

which, in the case d® being complete, is equivalent to (i), and so
toH?°.



According toH ° , any bundle as goodxas and costing no more
must be identical witlx. Reflexivity oR already allows itself is
such a bundle, so the converse is already present.

The antisymmetric or strict part A being= RN R ,in
terms of this
H™ = py < pxA y# x= xPy

For the case whef® is comple_Fé,C R and heRee R Hso
becomes the same HS.

As appears from forms (i) and (ii), whe#h® is adjoined to
each of H’ andH” we obtain thetrict = versions of these
conditions, that require to be the unique bundle which attains the
required maximum utility, and minimum cost.

While the conjunction oH’ anH” provides compatibilidy
we have the conjunction of the strict versioAsS A H’ and
H° A H” to definestrict compatibility. Since

(HOAH)AH°AH") & HOA(H' AH"),
this condition is alséi ° A H.
Theorem Strict compatibility, simultaneously requiring strict cost-
effectiveness and strict cost-efficiency, is obtained by the

condition H* , which impliesH and is equivalent kb° Rf s
complete.

It is immediate that

H* < HOAH
and also
H° = H”.
Therefore, wittH=H’ AH” |, we have
H* < HOAH,

as required. Consequently a6 = H . The last part has already
been remarked.

3 Demand functions

With pricesp, and an amourM of money to be spent on some
bundle of goodx, there is the budget constrpii: M. Given a
function x = F(p, M) that determines the uniqgue maximum of a
function ¢ under any budget constraift, igl@mand function
whichhas¢ as a utility functionor is derivettome .



Now with any given functiorr it may be asked whether it is
such a function so associated with a utility function. The function
F first must have the properties

PF(p,M) =M F(p M= F(M'p1),
usually associated with demand functions. Then a function is

sought for which, for allp andM x= F(p M) is the unique
maximum of¢ under the constrapt < M, that s,

py< M y# x= o(y<o(X.

Introducing thebudget vector &= M! p,the budget constraint
px= M is stated ux=1. The standard demand functionF
determines theormal demand functiéon n®rmalization , given
by

f(u)=F(ul),
with the property
uf(u) =1,

from which it is recovered as
F(p,M) =f(M'p).

Instead of the usual standard foEn , it fits what follows to
deal with a demand function in the normal fdrm . Then a function
¢ is sought for which, for all x= f(u) is the unique maximum
of ¢ under the constrainix = 1, thatis,

uy <1, y# x= o(y<o(X.

The expansion pathfor any prices p is described by
x = F(p, M) as expenditureVl varies whilp remains fixed.Mf
is altered topM by a factop x becomgs= F(ppM), the
budget vectou = M~!p is altered to the popit'u  on the ray
throughu, we have, = f(p 'u), andx =p.

Expansion paths are therefore images in the commodity space
C of rays in the budget spa&  With a given @gétt B , we also
consider its projecting cong¢ , consisting of the rays through its
points, and projections & , which are paths in the same cone (in
particular projections which are integral paths, to be dealt with).

It is simpler and has other advantage to deal with the question
aboutF through its normalizationh  For similar reasons a utility
orderR can take the place of the utility function. If it is the order
represented by the function, it provides all that is important about
the function. But it is most natural to have an arbitrary order in
view, free of such representation.



10

A demand functiorf iompatible with a utilityR if every
demand elementu,x) which, being such that f(y , so it
belongs tof , is compatible witR . Withl;(R  denoting this
condition,H, asserts the existence of a such a comp#&ible , orthe
consistencyof fSimilarly H Rcan assert strict compatibility
andH; thestrict consistencyof f.

ForH}(R) we have that for ali , amd= f(Uy
uy<1AYy# x= XR\\ ~ YRx

Therefore, for any cyclic sequengg U, ... , U,, W, ... ,
UpXg SIAULX < IA---A U1 X% <1
\
XoRX ... R%,
!
X RX;,
But also
UnXo < 1A% # %, = ~ X RxX.
Therefore
U STAUX S IA---A W, X1
\
Xo = X -
This condition onf , to be denote}d} , has been seen to be a
consequence of the strict consistency of
H; = K.

From the cyclic symmetry, it is equivalent to thiict cyclical
consistencyondition

UpXg STAWLXY SIA-A Y, ¥x<1
U
X=X == Xp.
Then it is also equivalent to

UpXf SITA WX <IA--A Y1 X% <1
N
X0 ZXVXRAEXV V%1 #F K%
\I%
U, % > 1.
and to
UpXf SIA WX < IA--A Y1 X% <1
N
X 7 %
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4

Uy Xo > 1.

This last form shows the condition obtained by Houthakker
(1950), elaborating the ‘revealed preference’ method of Samuelson
(1948). A part of it is that

UpXt <LAX #% = UX¥>1,

which is Samuelson’s conditioh.
Let Rf(u), the directly revealed preferenceelation of f
associated with the budget , be defined by

XRe(Uy= x= {yAuy <1,

and letR; , therevealed preferencerelation of { be the transitive
closure of the union of these,

Ry =UR(.

This is reflexivé because tig(u)  are reflexive, and transitive by
construction as a transitive closure, so it is an order.
Another expression foK}; , proceeding from the original

statement, is that, for= f(u) ,

uy <1AYyR x= y= X
Sinceuy <1 = xRy, this is equivalent to

Uy<1Ay# X= xR Y ~ yR X
thatis, H( i) , so we have

H; = K, = H(R) = H,
and hence:

Theorem 3 H; & H(R) & K.

In other wordsa demand function is strictly consistenor strictly
compatible with some utility ord2rif and only if it is strictly

7 Samuelson dealt with the two-commodity case for which his and Houthakker's condition are
equivalent, as proved by Rose (1958) and Afriat (1965).

8 Rather, it is reflexive just at points in the range of the demand function. Without altering
anything important but to give respect to the definition of an order, it could be made reflexive
simply by taking its reflexive closure, or union with ‘=".

9The present theorem has no special requirements at all about the utility order, or about the
demand function. Samuelson and Houthakker sought a continuous numerical utility, involving
auxilliary assumptions about the demand function, and a differential equation method. The
following, still without a published report, asks less for the demand function, and for the
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compatible with its own revealed preference oyder and this is if
and only if the strict cyclical consistency condition holdsat-is,
Houthakker’s condition, often referred to as the “Strong Axiom of
Revealed Preference”.

The strict revealed preferenceelation of fis the strict or
antisymmetric part oR;

P=RNK,
and therevealed indifferencerelation is the symmetric part
Ef = Rf N Rf .

The directly revealed strict preferencerelation is the
irreflexive part ofR; ,

S=RnND
so this is irreflexive by construction, though not transitive. Its
transitive closure,

_}
Tr=3%,
is the revealed strict preference relation, transitive by

construction, not necessarily irreflexive.
Other expressions for the Houthakker condil'@n are

(i) E;=I
(i) Pr=5
(iiy P; =T,

(iv) Sy is transitive
(v) T;isirreflexive
Vi) =T,

With revealed preferences there can be none of the “violation
of transitivity” sometimes entertained, and no inconsistencies
obtained from them alone. They are transitive by construction, and
any contradictions come only when they are taken together with

the less well-noticedevealed non-preferences With Samuelson
for instance these are provided by

py < pXA y# X = ~ YRX,

utility: For a demand functiorf to have a lower semicontinuous numerical utility, it is
necessary and sufficient that Houthakker's condition holds and that ttfe 'Sets be closed.
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as part of the strict compatibilitd” , or instead there are fewer
coming from
py < pX = ~ YRX,

which is theH” part of the weaker compatibility condittdn
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4 Obliquity

Theorem 4.11f fis continuous, then for all, v> o0 there exists a
p > 0 such that
uf(p=tv) = 1.

Generally, suchp need not be unique, but uniqueness will be
assured later under a further condition.
For anyu, v> o there exist, > 0 such that

ATlvx=1 = ux<1, g lvw=1 = ux1,
for all x. Thus, take
A < min{vx ux> 1}
=min{d_(V/u)ux: ) ux>1}
= min; v; /u,

andp similarly.
Sincewf (w)=1 for allw, we therefore have

uf(A"lv) <1, uf(p=ty > 1.

Now with continuity off, by Bolzano s theorem, there exists a
lying between\ ang which is as requir@&D

Figure 1

For anyu > 0 andp,oc > 0 consider the loax= p, ux=o0o .
They are parallel hyperplanes separated by a perpendicular
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displacement
d=u'(uu)(p—o0),

corresponding to a minimum distance
dl = Ju~p—o].

With o = 1, this is illustrated in Figure 1.

Let x,, X, denote any points on these loci. The displacement
X, — X, between them makes an angle with the perpendicular
displacementl given by

sedd = |x, = % | /]d =% — %[ |[ulp—0a] .
This applies in particular with
Xp = f(pil U), X = f(o_il l'Da
since then
UX, = p, U% =0 .
The thus determined = 0,(u; p,o)  defines tlbliquity  in

the expansion from!'u te 'u.
Now with

sedds(u,p) = |f(p~'u) = f(U||Y Lp —1),
so that
ef(u; P, 0) = ef(o_il u, p)a
let

0 = i 0
7(u) , lim,_,sup r(Up)
define thdimit obliquity for expansion with fromamy> @  and

6; = sup, 6;(u)
gives this with reference usually to a closed regionuof that

excludes the origin. Then
(9f < 7l2

is the bounded obliquity condition, for expansion withf from
points in the region.
The angleZu, v between a pair of budget veciorg IS given
by
cos/Z uv= uv( vi) !t vi uu!
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Theorem 4.2 If
Zu,v< ml2— 06y,
then
uf(p~tv) =1
for at most one .

Let
Yo =o'V, ¥ = flo V|
It will be shown that if
uy, =1, uy, =1,
then
Zu,v>ml2— 46y,

so the theorem will be proved.
Let V, be the hyperplaneex=o. It containg since
o 'vy, =1.Let pbe the foot of the perpendicular frogpm Mg
Then
ZPY,Yo < 0, 4.1
by definition of6; .

Figure 2

Now y,, Y, lie on the hyperplan& with equatianx= 1, by
hypothesis. Let the perpendicularygt fo But gin and let
be the foot of the perpendicular fram tothelpy. Then

ZUu,v= 2 py, q. 4.2

Consider the tetrahedrgm, y,, g r  and &t refer to the face
opposite a vertex , or the plane through it. It is going to be shown
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that
YoYo L YT

Becausey,p L V, and}, CV,, it follows thay,pl A,
and hence thatd, 1 A, , and this withr Ly,r, given by
construction, impliesqr L A,, which impliegr Ly,y,. Now
Y,¥> L ¥, which is given, together withqrl yy  just
concluded, implies yyl A,  which implies, y,y. ,yr as
required.

This shows that

LPpY,r=m7l2— 2 py,Y¥,
which with 4.2 gives
ZPpYy,r>ml2—0;. 4.3

It will now be shown that
Zpy,q> Zpyr 4.4

so with 4.2 and 4.3 the theorem will be proved.
Sincey,p L 4, , as already remarked, it follows thap | pq

andy,p L pr, so that
tanZpy,q= pa/py, tans py = pripy .

But becauseagr L y,r, by construction, it follows thad > pr,
and hence that
tanZ py,q> tanZ py,

equivalently (iv).QED

Corollary If f is continuous, then for all, v> o there exists a
p > 0 such that
uf(p~tv) =1.
If 0, < n/2and
Zu,v< ml2— 0y,

then suctp is unique, and(p—'v) s strictly increasing in
5 Ascent and descent

Theorem 5 Subject to Samuelson s axiom
uf(v) <1Avi(u <1 = f(y= 1y,



18

if
vi(uy =1, wi(y =1, vV=A - WA >0,u >0,
then
wi(u) > 1, wi(y =1 & f(g= (V.

If f(u) =f(v) there is nothing more to prove. Otherwise, by
the axiom,
uf(v) > 1, vi(w >1.
Then
1=Vvf(v) = Au+puwWf(y=Aufl y+puwl y>X+u .
Suppose now, if possible, that(u) < 1. Then
1=vif(u)=Au+pwWfu =X+ pwi g <X+ g,

so there is a contradiction. Henag(u) > 1, and the theorem is
proved.

Corollary (i) Subject to Samuelson s axiom, if
o Vi) =1, B wia Y =1, 7wl g =1,
where
V=AU+puW, A >0,u >0,
then
B<y, B=7v & fla7lv) =1(u).

Corollary (ii) Subject to Samuelson s axiom, if

uf(atv) =1, a V(B 1w =1, ufy ! w=1,
where
V=AU+puW, A >0,u >0,
then
B>y, =7 & flalv)=1(3""w).

Corollary (i) follows directly from the theorem, and Corollary
(ii) follows from Corollary (i) together with the theorem.
Any u, v have ascent and descent coefficients and , for
which
a tvf(u)y =1, uf(6 1y =1.

With T, C B x Bdefined by
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uT,v= uf(y <1,
reflexive sincauf (u) = 1, f being a demand function, and with
_)
Sf — Tf )
the transitive closure, reflexive and transitive, and so an order,
evidently then
p>a = p'v§Uu p<o = ugp ' Vv

the latter implication holding providedf (6~'v) is increasingin
In this way ascent goes fram do'v in the order and descent
goes fromu tad 'v.

6 Paths

A path ¢/ C Bis described byu= (1} (0 < t<1) for which
u = du/dtexists and is continuous, ang- 49 . It is taken directed

between its extremities, fromy, = u(0) toy = y1). It is an
integral path for a given demand functioh if it satisflés
uf(u) = o.

With given U/, any continuously differentiable function
p = p(t) determines a further patlh , described \oy p~!u,
which derives from the other as fisojection.  The given path and
its projection have the same initial poigt  provigga) = 1.

To be considered now how the given path can be projected into
an integral path with the same initial point, and later through some
other point.

Fromv = p~'u it follows that

V=p'(u-pplu,
and therefore, since 'uf(p 'u) =1, f being a demand function,

that
vi(v) = p~H(uf(p™" v - p),
sovf(v) = 0 is equivalent to
p=uf(p~'u).
A solution of this differential equation fop  with initial
condition p(0) = 1 will provide a projection’ dff which is an

10 Herex |y means vectoxsy have elements in the same ratje; ot t£ f@ xapd || is
the denial.

11 An extended definition of path is the broken path, or path-chain, a series of paths where
successors are joined. It is of use later, though it could also be made the reference for some of
what follows now.



20

integral path with the same initial poigt. is itself an integral path
if and only if p(t) = 1 for allt is already a solution.

Theorem 6 If fis a continuous demand function with bounded
expansion obliquity then any path in the budget space has a unique
projection which is an integral path with the same initial point.

Introducing
F(p,t) =u(Of(p~ u(1),
the above differential equation is
p =F(p,1), with p(0) = 1.
With u andf continuousF is continuous in amd . Then Vfith
Lipschitz in p, the existence and uniqueness of a solution is
assured. The Lipschitz condition requires that for some L
[F(p,t) =F (o, <L[p -0,
for all p, o andt.
If f has bounded expansion obliquity so thatgee oo , for a
closed region oB that excludes the origin, then from
[f(p~'u) = flo7'u)| < |[p— o seddy/|u,
In section 4, follows
[f(p~'u) = f(o'u)| < K|p— o],
for allu on a path in the region, apdo > 0,  where
K = sedd;/ minu|.

With 0 continuous on < 0,1 >, and therefore bounded, say
lu| < D, it follows that the Lipschitz condition holds with
L = KD, so the theorem is proved.

Corollary Under the same hypothesis, any path has a unique
projection which is an integral path through a given projection of
one of its points.

7 Relations

With p,tu(s) (0 < s<1,p, > 0) as a given projection of a point,
the differential equation forp has a unique solution with
p(S) = ps. Then it determines a valug = p(t)  for arty  This
value is now a function o, p,, t and as such may be represented
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asp; = Tis(ps), where, from the constructign,= 7, (ps).

Then alsop; = 74(p;), since starting now instead with the
condition p(t) = p;, the same differential equation solution is
obtained as before with(s) = ps , since for this it happens that
pr = p(t).

By similar argument, if alsgp; = 7,,.(p.), then it can be
concluded thap, = 7;.(p.). Hence we have

ZSTST = 7;7“-
With the correspondence

(S ps) < pstu(9),
a binary relatior/” between points on rays of the cone projecting
the path/ is defined by

(Sa pS)T(tv /Ot) =0 = 725(03)

From the observations just made this is reflexive, symmetric and
transitive, and so an equivalence. The cone projecting théfpath is
now partitioned into equivalence classes, each described by an
integral path projection ad , and with a single representative on
each ray.

This relation between points in rays projecting the path
generally depends on the connecting path. Independence from the
path is a condition of importance, as will appear.

8 Sequences

Let &/ now be an integral path, 8d(u) =0. A dissection of the
unit intervall = (0,1) is anyl = (ty,... ,t,) with?

0=th<tfi < <t =1.
The intervals arét;_;,t;) (i=1,... ,k), with minimum length
T = I‘nlnl(tZ — ti—l)

which defines the norm df.

Let the rationals il be given some enumeration, excluding
0,1. Let T, to be distinguished as the th rational dissection, be
the dissection obtained by introducing the first in this
enumeration, so

Te1 C Ty 71 2 7,

12 In dealing with a broken path, or path-chain, the inifial should be the dissection that
breaks it into segments that make up the chain.
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7 being the norm of;,. Since the rationals are dense,
7, — 0 (K — 00).
With T now as any dissection of , let
U =u(t), U=(t—t1)""(U—uy),
so u; is near tou(t) whem is small, sinée  exists and is

continuous.
Let7 be so small that

ZUi, Ui < ml2— 0.
Then uniquey;, §; are defined for whieh =1,60 =1 and
ot flaiu ) =1, 6Ly, 61y =1. 8.1
Let
di=t—t 1) a—ai1), ;= -t 1)& -8 1)
Then, sincaif(u) =1 , 8.1 is equivalent to
qp = U fleg Uy), 6 = U 1(51 ), 8.2
together withny = 1,69 = 1.

Thus, given a dissectioh  with small , functiong), 6(t)
have been defined fore T  with values

For any other dissectioR’  with normi , which is a refinement of
T,soT' D T andr’ < 7 , the corresponding functiamn$?t), §'( 1)

defined fort € T’ are also defined foe T. Moreover, again since
T’ O T, by Theorem 4.2, Corollaries, we have

§(t) < 8'(t), /(1) < a(t), 8.3

forallteT.

Now takeT to be thé&- th rational dissectign  wkth large so
thatr; is small and the functions are well defined. Also, given any
rationalss, tc | , we havg te T whek is sufficiently large.

By construction of the functions,é and definition of the
relationS;,

a;'u, S w6 Y
whence by transitivity,
o tus S 67y
It follows from here, with Houthakker s axiom, that
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67 tu flagtuy) > 1, 8.4
unless
f(6; u) = flazlu,).
In particular withs = t, becausef(u =1 , it appears that
675 < . 8.5

From 8.3, ask increases IS non-decreasing @&nd non-
increasing. But from 8.5 both are bounded. Since any bounded
monotone sequence is convergent, it follows that both are
convergent, say

6 — 6 ap — oy (K — 00), 8.6
and moreover,
675 < gt < Qy < (07 8.7
These limits determine functiongt), 5(t)  defined on all rational
points.
For rationalt, andk so large thatc T, , Iét be the

predecessor df if=T, ,s® — t(k— o). Lett=1t—1t |,

soAt — 0(k — o), and let
Aa(t) = a(t) — a(t’),
Ab(t) = 6(t) — 6(t)),
Au(t) = u(t) — ut).

Then 8.2 shows that

Aa(t) = Au(t) fa(t)~Hu(t)), A6() = AuY f(6(9~ UD) .

But, because(t) is continuously differentiable,

Au(t)/At — u(t) (k— o0).

Then, because(t) arfdu) are continuous ane> @, 6 — 6
it follows that
lim Aa(t)/At, lim A6(Y) /At

k — oo k — oo
exist and are given by
uf(@'u), uf@ 'y
evaluated at.

It is concluded from this that, 5 defined at all rational points
have continuous extensions defined at all points, and then that
these extensions are continuously differentiable and satisfy the
differential equation

p=uf(p'u),
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with the conditionp(0) = 1. But this differential equation with this
condition has just one solution, which siride is an integral path
must coincide wittp(t) = 1, for alf. It follows that

alt)=1, 6(t) =1 8.8
for all t. This with 8.7 enables 8.5 to be replaced by
O <1< o.
Lettingk — oo in 8.4, in view of 8.6 and 8.8, it appears that
u(t) f(u(g) > 1. 8.9

9 Surfaces

For a demand functioh under the current assumptions, consider
the relationl; C B x B of integral path connection, wheitgv
meanu, v are connected by an integral path. Then for

—
E,=1s,

the transitive closure, identical with the chain extensidf,;v
meansu, v are connected by a chain of integral paths, or broken
path where the segments are integral paths.

Theorem 9.1 Subject to Houthakker s axiom,
UErp 'u= p=1.

Let & be the path making the connection, and suppose, if
possible, thap > 1 .

With any dissection oi/{ there corresponds a descending
sequence that starts fram and terminates in soma , In which
caseuS;o ! u. If the dissection is fine enough this sequence is
close tal/ , in particular—'u is closepo'u , to make 1.

Now with & >1 we haves 'uf(u)=0c"1 <1 , and hence
o 'uS; y by definition of $ . But also f(u}¢ (b ! W and so, by
Houthakker s axiom, alse- uS;o~! u , making a contradiction, so
p > 1is impossible. Similarly < 1 is impossibl@ED

Houthakker contributed the essential idea of this argument,
which applies to the case> 2 . It is dispensible in the case :
treated by Samuelson, when he introduced the method with
ascending and descending sequences approaching an integral
curve. However, both work with utility surfaces in the commodity
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space without regard for the possibility that these could be
degenerate, even just single points. The discussion here takes place
instead in the budget space.

Corollary (i) Under the same hypothesis, the relatién 5
reflexive, symmetric and transitive, and so an equivalence.

From here together with the theorem, the classes in this
equivalence have a unigue representative on any ray. The relation
being continuous, this shows

Corollary (ii) The classes of the equivalenég are surfaces
cutting each ray just once.

The surfaceEfu through any point can be constructed by
taking any pattd/ througlhh and projecting it into an integral path
with u as initial point. This integral path is then a path in the
surface. Every elememtu of such a path, and so of the surface,
then satifiesduf(u) =0 , so we have an integral surface of this
differential equation, now to be distinguished as iategral
surfaceof the demand functiorf.

Corollary (i) The classes ofE; are integral surfaces of the
differential equatiomuf(u) = 0.

The budget space is now partitioned into classes, provided by
the integral surfaces. It is an ordered partition, since the surfaces
are ordered by their intercepts on any given ray, the order being
independent of the ray chosen.

The surfaces can then be represented as level surfaces of a
function +, with valuee = (u) determined by the poist! b
where the surface through cuts the ray throbgh By taking a
linear pathu(t) = u+ t(b— u , or any other with b as initial and
final points, the solution of

p = uf(p tu),with p(0) =1,
determines)(u) = p(1).

Theorem 9.2 uEr = uf(v) > 1.
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If uEsvthenu,v are connected by an integral path, ®&))
with w(0) = u, w(1) = v. But then, as already concluded,

w(s)f(w(t)) > 1
for all s andt , in particular fog = 0, ¢t = 1.
Anz € 2" is asupport of aseb C (2, atapointe S |if
ur=1,ve s =vxr>1.

ThusS* can denote the set of supports of
A setS isorthogenousif

veS ANu<v=wveS,

and orthoconvexif also it is convex. Theorthoconvex closure of
any setS is the smallest orthoconvex set containing it.

For any setS , the set of suppof$ Is closed orthoconvex,
andS*" is the closed orthconvex closuresof

Theorem 9.3The integral surfaces are orthoconvex.

That is, boundaries of orthoconvex regions. For any , consider
the region ofw for which

uErv = wf(v) > 1.

This is convex, and by the previous propositions it contains the
integral surfaceF;u through. But sineg¢(v) =1 it contains
Esu, described by allv such thaiE;v , on its boundary.
Obviously every ray cuts this boundary just once, and since every
ray cutsE,u just once it follows that;u  coincides with this
boundary. Also, for all. f(u) is asupportbfu at

Theorem 9.4The integral surfaces are smooth.

This is because an integral surface is convex and every
continuously differentiable path projects into it, that is, cuts rays
which cut it, in a continuously differentiable path. Equivalently,
again because the surfaces convex, each surface has a unique
support at every point.

Theorem 9.5
uEmw. = uf(v) =14 f(u) = f(v).
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For if uElyv thenw,v lie on an integral surface , and
f(u),f(v) are unique supports tb atv . BOt being convex,
uf(v) =1 meansf(v) is a support tb also @t , which is
impossible unlesg(u) = f(v)

10 Utility

The integral surfaces cut every ray just once, and are ordered by
the order of the points in which they cut any one ray, which is the
same for all rays. Since there is just one through every point in the
budget space, they constitute a partition of that space. Thus a
completely ordered partition of the budget space is obtained
defining a complete orde8; in the budget spBce , in whigch

is the relation of equivalence. The sdfju, uB; contain all
sequences ascending and descending fitom , which shows that
Sy C By. Moreover, they are identical with the limits of points in
such sequences, by the argument in Section 7, so they are identical
with the closures ofS;u,uS;. The budget spade being
connected and separable, Debreu’s Theorem now in any case
assures the existence of a continuous functions — (2 such
that

uBgv < Y(u) = ¥(v).

Taking any fixede € B , for any, € B there is unique> 0 for
which uEte. Definey(u) =t. Them « ) is such a function.
Evidently then the relatiof?; is in fact closed, and is the closure
of Sf.

Now introduce a relatiod’; C C x C in the commodity space
C with the definition

rCry = (Voy < 1)(Auz < 1)uBjv.

Also introduce a function : C — (2 in the commodity space by

¢(x) = min{y(u) : uxr < 1}.

Then because of continuity and orthoconvexity of leveft3ets
zCry < ¢(x) = ¢(y),

13 Concerning the direct and indirect utility functions and order relations, defined in the
commodity and budget spaces, their necessary properties and the relation between them, an
account is in myDemand Functions and the Slutsky MatRxinceton University Press, 1980,
Chapter IX, Section 1; also ihogic of Choice and Economic Theory Clarendon Press,
Oxford, 1987, Part Il, Chapter 5, pp 156-72.
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andBy, ¢ are recovered frofy, ¢ by
uBrv=(Vur <1)(Avy <1)xCpy,
Y(u) = max{¢o(x) : ux < 1}.

Moreover, because the set8;  are smooth-orthoconvex, the sets
Crx are round-orthoconvex, that is, any support has a unique
contact. But the unique supporti®,; wat fi). It follows that
u is a support t&'y f(u) af(u) which has contact only @t)
This shows thatC; is a relation, ardx) a function, which
validates the conditiofl;

Now for the main conclusion:

Theorem 10 If a demand functiorf is continuous afyd< /2
then Houthakker’s conditioi’;  impligs  has a utility ~where

¢(x) = min{y(u) : ux < 1},
and for allu > 0 ,%(u) = p(1) where, witth fixed and arbitrary,
andu(t) = u+ t(b— u,p(t) is a solution of

p = uf(ptu),with p(0) = 1.
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