
1 Introduction
The proposal that demand is governed by utility leads to the
question of how to arrive at the utility, from evidence provided by
the demand. For while demand is in principle directly observable,
utility is not, but is dealt with hypothetically for its part in an
explanation of demand.
 Pareto (1906) approached the question of utility construction
on the basis of a demand function, and remarked it could be done
by solving certain partial differential equations. These referred to
the inverse of the function. Volterra (1906) pointed out, in a
review of Pareto’s work, that the existence of a solution was not
always assured but required certain “integrability conditions” such
as had been provided by a theorem of Frobenius. Thereafter the
question became known as the “integrability problem”. Antonelli
(1886) had provided equivalent conditions, stated in the form of a
symmetry. Slutsky (1915) approached the question for a
differentiable demand function, with reference to a utility function
which is continuously twice differentiable, and brought into view
conditions in terms of coefficients formed from derivatives of the
demand function, instead of the inverse. Evidently, the question
stands perfectly well regardless of invertability. He obtained the
conditions by differentiation of first order Lagrange conditions,
and arrived at further necessary (in fact more than necessary)
second order conditions. The approach gained a currency after its
rediscovery by Hicks and Allen (1934). Beside thesymmetry 
Slutsky matrix was required to have a condition,negativity 
intermediate between its being non-positive and negative definite
and different from both. That this negativity requirement must be
in part spurious is demonstrated by “The Case of the Vanishing
Slutsky Matrix”  featuring a perfectly respectable continuously1

differentiable demand function that has a utility, but the Slutsky
coefficients all vanish identically, as would be satisfactory to the
extent of Slutsky’s symmetry requirement but altogether

1 Afriat (1972), 5, 208-23.Journal of Economic Theory 
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impossible for the negativity. McKenzie (1957) identified the
Slutsky coefficient matrix with the matrix of second derivatives of
a utility-cost function, and so necessarily both symmetric and non-
positive definite.2

 Samuelson (1948) introduced the ‘revealed preference’
approach to the question for a demand function, taken further by
Houthakker (1950).  3 Should the general, and elementary, theorem
proved here, where utility enters as an arbitrary order, seem a
complete answer to the question they and the others subsequently
have dealt with, it could be wondered why their theory involved
undesirable additional restrictions and so much extra work, with
differential equations, problematic limiting processes, and so forth,
which are absent with this new theorem. But this cannot be a
complete answer. It could have been a satisfactory, and most
fundamental, first answer. But despite the “indifference map”
having taken over in the subject as being more essential, they still
sought a numerical utility. There is forgetfulness of the original
submission of a distinct merit for the revealed preference
approach, from its being free of the numerical aspect, that being a
“last vestige” of the obsolete measurable utility of classical
economics.
 Samuelson and Houthakker approach the same question as
Slutsky, now without restriction on the utility function, and in
place of differentiability of the demand function is the requirement
that it be continuous and satisfy a Lipschitz condition in respect to
income. They brought into view necessary conditions for a utility,
and the issue then is sufficiency.
 The argument of Samuelson for the case , adapted for� ~ �
� � �  by Houthakker, has several features requiring comment. It
depends on construction by the method with ascending and
descending sequences of loci in the commodity space which are
assumed to be surfaces, whereas they could be manifolds of lower
dimension, even just single points. To avoid dependence on
invertability it is necessary to work in the budget space rather than
the commodity space, and construct a function in that space which
can be shown to be the indirect utility function for a function in the
commodity space. The ideas of the Samuelson and Houthakker
argument with ascending and descending sequences are adaptable

2 Sufficiency is the dedication of my , PrincetonDemand Functions and the Slutsky Matrix  
University Press, 1980.
3 Further attention is given by Afriat (1954, 1962, 1972), Uzawa (1959, 1971), Richter (1966),
Hurwicz (1971), Stigum (1973), and Mas-Collel (1976).
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for that purpose.
 In their argument, sequences are constructed corresponding to
a dissection of a line segment in the budget space. As the
dissection is refined, points associated with a particular ray form
sequences, and their argument depends on the convergence of
these, which remained problematic. Here, as a central feature, it is
argued that they are bounded and monotonic and therefore
convergent. Subsequent attempts at the convergence question are
by methods that fall down on boundedness arguments, which can
be properly supplied by monotonicity. But with the monotonicity
the convergence is settled, and the methods are not needed at all.
Also, the case dealt with by those other methods is where the
inverse exists and has domain the entire commodity space,
whereas here we have no such restrictions.
 In the continuation of their argument, the limits of ascending
and descending sequences as the dissection is refined indefinitely
define two functions which satisfy a differential equation which,
because of the Lipschitz condition, has just one solution, so they
coincide. Here the Lipschitz condition is given also an earlier role,
where it is interpreted as determining a limit on the angle of
expansion, which assures that when the dissection is fine enough
the associated descending sequence will be well defined.
 Even if the construction of the utility function in the
commodity space, on lines of Sameulson and Houthakker or as
done here, is granted, nothing is accomplished if the investigation
rests with it being established that the utility function has a
maximum under every budget constaint given by the
corresponding quantities determined by the demand function. For
the utility function which is constant everywhere and so a
maximum everywhere is always such a function. It is essential to
show the maximum is an absolute maximum. This comes directly
from the smoothness of the indirect utility function in the budget
space. Thus again it is seen to be important to proceed in terms of
constructions in the budget space rather than the commodity space.
 For the sake of its history and its own interest, far from
abandonment, the original problematic method is here carried
through successfully, depending on peculiar mathematical
auxiliaries which are a main contribution of this paper, and
working in the dual budget space instead of the commodity space.
It is similar with proof of sufficiency of Slutsky conditions which
also proceeds from the dual.
 Important in Samuelson’s approach is the idea, which amounts
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to a general “revealed preference” principle, that in any act of
choice, that is, picking an element out of some set, if  is chosen%
while  is some other element in the set at the same time available,&
then we have the preference of  over , or it is . Treated% & revealed
as generally available, as it seems to have been in some hands, the
unrestricted principle amounts to taking choice and preference to
be synonyms, or to make any choice a result of inefficiency 
respect to some hypothetical objective, or preference system.
 An unrestricted appeal to the revealed preference principle,
whereby an efficiency is attributed to elections carried out by
voting, leads to the well known “Voting Paradox”. Attention to
this topic prepares for further considerations about preferences of
groups, in particular about ‘welfare’ in a market economy. Having
an election by means of voting is a way a group of individuals, all
of whom might have different ideas about what is good but are still
committed to act together, go about making a choice, picking one
element out of a set of possibilities, or candidates. The winner is
not the for the group, merely the elected one. Had there beenbest 
some available prior definition of best candidate there would have
been no need to have an election in the first place. But still we
have the Voting Paradox where there is determination to see the
winner as best, and some surprise at the result.

At the time I joined the Department of Applied Economics,
Cambridge, in September 1953, Houthakker’s famous paper was
being circulated; it must have been the first thing I read. I
immediately restated his “semi-transitivity”, now known as the
“Strong Axiom of Revealed Preference”, as the irreflexivity of a
transitive closure—the relation  that ocurrs here in Section 3. I;�

heard it declared and am pleased to accept that the transitive
closure was first introduced into this subject by Uzawa. I also
believe him to be the first to uncover and attempt to remedy
deficiencies in the original treatments. I submit this work, going
over more years than I care to count, as a continuation of that
attempt.

2 Demand & Utility
A  is any for which ,demand element p x B C px² Á ³ � d � �
showing a commodity bundle demanded at prices , thex p
expenditure px. being Then with

u px p~ ² ³c� ,
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which is the associated , is such that , sobudget vector u x  ux² Á ³ ~ 1
it is a demand element, in this case the ofnormal normalization 
²p xÁ ³.  Various conditions involving demand elements can be4

stated well and more simply in terms of their normalizations.
 A is any which is reflexive andutility order R C C � d
transitive,

xRx,  xRyRz  xRz¬ ,

xRy x y.being the statement that has at least the utility of 5

 The of any relation is the relation holdingchain-extension R R 
S

between extremities of R-chains, given by

xRz y xRyR Rz.
S

� ² v Ä³ Ä

This is the same as the , or the smallest transitivetransitive closure
relation containing , being transitive, containing , and containedR R
in every transitive relation that contains The extended conditionR. 

xRyR Rz xRzÄ ¬

is equivalent to transitivity, which therefore is equivalent to the
condition

R R
S

� Á

for  to be identical with its chain-extension, or transitive closure.R
 With as the and the , whereR complement R  converseZ

xRy xRy xR y yRx� � �,  ,Z

we have
² ³ ~ ² ³ ÁR RZ Z

so there is no ambiguity in the expression for the R  converse
Z

complement.
 The relation of equivalence in , or the relation, isR indifference 
the symmetric part

E R R~ q Z,

an equivalence relation, symmetric, reflexive and transitive, since
R Eis an order. The equivalence classes , which are equally the%

4 In present notation, with  as the non-negative numbers, is the (non-6 8 ~ 6� budget space 
negative row vectors) and the  (column vectors). Then any 9 ~ �6 8

�  commodity space p ,
x  px  x p. � �9 6determine for the value of the commodity bundle at the prices Sometimes
when dealing with demand functions  should be the positive numbers. For syntax, a scalar6

usually multiplies a row vector on the left, and a column vector on the right.
5 With a binary relation , beside the usual because is set, also the statements R x y R R xRy,² Á ³ �
x Ry y xR x y  R x R� � Á ³or are available to assert is an element of , or that has the relation  to²
y.
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sets  or the , these being the same from symmetry, are suchxE Ex
that , so their union is , andx E C� %

xEy E E  xEy E E O¯ ~ Á ¯ q ~ Á% & % &

so any pair are either disjoint or identical. Hence they constitute a
partition of , expressing as a union of disjoint subsets.C C 
 The antisymmetric part of , the relation, isR strict preference 

P R R~ q
Z
,

which is a strict order, irreflexive and transitive , since is an6 R 
order.
 The subrelations and form a partition of E P RÁ

P E O  P E R.q ~ Á r ~

 An order is  ifR complete

� xRy  yRx¬ ,

so for any pair of elements, if they do not have the relation one
way, then they have it the other, or they have it one way or the
other and possibly both. That is, , and equivalently, R R P R .

Z Z
� ~

 A order  is such thatsimple R

xRyRx x y.¬ ~

For an order, this is equivalent to

xRyR Rx x yÄ ¬ ~ ~ Ä

Otherwise, this is the condition for any relation to be ,R anticyclic
or for the absence of cycles of distinct elements. For a reflexiveR-
relation, it is the condition for the transitive closure to be a simple
order.
 The relations and of and are given byI D identity distinction 

xIy x y  xDy x y� ~ Á � £ .

For any simple order , the symmetric part is , soR E I~
equivalence in reduces to identity. In this case the antisymmetricR 
part is identical with the irreflexive part, , from which P R D R~ q
is recovered as the reflexive closure, R P I.~ r
 A is any It the utilityutility function C . represents � 6¢ ¦

6 Beale and Drazin (1956) bring attention to this commonly unnoticed transitivity, basic for the
scheme adopted here. Also indifference, sometimes treated as absence of preference and then
problematic because without transitivity, is here taken to be a positive condition made from
preference comparison both ways, necessarily transitive, as required if we are to have an
equivalence relation.
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order for whichR 
xRy x y .� ² ³ � ² ³� �

In this case, for the symmetric and antisymmetric parts,

xEy x y  xPy x y .¯ ² ³ ~ ² ³Á ¯ ² ³ � ² ³� � � �

Any utility order so representable by a utility function is
necessarily complete.
 Relations connecting a demand element and a utility²p x  Á ³
order are defined byR 

H py px  xRyZ � � ¬ ,

which corresponds to the  familiar in cost-benefitcost-effectiveness
analysis, and asserts is as good as any bundle that costs no more,x 
and

H yRx  py pxZZ � ¬ � ,

cost-efficiency x , that any bundle as good as costs as much.
 While represents , making a bundleH  utility maximization x Z

that has maximum utility for the money spent, represents H  costZZ

minimization x , making have minimum cost for the utility
obtained. These are equally compelling, generally independent
basic economic principles. A later issue involving stricter
conditions concerns whether is the unique bundle admitted byx 
these conditions. The combination

H H H� wZ ZZ

defines  between the demand and the utility. In termscompatibility
of normalizations, these conditions become

uy   xRy,  yRx  uy ,� ¬ ¬ �1 1
respectively.
 The condition

H py px yRx  y xo � � w ¬ ~ ,

here put symmetrically, has alternative statements,

(i)  ,py px y x yRx� w £ ¬ �

which exposes a relationship with , andH Z

(ii)  ,yRx y x  py pxw £ ¬ �
with H .ZZ

 We also consider

H py px y x  xRy yRx* � � w £ ¬ w � ,

which, in the case of being complete, is equivalent to (i), and soR 
to .H o
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 According to , any bundle as good as and costing no moreH x o

must be identical with Reflexivity of already allows itself isx. R x 
such a bundle, so the converse is already present.
 The antisymmetric or strict part of being , inR P R R~ q

Z

terms of this
H py px y x  xPy* � � w £ ¬ .

For the case where is complete,  and hence , so R R R P R H
Z Z
� ~ *

becomes the same as H .o

 As appears from forms (i) and (ii), when is adjoined toH  o

each of and we obtain the versions of theseH  H  strict Z ZZ

conditions, that require to be the unique bundle which attains thex 
required maximum utility, and minimum cost.
 While the conjunction of and provides compatibility ,H  H  HZ ZZ

we have the conjunction of the strict versions andH H  o w Z

H H  strict compatibility. o w ZZ to define Since

² w ³ w ² w ³ ¯ w ² w ³H H H H   H H Ho o oZ ZZ Z ZZ , 

this condition is also H H.o w

Theorem  Strict compatibility, simultaneously requiring strict cost-
effectiveness and strict cost-efficiency, is obtained by the
condition , which implies  and is equivalent to if isH H H  R i o

complete.

 It is immediate that
H   H Hi Z¯ wo ,

and also
H   H .o ¬ ZZ

Therefore, with , we haveH H H� wZ ZZ

H  H Hi ¯ wo ,

as required. Consequently also . The last part has alreadyH Hi ¬
been remarked.

3 Demand functions
With prices and an amount of money to be spent on somep, M 
bundle of goods there is the budget constraint Given ax, px M. ~
function that determines the unique maximum of ax F p M  ~ ² Á ³
function  under any budget constraint, is a � F demand function
which or is from .has  as a utility function, derived � �
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 Now with any given function it may be asked whether it isF 
such a function so associated with a utility function. The function
F first must have the properties

pF p M M  F p M F M p² Á ³ ~ Á ² Á ³ ~ ² Á ³Ác� �

usually associated with demand functions. Then a function  is�

sought for which, for all and , is the uniquep M x F p M  ~ ² Á ³
maximum of  under the constraint that is,� px M� Á

py M  y x  y x .� Á £ ¬ ² ³ � ² ³� �

 Introducing the the budget constraintbudget vector u M p, ~ c�

px M ux . standard F~ ~is stated The demand function �

determines the demand function its , givennormal f, normalization
by

f u F u² ³ ~ ² Á �³,
with the property

uf u² ³ ~ Á�

from which it is recovered as

F p M f M p .² Á ³ ~ ² ³c�

 Instead of the usual standard form , it fits what follows toF
deal with a demand function in the normal form . Then a functionf
� is sought for which, for all , is the unique maximumu x f u  ~ ² ³
of  under the constraint that is,� ux~ Á�

uy  y x  y x .� Á £ ¬ ² ³ � ² ³� � �

 expansion path p The for any prices is described by
x p M  M p M~ -² Á ³ as expenditure varies while remains fixed. If 
is altered to by a factor , becomes the� �M x x F p M� ~ ² Á ³Á�

budget vector is altered to the point on the rayu M p u ~ c� �c�

through we have and u x f u ux .Á ~ ² ³Á ~� �� �c�

 Expansion paths are therefore images in the commodity space
C B. Bof rays in the budget space With a given path , we alsoK �
consider its projecting cone , consisting of the rays through its£

points, and projections of , which are paths in the same cone (inK

particular projections which are integral paths, to be dealt with).
 It is simpler and has other advantage to deal with the question
about through its normalization  For similar reasons a utilityF f.
order can take the place of the utility function. If it is the orderR 
represented by the function, it provides all that is important about
the function. But it is most natural to have an arbitrary order in
view, free of such representation.
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 A demand function is with a utility if everyf compatible R 
demand element which, being such that , so it²u x  x f u  Á ³ ~ ² ³
belongs to , is compatible with . With denoting thisf  R  H R  � ² ³
condition, asserts the existence of a such a compatible , or theH  R�

consistency f. H R  strict compatibilityof Similarly can assert ,�
* ² ³

and the of H  strict consistency f.�
*

 For we have that for all , and ,H R  u x f u�
* ² ³ ~ ² ³

uy y x  xRy yRx� w £ ¬ w �1 .

Therefore, for any cyclic sequence u u u u  � � � �Á Á Ã Á Á Á Ã Á

u x u x u x� � � � �c� �� w � wÄw �1 1 1
®

x Rx Rx� � �Ã
®

x Rx .� �

But also
u x x x   x Rx� � � � � �� w £ ¬ �1 .

Therefore

u x u x u x� � � � � �� w � wÄw �1 1 1
®

x x .� �~

This condition on , to be denoted , has been seen to be af K�
*

consequence of the strict consistency of ,f

H   K .� �
* *¬

From the cyclic symmetry, it is equivalent to the strict cyclical
consistency condition

u x u x u x� � � � � �� w � wÄw �1 1 1
®

x x x .� � �~ ~ Ä ~

Then it is also equivalent to

u x u x u x� � � � �c� �� w � wÄw �1 1 1
w

x x x x x x� � � � �c� �£ v £ vÄv £
®

u x .� � � 1
and to

u x u x u x� � � � �c� �� w � wÄw �1 1 1
w

x x� �£
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®
u x .� � � 1

 This last form shows the condition obtained by Houthakker
(1950), elaborating the ‘revealed preference’ method of Samuelson
(1948). A part of it is that

u x x x   u x� � � � � �� w £ ¬ �1 1,

which is Samuelson’s condition.7

 Let , the relation of R u) directly revealed preference f� ²
associated with the budget , be defined byu

xR u y x f u� ² ³ � ~ ² ³ w �uy ,1

and let , the relation of , be the transitiveR revealed preference f�

closure of the union of these,

R R u .� �~ �
"

S

² ³

This is reflexive  because the are reflexive, and transitive by8 R u  � ² ³
construction as a transitive closure, so it is an order.
 Another expression for , proceeding from the originalK�

*

statement, is that, for ,x f u~ ² ³

uy yR x  y x� w ¬ ~1 � .

Since , this is equivalent touy xR y� ¬1 �

uy y x  xR y yR x� w £ ¬ w �1 � � ,

that is, H R , so we have� �
* ² ³

H   K   H R   H� � � ��
* * * *¬ ¬ ² ³ ¬ ,

and hence:

Theorem 3 H   H R   K� � ��
* ¯ ² ³ ¯* * .

In other words, , or strictlya demand function is strictly consistent
compatible with some utility order , 9 if and only if it is strictly

7 Samuelson dealt with the two-commodity case for which his and Houthakker's condition are
equivalent, as proved by Rose (1958) and Afriat (1965).
8 Rather, it is reflexive just at points in the range of the demand function. Without altering
anything important but to give respect to the definition of an order, it could be made reflexive
simply by taking its reflexive closure, or union with ‘=’.
9 The present theorem has no special requirements at all about the utility order, or about the
demand function. Samuelson and Houthakker sought a continuous numerical utility, involving
auxilliary assumptions about the demand function, and a differential equation method. The
following, still without a published report, asks less for the demand function, and for the
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compatible with its own revealed preference order and this is if, 
and only if the strict cyclical consistency condition holds—that is,
Houthakker’s condition, often referred to as the “Strong Axiom of
Revealed Preference”.
 The relation of is the strict orstrict revealed preference f 
antisymmetric part of ,R�

P R R� � �

Z
~ q ,

and the relation is the symmetric partrevealed indifference 

E R R� � �
Z~ q .

 The relation is thedirectly revealed strict preference 
irreflexive part of ,R�

S R D� �~ q ,

so this is irreflexive by construction, though not transitive. Its
transitive closure,

T S� �~
S

,

is the relation, transitive byrevealed strict preference 
construction, not necessarily irreflexive.
 Other expressions for the Houthakker condition areK  �

*

(i) E I� ~

(ii) P S� �~

(iii) P T� �~

(iv) is transitiveS  �

(v) is irreflexiveT  �

(vi) S T� �~

 With revealed preferences there can be none of the “violation
of transitivity” sometimes entertained, and no inconsistencies
obtained from them alone. They are transitive by construction, and
any contradictions come only when they are taken together with
the less well-noticed . With Samuelsonrevealed non-preferences
for instance these are provided by

py px y x yRx,� w £ ¬ �

utility: For a demand function to have a lower semicontinuous numerical utility, it is�  
necessary and sufficient that Houthakker's condition holds  and that the sets be closed.Á � %c� ! 
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as part of the strict compatibility , or instead there are fewerH *

coming from
py px yRx,� ¬ �

which is the part of the weaker compatibility condition H  H.ZZ
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4 Obliquity

Theorem 4.1  If is continuous, then for all there exists af u v o Á �
� � � such that

uf v .² ³ ~�c� �

 Generally, such  need not be unique, but uniqueness will be�

assured later under a further condition.
 For any there exist such thatu v o  Á � � �Á � �

� �c� c�vx   ux  vx   ux~ ¬ � Á ~ ¬ � Á� � � �

for all Thus, takex. 

� � ¸min vx ux¢ � ¹�

  v /u u x u x~ ³ ¢ �min$ %�² � � � � � �
� �

  v /u~ Ámin� � �

and  similarly.�

 Since for all we therefore havewf w =  w² ³ Á�

uf v  uf v .² ³ � Á ² ³ �� �c� c�� �

Now with continuity of by Bolzano s theorem, there exists a fÁ ’ �

lying between  and  which is as required. � � QED

Figure 1

 For any and consider the loci u o  ux ux .� ~ Á ~� �Á � � � �

They are parallel hyperplanes separated by a perpendicular
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displacement
d u uu~ ² ³ ² c ³ÁZ Z c� � �

corresponding to a minimum distance

* * * * * *d u .~ cc� � �

With , this is illustrated in Figure 1.� ~ �
 Let denote any points on these loci. The displacementx x  � �Á
x x  � �c between them makes an angle  with the perpendicular�

displacement given byd 

sec� ~ * *x x / d x x u / .� � � �c ~ c c* * * * * * * *� �

This applies in particular with

x f u  x f u� �~ ² ³Á ~ ² ³Á� �c� c�

since then
ux  ux .� �~ Á ~� �

 The thus determined defines the in� �~ ²� u  obliquity Â Á ³� �

the expansion from to � �c� c�u u.
 Now with

sec�� ²u f u f u u /Á ³ ~ ² ³ c ² ³ ² c ³Á� � �* * * *c� �

so that
�� ²u uÂ Á ³ ~ ² Á ³Á� � � � ��

c�

let
� �� �² ²u   u³ ~ Á ³lim sup

� ¦ b�
�

define the  for expansion with from any andlimit obliquity f u o� Á

� �� " �~ ²sup u³

gives this with reference usually to a closed region of thatu 
excludes the origin. Then

� �� � /2

is the  condition, for expansion with frombounded obliquity f 
points in the region.
 The angle between a pair of budget vectors is givenQu v u v Á Á
by

cos u v uv vv vu uu .� Z Z c� Z Z c�Q Á ~ ² ³ ² ³
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Theorem 4.2   If
Q u v /2Á � c Á� ��

then
uf v² ³ ~�c� �

for at most one .�

 Let
y f v  y f v .� �~ ² ³Á ~ ² ³� �c� c�

It will be shown that if
uy  uy� �~ Á ~� �,

then
Q u v /2Á � c� �� ,

so the theorem will be proved.
 Let  be the hyperplane  It contains sinceL� vx . y  ~ � �

�c�vy . p y  � �~ � Let be the foot of the perpendicular from to .L�

Then
Q � Ápy y� � �� 4.1

by definition of .��

   

Figure 2

 Now lie on the hyperplane  with equation byy y  ux� �Á ~ ÁK �

hypothesis. Let the perpendicular at to  cut  in and let y  q r� K L� Á
be the foot of the perpendicular from to the line Thenq py . �

Q u v py q.Á ~ Q � 4.2

 Consider the tetrahedron and let  refer to the facey y q r � �Á Á Á -%

opposite a vertex , or the plane through it. It is going to be shownx
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that
y y y r.� � ��

 Because and it follows that y p  y p� � �� �L -- L&� � Á� &�

and hence that and this with given by- -� &� Á
�

qr y r� Á�

construction, implies which implies  Nowqr qr y y .� Á �-� � �

y y y q qr y y  � � � � �� �which is given, together with just
concluded, implies y y  which implies y y y r as� � � � �� � Á-&�

required.
 This shows that

Q ~ cQpy r /2 py y� � �� ,
which with 4.2 gives

Q � cpy r /2 .� � �� 4.3

 It will now be shown that

Q � Qpy q py r� � 4.4

so with 4.2 and 4.3 the theorem will be proved.
 Since as already remarked, it follows that y p y p pq� �� Á �-&�

and so thaty p pr� � Á

tan tanQ ~ Á Q ~py q pq/py  py r pr/py .� � � �

But because by construction, it follows that qr y r pq pr� Á � Á�

and hence that
tan tanQ � Q Ápy q py r� �

equivalently (iv). QED

Corollary  If is continuous, then for all there exists af u v o Á �
� � � such that

uf v .² ³ ~�c� �

If and� �� � /2 
Q u v /2Á � c Á� ��

then such  is unique, and is strictly increasing in .� �uf v  ² ³�c�

5 Ascent and descent

Theorem 5   Subject to Samuelson s axiom’

uf v vf u   f u f v² ³ � w ² ³ � ¬ ² ³ ~ ² ³Á� �
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if
vf u  wf v  v u w  ² ³ ~ Á ² ³ ~ Á ~ b Á � Á � Á� � � �� � � �

then
wf u  wf u   f u f v .² ³ � Á ² ³ ~ ¯ ² ³ ~ ² ³� �

 If there is nothing more to prove. Otherwise, byf u f v  ² ³ ~ ² ³
the axiom,

uf v  vf w .² ³ � Á ² ³ �� �

Then

� ~ ² ³ ~ ² b ³ ² ³ ~ ² ³ b ² ³ � bvf v u w f v uf v wf v .� � � � � �

Suppose now, if possible, that Thenwf u . ² ³ � �

� ~ ² ³ ~ ² b ³ ² ³ ~ b ² ³ � b Ávf u u w f u wf u� � � � � �

so there is a contradiction. Hence and the theorem iswf u  ² ³ � Á�
proved.

Corollary (i)   Subject to Samuelson s axiom, if’

� � � �c� c� c� c�vf u  wf v  wf u² ³ ~ Á ² ³ ~ Á ² ³ ~ Á� � �

where
v u w  ~ b Á � Á � Á� � � �� �

then
� � � �� Á ~ ¯   f v f u .² ³ ~ ² ³�c�

Corollary (ii)   Subject to Samuelson s axiom, if’

uf v  vf w  uf w² ³ ~ Á ² ³ ~ Á ² ³ ~ Á� � � �c� c� c� c�� � �

where
v u w  ~ b Á � Á � Á� � � �� �

then
� � � �� Á ~ ¯   f v f w .² ³ ~ ² ³� �c� c�

 Corollary (i) follows directly from the theorem, and Corollary
(ii) follows from Corollary (i) together with the theorem.
 Any have and  and , foru v ascent descent coefficients Á � �

which
� �c� c�vf u  uf v .² ³ ~ Á ² ³ ~� �

 With defined byT B B � � d
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uT v uf v� � ² ³ � Á�

reflexive since being a demand function, and withuf u f ² ³ ~ Á�

S T� �~ Á
¦

the transitive closure, reflexive and transitive, and so an order,
evidently then

� � � � � �� ¬ Á � ¬ Á  vS u     uS vc� c�
� �

the latter implication holding provided is increasing in .uf v  ² ³�c� �

In this way ascent goes from to in the order and descentu v S�c�
� Á

goes from to u v.�c�

6 Paths
A is described by for whichpath B u u t  t  K � ~ ² ³ ² � � ³� �

u du/dt u uh ~ exists and is continuous, and || .  It is taken directedh c 10

between its extremities, from to It is anu u  u u . � �~ ² ³ ~ ² ³� �

integral path f, for a given demand function if it satisfiesÁ 11

uf u .h ² ³ ~ �

 With given , any continuously differentiable functionK

� � L~ ²t  v u³ ~ Ádetermines a further path , described by �c�

which derives from the other as its  The given path andprojection.
its projection have the same initial point provided u  .� �²� �³ ~
 To be considered now how the given path can be projected into
an integral path with the same initial point, and later through some
other point.
 From it follows thatv u ~ �c�

v u uh h h~ ² c ³Á� ��c� c�

and therefore, since being a demand function,� �c� c�uf u f ² ³ ~ Á�
that

v f v u f uh h h² ³ ~ ² ² ³ c ³Á� � �c� c�

so is equivalent tov f v  h ² ³ ~ �

� �h h~ ² ³uf u .c�

 A solution of this differential equation for  with initial�

condition will provide a projection  of  which is an� L K²� �³ ~  

10 Here || means vectors have elements in the same ratio, or for , and || isx y x y y xt t 0 x y Á ~ £ c
the denial.
11 An extended definition of path is the broken path, or path-chain, a series of paths where
successors are joined. It is of use later, though it could also be made the reference for some of
what follows now.
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integral path with the same initial point.  is itself an integral pathK

if and only if for all  is already a solution.�²t  t³ ~ �

Theorem 6   If is a continuous demand function with boundedf 
expansion obliquity then any path in the budget space has a unique
projection which is an integral path with the same initial point.

 Introducing
F t u t f u t² Á ³ ~ ² ³ ² ³ Áh� � !c�

the above differential equation is

� � �h ~ ² Á ³Á ² ³ ~F t  .with � �

With and continuous, is continuous in and . Then with u f F t Fh �

Lipschitz in , the existence and uniqueness of a solution is�

assured. The Lipschitz condition requires that for some LÁ Á

* * * *F t F t L² Á ³ c ² Á ³ � c Á� � � �

for all  and � �Á t.
 If has bounded expansion obliquity so that sec , for af �� � B
closed region of that excludes the origin, then fromB 

* * * * * *f u f u / u² ³ c ² ³ � c Á� � � � �c� c�
�sec

in section 4, follows

* * * *f u f u K² ³ c ² ³ � c Á� � � �c� c�

for all on a path in the region, and whereu � �Á � �Á

K / u .~ sec min�� * *

With continuous on and therefore bounded, sayu h Á � Á� � �

* *u D  h � Á it follows that the Lipschitz condition holds with
L KD~ Á so the theorem is proved.

Corollary  Under the same hypothesis, any path has a unique
projection which is an integral path through a given projection of
one of its points.

7 Relations
With as a given projection of a point,� � 

c�
 u s  s  ² ³ ² � � Á � ³� � �

the differential equation for  has a unique solution with�

� � �² ~ ²s . t  t.³ ~ ³� Then it determines a value for any  This!

value is now a function of  and as such may be representeds tÁ Á� 



21

as where, from the construction, � J � � J �! !      ~ ² ³Á ~ ² ³.
 Then also since starting now instead with the� J �  ! !~ ² ³Á
condition , the same differential equation solution is�²t³ ~ �!
obtained as before with , since for this it happens that�²s³ ~ � 
� �! ~ ²t³.
 By similar argument, if also then it can be� J �  � �~ ² ³Á
concluded that Hence we have� J �! !� �~ ² ³. 

J J J!  � !�~ .

 With the correspondence

(sÁ ³ ©� � 
c�u s² ³Á

a binary relation  between points on rays of the cone projectingJ

the path  is defined byK

(s (t .Á ³ Á ³ � ~ ² ³� J � � J � ! ! !  

From the observations just made this is reflexive, symmetric and
transitive, and so an equivalence. The cone projecting the path  isK

now partitioned into equivalence classes, each described by an
integral path projection of , and with a single representative onK

each ray.
 This relation between points in rays projecting the path
generally depends on the connecting path. Independence from the
path is a condition of importance, as will appear.

8 Sequences
Let  now be an integral path, so A dissection of theK uf u . h ² ³ ~ �

unit interval is any withI  T t t  ~ º Á » ~ ² ÁÃ Á ³� � � �
12

� �~ � � Ä � ~t t t .� � �

The intervals are with minimum length²t t  i k , �c� �Á ³ ² ~ ÁÃ Á ³�

� ~ ²min� t t� �c�c ³

which defines the norm of T.
 Let the rationals in be given some enumeration, excludingI 
� �Á Á. T  k-Let to be distinguished as the th rational dissection, be�

the dissection obtained by introducing the first in thisk 
enumeration, so

T T  �c� � �c� �� Á � Á� �

12 In dealing with a broken path, or path-chain, the initial should be the dissection thatT 
breaks it into segments that make up the chain.
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�� � T . being the norm of Since the rationals are dense,

�� ¦ ² ¦ B³� k .

 With now as any dissection of , letT I

u u t  u t t u u� � � � �c� � �c�
c�~ ² ³Á ~ ² c ³ ² c ³h ,

so is near to when  is small, since exists and isu  u t  u  h h h² ³� � �

continuous.
 Let  be so small that�

Qu u /2 .� �c� �Á � c� �

Then unique  are defined for which  and� � �� � �Á ~ � �Á ~��

� � � �� �c� �c� �
c� c� c� c�

� �c� �c� �u f u   u f u .² ³ ~ Á ² ³ ~� � 8.1
Let

� � � � �h ~ ² c ³ ² c ³ c ³ ² c ³� � �c� � �c� � �c� � �c�
c� c�t t t tÁ ~ ²

h
 .� �

Then, since , 8.1 is equivalent touf u² ³ ~ �

� � � �h h h~ ² ³Á ~ ² ³Á
h

� � �c� � � ��c� �
c� c�u f u  u f u 8.2

together with �� ~ � �Á ~�� .

 Thus, given a dissection with small , functions T t t� �² ³Á ² ³�

have been defined for with valuest T �

� � � �² ³ ~ Á ² ³ ~t  t .� � � �

For any other dissection with norm , which is a refinement ofT  Z � Z

T T T t t, so and , the corresponding functions Z � ³Á ² ³� � �Z Z Z� ² �

defined for are also defined for Moreover, again sincet T  t T. � �Z

T TZ � , by Theorem 4.2, Corollaries, we have

�²t t  t t³ � ² ³Á ² ³ � ² ³Á� � �Z Z 8.3

for all t T.�
 Now take to be the th rational dissection  with large soT k- T k �

that  is small and the functions are well defined. Also, given any��
rationals , we have when is sufficiently large.s t I s t T k Á � Á �
 By construction of the functions  and definition of the� �Á
relation S� Á

 u S u S u� � !
c� c�

 � � � ! Á

whence by transitivity,
 u S u .� � !

c� c�
 � !

It follows from here, with Houthakker s axiom, that’
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� �!  
c� c�

!  u f u² ³ � Á� 8.4
unless

f u f u .² ³ ~ ² ³� �!  
c� c�

!  

In particular with , because , it appears thats t uf u~ ² ³ ~ �

� �! !� . 8.5

 From 8.3, as increases  is non-decreasing and  non-k � �! !

increasing. But from 8.5 both are bounded. Since any bounded
monotone sequence is convergent, it follows that both are
convergent, say

� � � �! ! ! !¦ Á ¦ ² ¦ B³Á   k 8.6
and moreover,

� � � �! ! ! !� � � . 8.7

These limits determine functions defined on all rational� �² ³Á ² ³t t  
points.
 For rational , and so large that , let be thet k t T t  � �

Z

predecessor of in , so Let ,t T T t t k . t t t~ ¦ ² ¦ B³ ~ c�
Z Z-

so , and let-t  k¦ ² ¦ B³�

-� � �² ³ ~ ² ³ c ² ³Át t t Z

-� � �² ³ ~ ² ³ c ² ³Át t t Z

-u t u t u t .² ³ ~ ² ³ c ² ³Z

Then 8.2 shows that

-� - � -� - �² ³ ~ ² ³ ² ³ ² ³ Á ² ³ ~ ² ³ ² ³ ² ³t u t f t u t  t u t f t u t . !  !Z c� Z c�

But, because is continuously differentiable,u t  ² ³

- -u t / t u t   k .² ³ ¦ ² ³ ² ¦ B³h

Then, because and are continuous and    u t  f u  ² ³ ² ³ � � � �¦ Á ¦
it follows that

lim lim
� ¦ B � ¦ B

-� -�² ²t / t      t / t³ Á ³- -

exist and are given by

uf u  u f uh h² ³Á ² ³� �c� c�

evaluated at t.
 It is concluded from this that  defined at all rational points� �Á
have continuous extensions defined at all points, and then that
these extensions are continuously differentiable and satisfy the
differential equation

� �h h~ ² ³Áuf uc�
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with the condition But this differential equation with this�²� �³ ~ . 
condition has just one solution, which since  is an integral pathK

must coincide with for all It follows that�²t  t. ³ ~ Á�

� �² ³ ~ Á ² ³ ~t  t� � 8.8

for all This with 8.7 enables 8.5 to be replaced byt. 

� �! !� �� .

Letting in 8.4, in view of 8.6 and 8.8, it appears thatk  ¦ B

u t f u s . ² ³ ² ³ � ! � 8.9

9 Surfaces
For a demand function  under the current assumptions, considerf
the relation  of integral path connection, where I B B uI v� �� d
mean are connected by an integral path.  Then foru v Á

E I� �~ Á
¦

the transitive closure, identical with the chain extension, uE v�

means are connected by a chain of integral paths, or brokenu v Á
path where the segments are integral paths.

Theorem 9.1   Subject to Houthakker s axiom,’

uE u .�
c�� �¬ ~ �

 Let  be the path making the connection, and suppose, ifK

possible, that .� � �

 With any dissection of  there corresponds a descendingK

sequence that starts from and terminates in some , in whichu u�c�

case If the dissection is fine enough this sequence isuS u. �
c��

close to , in particular is close to , to make K � � �c� cu u .� � �

 Now with  we have , and hence� �� � �c�uf u² ³ ~ ��c�

�c�uS u S . f(u) f u� �
c�, by definition of But also  and so, by£ ² ³�

Houthakker s axiom, also , making a contradiction, so’ � uS u�
c��

� �� �� � is impossible. Similarly  is impossible. QED

 Houthakker contributed the essential idea of this argument,
which applies to the case . It is dispensible in the case ,� � � � ~ �
treated by Samuelson, when he introduced the method with
ascending and descending sequences approaching an integral
curve. However, both work with utility surfaces in the commodity
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space without regard for the possibility that these could be
degenerate, even just single points. The discussion here takes place
instead in the budget space.

Corollary (i)  E  Under the same hypothesis, the relation is�

reflexive, symmetric and transitive, and so an equivalence.

 From here together with the theorem, the classes in this
equivalence have a unique representative on any ray. The relation
being continuous, this shows

Corollary (ii)  E  The classes of the equivalence are surfaces�

cutting each ray just once.

 The surface through any point can be constructed byE u u �

taking any path  through  and projecting it into an integral pathK "
with  as initial point. This integral path is then a path in theu
surface. Every element  of such a path, and so of the surface,du
then satifies , so we have an integral surface of thisduf u² ³ ~ �

differential equation, now to be distinguished as an integral
surface f.of the demand function 

Corollary (iii)    E  The classes of are integral surfaces of the�

differential equation duf u .² ³ ~ �

 The budget space is now partitioned into classes, provided by
the integral surfaces. It is an ordered partition, since the surfaces
are ordered by their intercepts on any given ray, the order being
independent of the ray chosen.
 The surfaces can then be represented as level surfaces of a
function , with value determined by the point � e u  e b~ ² ³� c�

where the surface through cuts the ray through  By taking au b.
linear path , or any other with as initial andu t u t b u u b ² ³ ~ b ² c ³ Á
final points, the solution of

� �h h~ ² ³Á ³ ~uf uc� with ,�²� �

determines �²u .³ ~ ² ³� �

Theorem 9.2 ", # ¬ "� # � ��  ! .
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 If  then  are connected by an integral path, say ", # "Á # $ !�  !
with ,  But then, as already concluded,$ � ~ " $ � ~ #À !  !

$  � $ ! � � !  ! !

for all  and , in particular for  !  ~ �Á ! ~ �À

 An  is a  of a set  at a point  if% � : � " � :6 6�
�support

"% ~ �Á # � : ¬ #% � �À

Thus  can denote the set of supports of : :À+

 A set  is  if: orthogenous

" � : w " � # ¬ # � :,

and  if also it is convex. The  oforthoconvex orthoconvex closure
any set  is the smallest orthoconvex set containing it.:
 For any set , the set of supports  is closed orthoconvex,: :+

and  is the closed orthconvex closure of : :À++

Theorem 9.3  The integral surfaces are orthoconvex.

That is, boundaries of orthoconvex regions. For any , consider "
the region of  for which$

", # ¬ $� # � ��  ! .

This is convex, and by the previous propositions it contains the
integral surface  through  But since  it contains, " "À #� # ~ ��  !
, " # ", #� �, described by all  such that , on its boundary.
Obviously every ray cuts this boundary just once, and since every
ray cuts  just once it follows that  coincides with this, " , "� �

boundary. Also, for all ,  is a support of  at " � " , " "À ! �

Theorem 9.4  The integral surfaces are smooth.

 This is because an integral surface is convex and every
continuously differentiable path projects into it, that is, cuts rays
which cut it, in a continuously differentiable path. Equivalently,
again because the surfaces convex, each surface has a unique
support at every point.

Theorem 9.5
", # À ¬ À "� # ~ � ¯ � " ~ � #�  !  !  !.
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 For if  then  lie on an integral surface , and", # "Á # 0�

� " � # 0 "Á # 0 !  !, are unique supports to  at . But  being convex,
"� # ~ � � # 0 " !  ! means  is a support to  also at , which is
impossible unless .� " ~ � # !  !

10 Utility
The integral surfaces cut every ray just once, and are ordered by
the order of the points in which they cut any one ray, which is the
same for all rays. Since there is just one through every point in the
budget space, they constitute a partition of that space. Thus a
completely ordered partition of the budget space is obtained
defining a complete order  in the budget space , in which ) ,� �8

is the relation of equivalence. The sets  contain all) "Á ")� �

sequences ascending and descending from , which shows that"
: � )� � . Moreover, they are identical with the limits of points in
such sequences, by the argument in Section 7, so they are identical
with the closures of The budget space  being: "Á ": À� � 8

connected and separable, Debreu’s Theorem now in any case
assures the existence of a continuous function  such� 8 6¢ ¦
that

") # ¯ " � # À� � � !  !

Taking any fixed , for any  there is unique  for� � " � ! � �8 8

which  Define  Then ( ) is such a function.", !�À " ~ !À "� � � !
Evidently then the relation is in fact closed, and is the closure)�

of .:�

 Now introduce a relation  in the commodity space* � d� 9 9

9 with the definition

%* & � v #& � � w "% � � ") #À� � ! !

Also introduce a function  in the commodity space by� 9 6¢ ¦

� � ! $ % !% ~ " ¢ "% � � Àmin

Then because of continuity and orthoconvexity of level sets ,13

%* & ¯ % � &� � � !  !,

13 Concerning the direct and indirect utility functions and order relations, defined in the
commodity and budget spaces, their necessary properties and the relation between them, an
account is in my  Demand Functions and the Slutsky Matrix  , Princeton University Press, 1980,
Chapter IX, Section 1; also in , Clarendon Press,Logic of Choice and Economic Theory
Oxford, 1987, Part II, Chapter 5, pp 156-72.
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and  are recovered from  by) Á * Á� �� �

") # � v "% � � w #& � � %* &� � ! ! ,

� � ! $ % !" ~ % ¢ "% � � Àmax

Moreover, because the sets  are smooth-orthoconvex, the sets")�

* %�  are round-orthoconvex, that is, any support has a unique
contact. But the unique support to  at  is  It follows that") " � " À�  !
" * � " � " � " is a support to  at  which has contact only at .�  !  !  !
This shows that  is a relation, and  a function, which* %� � !
validates the condition ./�

*

 Now for the main conclusion:

Theorem 10  If a demand function  is continuous and � � °�� ��

then Houthakker’s condition  implies  has a utility  where2 ��
* �

� � ! $ % !% ~ " ¢ "% � �min ,

and for all ,  where, with  fixed and arbitrary," � � " ~ � �� � !  !
and ,  is a solution ofu t u t b u² ³ ~ b ² c ³ � !!

� �h h~ ² ³Á ³ ~uf u .c� with �²� �
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