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Abstract

Filtral opportunity rankings (FORs) are defined, and their basic prop-
erties are studied. A characterization of FORs in terms of their ‘essentiality-
operators’ is provided. It is also shown that a suitably augmented set of
FORs admits several ‘nice’ aggregation rules in an Arrowian setting. JEL
Classification Numbers:D71,025.

1 Introduction

In the last few years there has been a remarkable growth of interest in criteria
for evaluating social situations in terms of the ‘freedom of choice’ they afford
the relevant agents. Under the most obvious understanding of the problem, all
this amounts to looking for a plausible ‘opportunity ranking’ of the power set
P(X) of the set X of basic alternatives, without relying at all on information
concerning preferences on X. In what follows I shall denote that version of the
opportunity-evaluation issue as the ‘pure opportunity-ranking’ problem.

In principle, it is widely acknowledged that one should settle for some suit-
ably ‘comprehensive’ partial —as opposed to total- ‘opportunity preorder(s)’(see
e.g. Puppe(1996) for a recent restatement of this most influential of Amartya
Sen’s general tenets concerning social-measurement-related issues). However,
the early remarkable characterization of the cardinality-based total preorder
within the class of all preorders by means of a simple set of prima facie mild
conditions (see Pattanaik,Xu(1990)) has been largely received as a sort of ‘im-
possibility theorem’ concerning the ‘pure opportunity-ranking’ problem. Indeed,
it has been repeatedly argued that the Pattanaik-Xu result shows that the
evaluation of opportunity sets cannot be sensibly divorced from a comparative
evaluation of single basic alternatives, i.e. from standard preferences (see e.g.



Sen(1991)). Therefore, the prevailing reaction to the Pattanaik-Xu characteri-
zation has arguably resulted in a shift of focus away from the ‘pure opportunity-
ranking’ problem, and —more often than not—from partial preorders as well (with
Puppe(1996) and Klemisch-Ahlert(1993) as prominent exceptions). As a matter
of fact, most of the subsequent contributions have been centered — with some-
what different emphases— on ways of amalgamating several criteria for evaluating
opportunity sets, including total preference preorders on X and other total or-
derings (see among others Klemisch-Ahlert(1993), Bossert,Pattanaik,Xu(1994),
Puppe(1995), Dutta,Sen(1996), Bossert(1997), Pattanaik,Xu(1998),Gravel(1998),
Nehring,Puppe(1999)).

The present paper is not going to dwell on the subtle conceptual issues un-
derlying the foregoing controversy on the proper relationship between ‘freedom
of choice’ and ‘preferences’ in ranking opportunity sets. Rather, it is assumed
here that

i) the ‘pure opportunity-ranking’ problem is interesting per se, and deserves
a separate analysis whatever the comparative weight one is inclined to allocate
to ‘freedom of choice’ as such in the overall evaluation of opportunity sets;

ii) identifying some partial —as opposed to total— ‘opportunity preorder’ is to
be considered as the primary task involved in our ‘pure opportunity- ranking’
problem as described above.

Moreover, we also rely on the following motivation. While the whole idea
of ranking opportunity sets in terms of ‘freedom of choice’ arguably requires
the notion of ‘many degrees’ of freedom(s) (and is indeed consistent with the
even subtler notion of ‘positive’ - possibly plural- freedom(s)), there is also a
well-established tradition which refers to one (singular) ‘freedom’ and treats it
as a definitely ‘crisp’(‘yes-or-no’) concept. Can these two views be somehow
reconciled in a formal model?

Working under those assumptions, and relying on such intuitions and mo-
tivation, one simple class of partial opportunity rankings — hereby called fil-
tral opportunity rankings (FORs) — is defined and singled out for analysis in
what follows. Briefly, FORs embody a minimal standard of freedom. Below the
standard ( a freedom- poverty- line of sorts) the opportunity sets are equated
(i.e.indifferent) to a no-freedom situation. Above the standard FORs simply
replicate the set -inclusion partial order . The standard of freedom of a FOR
consists in an order-filter of (P(X),2) ( a specialized version of the same
notion for total opportunity rankings is suggested and briefly discussed in Sup-
pes(1987); however, to the best of my knowledge, Gekker(1999) should be cred-
ited for the introduction of general order-filters as standards of freedom in a
similar setting).

The present paper is therefore devoted to a quite detailed study of FORs.
It turns out that FORs are endowed with a remarkably regular structure which
allows an interesting characterization of them in terms of their essentiality-
operators as first introduced by Puppe(1996) under a slightly different termi-
nology. Moreover, it is shown that FORs are also amenable to ‘nice’ aggrega-
tion results in an Arrowian setting. The structure of the paper is as follows.
In section 2 FORs are introduced, and some of their basic properties—including



characterizations— are presented. Section 3 is devoted to the FOR-aggregation
problem in a generalized Arrowian setting .

2 Filtral opportunity rankings: basic properties
and characterization

Let X be the set of alternatives/opportunities, and P(X) the corresponding
set of opportunity sets. It is also assumed that #X > 3 in order to avoid
trivialities or tedious qualifications. We are concerned here with defining a
pure opportunity ranking > of P(X), namely a binary relation (P(X), %) that
(weakly) extends (P(X),D) —i.e. A D B entails A %= B— the underlying
interpretation being that A > B means “A embodies more opportunities( or
positive freedom ) than B 7. We also denote as usual by > and ~ the asymmetric
and symmetric components of = , respectively. In order to accomodate some
basic intuitions concerning the very idea of an “opportunity ranking” we shall
consider some minimal restrictions on (P(X), ), namely :

(Preorder (PR)) : (P(X), =) is transitive and reflexive .

(Freedom Improvability (FI)) : For any A # X a B C X exists such that
AUB > A

(Weak Monotonicity (WM)): For any A, BC X, AUB = A.

A weakened version of (WM) will also be considered, namely:

(Restricted Weak Monotonicity (RWM)): For any A, B C X, if [either A = B
or A= X orelse B={] then A > B.

In this paper, we shall be mainly concerned with those opportunity rankings
(P(X), =) which are preorders and satisfy both (FI) and (WM) (or (RWM)).

In particular, we are interested here —as mentioned above— in a class of
(partial) opportunity rankings that arise in a natural way whenever

a) all the alternatives are (potentially) ‘good’ -or ‘not bad’- : this interpre-
tation of the relevant alternatives can be plausibly supported by referring to an
underlying unmodelled set of ‘admissible’ preferences on X such that any z € X
is a maximum or maximal alternative with respect to some preference in the
set.( This suggested motivation is to be distinguished from the approach pro-
posed in Pattanaik,Xu(1998) where the opportunity ranking itself — as opposed
to the basic set X —is determined by means of such a set of preferences on X ) ;

b) the ultimate significance of the feasible alternatives depends on a thresh-
old effect so that either each alternative is a significant opportunity or none of
them is according to the location of the menu w.r.t. the minimum standard (i.e.
‘above’ or ‘below’ the standard).

Those requirements — that amount to the introduction of some sort of “freedom-
poverty line”—can also be regarded as an attempt to accomodate the widespread
treatment of “freedom” as a ‘yes-or-no’ concept while insisting on the idea of
‘many’degrees of freedom as suggested by typical notions of ‘positive freedom’ .
We shall heavily rely on the following notion:



Definition 1 (Order filter of a preordered set) Let (Y,2) be a non-empty pre-
ordered set. An order filter of (Y,2) is a non-empty set Z C'Y such that for
any x,y , x € Z andy 2 x entail y € Z. In particular, such an order-filter Z
is said to be non-trivial if Z £Y.

The following specialization of the previous definition will also be used in
the sequel:

Definition 2 (Principal order filter of a preordered set ) Let (Y,>) be a pre-
ordered set.. A principal order filter of (Y,2) is a set Z C 'Y such that
Z={xeY :x 2y} for somey €Y . It should be recalled here that— whenever
(Y, 2) is a lattice( see Section 3 below for an explicit definition)— a principal
order filter is also a latticial filter i.e. is A-closed .

The notion of an order filter enables us to formulate in a natural way a
special type of opportunity ranking that embodies requirements a) and b) for
opportunity rankings as mentioned above. This is made precise by the following
definition :

Definition 3 (Filtral opportunity rankings ) A filtral opportunity ranking
(FOR) is a binary relation (P(X),) such that for some order filter F of
(P(X),D) , A= B if and only if either AD B or B ¢ F.

Notation 4 A FOR with order filter F will also be denoted by (P(X),=r).

Remark 5 As mentioned above, a specialized version of FORs was first intro-
duced by Suppes(1987), with a quite similar motivation (see also Gekker(1999)).
Suppes is concerned with a total opportunity ranking (P(X), =c~) defined as fol-
lows : for any A,B C X, A =c- B iff either A D C* or B 2 C* ( for some
suitable C* C X ). Clearly enough, =c«reduces to the following ranking pro-
cedure: a) introduce a principal order-filter F' of (P(X),2) (hence a latticial
filter as well), b) define a FOR (P(X),»r) with F as reference filter , and
¢) extend (P(X),=r) to a total (dichotomic) preorder by positing equivalence
between any A,B € F .

The following elementary properties hold true of FORs :

Proposition 6 Let (P(X), =) be a binary relation. Then

1) (P(X), %) is a FOR with order filter F if and only if — for any A,B C X—
A = B if and only if for any order filter F'of (P(X),2),F’ C F and B € F’
jointly entail A € F”.

it) If (P(X), =) is a FOR for some order filter F' of (P(X),2) then it is a
preorder that satisfies both WM and FI. Moreover, for any preorder (P(X), =)
that satisfies both WM and F1 a pair of order filters F, F' of (P(X), D) exist
such that =D = O =p.



Proof. i) Let (P(X), ) be a FOR with order filter F, and A = B . Hence
either A D B or B ¢ F. Now, take an order filter F/ C F. If A D B € F’ then
obviously A € F’, whereas if either A O B ¢ F’ or B ¢ F' there is nothing
to prove. Conversely, let (P(X), ) be such that —for some order filter F' of
(P(X),2)- A= Bift A e F' for any order filter F' C F with B € F’. Let us
then assume that A > B, and B € F. If B\A # () then take the order filter
F'={CCX:C2B}.Clearly, FF C F,B€ F', and A ¢ F’, a contradiction.

ii) Let (P(X), ) be a FOR with order filter F. Then, reflezivity of = is
trivial. Transitivity is easily checked: indeed, take A %= B, and B = C. Then,
either (A O B and B D C, whence A O C follows as an obvious consequence),
or (C¢F),orelse (B¢ F and B D C, whence again C' ¢ F ): in any case,
it follows—by definition of »>— that A = C.

Weak Monotonicity of (P(X), ) is immediate since A D B iff AUB = A.
In order to check Freedom Improvability, take any A C X. If A ¢ F, take any
A’ D Asuch that A’ € F, and posit B = A’\ A : then— clearly enough— AUB = A
and not A= AUB.If A € F, take any x € X\A. Again, AU {z} = A, and not
A= AU{z} by definition of »=.

Conversely, let (P(X),*) be a preorder that satisfies both WM and FI.
Our first claim is that an order filter F' of (P(X), D) exists such that for any
A, B C X, A > B ounly if either A D B or B ¢ F. Indeed, suppose not. Then,
for any order filter F of (P(X),2) a pair A = A(F) C X, B = B(F) C X exists
such that [A = B, A 2 B and B € F). In particular, consider the ‘smallest’order
filter F = {X}. Then, B(F) = X, and A(F) C B(F), i.e. A(F) # X. Hence
A(F)UC = A(F) for some C' C X (by FI). Now, B(F) = A(F)UC (by WM).
It follows that B(F') > A(F) (because (P(X), =) is a preorder):contradiction.
Next, our final claim : an order filter F’ of (P(X), D) exists such that for any
A,BC X, A= B ifeither AD Bor B¢ F. Again, suppose not. Then for any
order filter F of (P(X),D), A(F), B(F) C X exist such that not A > B and
either A D Bor B ¢ F. Now, not A = B and A D B are inconsistent statements,
by WM. Hence, it must be the case that not A = B and B ¢ F. But then, take
F = P(X). Hence B € F for any B C X, a contradiction again.[]

We proceed now to provide a characterization of FORs in terms of their es-
sentiality operators —henceforth E-operators —as first introduced by Puppe(1996)
in a slightly different setting.

Definition 7 (E-Operator of an Opportunity Preorder). Let (P(X), =) be a
preorder. Then the E-operator E.. : P(X) — P(X) of (P(X),) is defined as
follows: for any A C X

E . (A)={ze€A: A> A\{z}}.

The following properties of general operators H> : Z — Z on an arbitrary
preordered set (Z, 2) will be considered :

(Deflation) An operator H> : Z — Z is deflationary w.r.t. (Z,2) iff 2 2
H>(2) for any z € Z ;



(Monotonicity) An operator H> : Z — Z is monotonic w.r.t. (Z,2) iff
H>(z) 2 H>(y) for any z,y € Z such that z 2 y.

(Idempotence) An operator H> : Z — Z is idempotent w.r.t. (Z,2) iff
H>(H>(2)) ~ H>(z) forany z € Z .

In particular, an operator H> on a preordered set (Z,2) is said to be a
projection of (Z,2) iff it is both monotonic and idempotent w.r.t. (Z,2), and
a kernel operator of (Z,2) iff it is a deflationary projection of (Z,2). Moreover,
a kernel operator H> of a preordered set (Z,2) with a maximum element 2*
(the ‘top’element of Z) is said to be normal iff H>(2*) ~ 2*.

(Auto-Filtrality) An operator H> : Z — Z on a preordered set (Z, 2) with
a minimum zg (the ‘bottom’ element of Z) is said to be auto-filtral iff the set
{z€Z:20# 2= H:(2)} of its non-bottom fixed points is an order filter of
(Z,2).

In the more specialized setting of operators on preordered power sets the
following properties can also be defined:

(Inclusion-Filtrality) An operator H, : P(Y) — P(Y) on a preordered
power set (P(Y), =) is said to be inclusion-filtral iff theset {ACY : ) # A= H,
of its non-empty fixed points is an order filter of (P(Y), D).

(Double Filtrality) An operator H,. : P(Y) — P(Y) on a preordered power
set (P(Y), ) is said to be doubly filtral iff it is both auto-filtral and inclusion-
filtral.

(Ezact Double Filtrality) An operator H,. : P(Y) — P(Y) on a preordered
power set (P(Y), =) is said to be exactly doubly filtral iff it is doubly filtral and
the identity function Id is an order-isomorphism between

{ACY: 0£A=E_(A)},=)and {ACY:0£A=E_(A)},D).

(Meet-Additivity) An operator H,. : P(Y) — P(Y) on a preordered power
set (P(Y), =) is meet-additive iff for any A, B CY: H.(ANB)~ H.(A)N
H.(B).

(Universal Local-Flatness (ULF)) An operator H,. : P(Y) — P(Y) on a
preordered power set (P(Y), =) is universally locally-flat iff for any A C Y,
H.(A) e {A0}.

A meet-additive normal kernel operator H, of a preordered power set

(P(Y), =) may also aptly said to be a topological kernel operator (by way of
analogy with the special case (P(Y),D) , where such an H, = H- does indeed
induce a topology on Y whose open sets are precisely the fixed points of H- ).
Moreover, the following simple fact is to be emphasized:

Claim 8 Let H,. be an auto-filtral operator on a preordered power set (or op-
portunity ranking) (P(Y), =) which satisfies WM. Then Hy is inclusion-filtral
as well (hence doubly filtral ).

Proof. Let A,B C X be such that ) # A = H.(A), and B O A. Then
B = A by WM. Since H, is auto-filtral it follows that B = H_(B). O

Remark 9 In what follows we shall mostly consider opportunity rankings hav-
ing an auto-filtral E-operator. The most obuvious family of examples of opportu-
nity rankings having an E-operator that is not auto-filtral consists of opportunity



rankings induced by a linear ordering of X, through maximization of the latter
on P(X). Another example of an opportunity ranking with a non-auto-filtral
E-operator is provided by the total opportunity preorder (P(X),=c+) already
encountered before : indeed, it is easily checked that the set of non-empty fixed
points of E, ., reduces to {C*} , not an order-filter of (P(X),»c+) whenever
C* # X.

The following lemmata will prove to be most useful in the sequel :

Lemma 10 Let (P(X), =) be an opportunity preorder that satisfies WM, and
such that E. s auto-filtral and satisfies ULF. Then, E, is an order-homomorphism
of (P(X),) i.e. A= B implies E.(A) %= E.(B) for any A,B C X. More-
over, if E. is exactly doubly filtral as well, then E. is an order-embedding of
(P(X),) i.e. A= B if and only if E.(A) = E.(B) for any A,B C X.

Proof. Let (P(X), =) be an opportunity preorder satisfying WM and such
that E\ is both auto-filtral and ULF. Now, consider A, B C X such that A = B.
We claim that E, (A) = E. (B).If A= (then () = B = E, (B) (by WM) hence
() = E.(B) , by transitivity. It follows that E. (A) » E.(B), by WM and
transitivity again. Similarly, if B = () then by definition E.. (B) = ), whence
E.(A) = E.(B) by WM. Thus, we may safely assume that A # (, B # (.
It follows from the ULF property of E. that one of the following four cases
obtains : (a) F.(A) = A, E.(B) = B ; (b)E.(A) = A, E.(B) =0 ; (¢)
E.(A)=E.(B)=0;(d) E.(A) =0, E.(B) = B . Under case (a) E. (A) =
E. (B) follows trivially from our hypothesis that A > B. Under cases (b) and
(¢) E.(A) = E.(B) follows immediately from WM. Under case (d) we may
infer that B € FL, {AC X : A#(, A= E, (A)}-an order-filter of (P(X), )
by auto-filtrality of E.. But then A = B entails A € F. ie. A = E,_(4),
whence E,. (A) = A = B = E..(B). This completes the proof of the first part of
our lemma.

Now, suppose that E,. is also exactly doubly filtral, and consider A, B C X
such that E_ (A) = E,.(B). Since E, satisfies the ULF property one of the
cases (a),(b),(c),(d) as listed above must occur. We have to show that A = B
is also the case. This follows trivially under case (a), and immediately from
WM and transitivity under case (d). Let us then consider cases (b) and (c),
where E, (B) = (). Of course, B ¢ F, as defined above. If B = () the thesis is
immediate again by WM. Thus, we may assume w.l.o.g. that B # (). It follows
from ULF and WM that B ~ B\ {z} for any « € B. Since F, is an order-filter
of (P(X),) and B ¢ F,., it follows from ezact double-filtrality of E.. that
B\ {z} ¢ F. as well, hence E.. (B\ {z}) = 0 (by the ULF property). It is then
immediate to establish by a simple induction argument —and by transitivity—
that B ~ (), whence A = B . [J

Lemma 11 Let (P(X),»r) be a FOR with order filter F. Then, i) the E-
operator E,. , satisfies ULF . In particular, for any non-empty AC X : E, .(A) =
Aiff A€ F ( or equivalently E. .(A) =0 iff A¢ F ). Moreover, i) E, .is



exactly doubly-filtral , and i) E. . is an order-embedding of (P(X), =) i.e.
forany A, BC X, Azp Biff E.,(A) =r E. .(B).

Proof. i) To begin with, E,. ,(#) = (} follows trivially from the definition
of E.,.Let A C X be such that A # (), and A € F. Then, for any = € A,
not A\{z} =p A, while-by WM- A =5 A\ {x}. Hence, by definition of E.. .,
E, .(A) = A. By contrast, if A ¢ F then —by definition of =p— A ~p A\ {z}
for any x € A, whence E. . (A) = 0.

ii) Let A,B C X be such that A # 0, E, , (A) = A, and B =p A. We claim
that E. . (B) = B. For, suppose not . Then, by part i) of the present proof, A €
F, and E. . (B) =0 . Moreover, B =p A entails ) = E. . (B) =r F. . (A) = A
since E.. ,.is an order-embedding of (P(X), =), by part ii) above. Since A € F
it follows that ) = A, by definition of =p: contradiction. Thus, E. .is auto-
filtral. Then, inclusion-filtrality (hence double filtrality ) of E. .follows from
Weak Monotonicity of > , in view of Claim 8 above. It remains to be checked
that {ACX:0£A=FE,, (A)},»r) and {ACX:0£A=E_,(4)},D)
are order-isomorphic. To see this, consider any A, B C X such that E.. . (4) =
A#(, E..(B)=B #{,and A = B. Then, by definition of =, either A O B
or B ¢ F. However, B ¢ F implies FE. ,.(B) = (), contradicting our choice of B.
Therefore it must be the case that A O B. Conversely, let A, B C X be such
that E,. ,(A) = A#0, E.,.(B) =B # (,and A D B. Then A »>p B, by
Weak Monotonicity of =g . It follows that Id is in fact an order-isomorphism,
and E, ,is therefore exactly doubly-filtral as required.

iii) An immediate corollary of parts i)-ii) of the present proof as combined
with Lemma 10 above . [J

Furthermore, it turns out that the E-operator of a FOR is remarkably reg-
ular, as testified by the following proposition:

Proposition 12 Let (P(X),>r) be a FOR with order filter F. Then its E-
operator E. ,.is a normal kernel operator of (P(X), =r). Moreover, if F is a
non-trivial principal order filter then its E-operator E. .is a topological kernel
operator of (P(X), =r).

Proof. First, observe that E\ ,is deflationary since = is in fact a preorder
and satisfies Weak Monotonicity, by Proposition 6 ii) above (indeed, for any
ACX, ADE, . (A) by definition, hence-by WM of =p— A =p E, ,.(A)).

Clearly enough, Lemma 11 above, part iii) implies that E.. ,.is indeed mono-
tonic w.r.t. (P(X),>=r).

Now, assume B ¢ F. In this case we also know from Lemma 11 i) that
E. ,(B) = (. Therefore E,. ,.(A) D E, ,.(B), hence again Weak Monotonicity of
=rentails E. . (A) =r E. ,.(B).

Idempotence of E.. ,.is proved as follows. For any A C X, consider E.. ,.(E,. ,.(A
We know from Lemma 11 i) that A € F entails E,. ,.(A) = Ahence E, ,.(E, .(A)) =
E. .(A), whereas A ¢ F entails E. ,.(A) =) hence E. . (Ey. .(A)) = E. .(0) =

) =FE,., (A) again .



Furthermore, take any x € X. We know from Proposition 6 ii) above that
= psatisfies Freedom Improvability: it follows that X =y X\ {z}. Therefore
E. .(X) = X, hence a fortiori E.. ,.(X) ~p X ie. E. .is normal .

Finally, let FF = {AC X : A D A*} for some A* C X, A # (). Then, for
any A, A" € F, ANA’ € F as well (i.e. F is indeed principal, hence a latticial
filter of (P(X),D)). Now, take any A, B C X : by Lemma 111i) if {A,B} ¢ F
then () € {E,.,.(A), Ey. .(B)} . Therefore E~,(A)NE, ,.(B)=0 CE, ,(ANB).
Otherwise, i.e. if {A, B} C F, we may conclude from the foregoing observation
that AN B € F, hence-by Lemma 11 i) again— E,.,(ANB) = ANB 2
E..(A) N E,,.(B). In both cases E. (AN B) =r E,.(A) N E,,.(B) fol-
lows from Weak Monotonicity of =g . Furthermore, Monotonicity of E. ,w.r.t.
(P(X),=r) (as established above in the previous Lemma, part iii)) and Weak
Monotonicity of = p—as combined with ULF and exact double-filtrality jointly
entail E. ,(A)NE,,(B) »r E.,(ANB). Thus, E, ,is indeed meet-additive,
which is our thesis.[]

Remark 13 The foregoing result has been included here in order to stress one
interesting similarity between FORs (especially FORs with a principal filter)
and another much studied opportunity ranking motivated by ‘freedom of choice’,
namely the cardinality-based one (P(X),>4). Indeed, it is easily checked that
forany A C X , E>,(A) = A, ie E>, = 1Id. It follows that E> , also
satisfies ULF, and is a topological kernel operator ( as well as a topological
closure operator): clearly enough, the resulting topology is the discrete one.

It turns out that the ULF property of FORs is a crucial part of a simple
characterization of the latter, as stated in the following proposition:

Proposition 14 Let (P(X), ) be an opportunity ranking. Then (P(X), ) is
a FOR with order filter F € F(P(X),2) if and only if (P(X),*) satisfies
PR,WM and is such that E. is exactly doubly-filtral and satisfies ULF .

Proof. It follows from Proposition 6 ii) and Lemma 11 above that a FOR
(P(X), =) satisfies PR and WM, and E,. ,satisfies ULF, is exactly doubly-filtral
and is an order-embedding of (P(X),>F). To prove the converse implication,
take an arbitrary opportunity ranking (P(X), ) that satisfies the foregoing
properties. We have to prove that (P(X),}) is a FOR with order filter F,
for some F € F(P(X),2). Indeed, suppose not. Then, for every order filter
F € F(P(X),D) it must be the case that =#=p i.e. equivalently either (a) a
pair (A(F), B(F)) € P(X) x P(X) exists such that A(F) 2 B(F), B(F) € F,
and A(F) = B(F) , or (b) a pair (A(F),B(F)) € P(X) x P(X) exists such
that B(F) ¢ F and not A(F) = B(F) ( the case with A(F) O B(F) and
not A(F) %= B(F) can be ruled out immediately since by hypothesis (P(X), =)
satisfies WM).

Let us first consider possibility (a),and take F = {A C X : ) £ A=E_(A)}:
exact double filtrality of E, entails that indeed F' € F(P(X),»)NF(P(X),D),



and the identity function Id : F — F is an order-isomorphism between (F, =)
and (F,D) . But then, A(F) = B(F) and B(F) € F jointly entail A(F) € F :
hence exact double filtrality entails A(F) O B(F), contradicting (a).
Let us then consider possibility (b), and choose again
F={ACX:0#£A=E_(A)}.

Now, take any B C X such that B ¢ F. Then, by definition of F' and the
ULF property of E., it must be the case that F,. (B) = (). Thus, for any A C X,
E. (A) D E, (B), whence E, (A) = E. (B) (by WM). Since E, is by hypothesis
an order-embedding of (P(X), =), it follows that A > B, contradicting (b) as
well.  Thus, we have singled out an order filter F € F(P(X), D) such that
(P(X),») =(P(X), =F), and our thesis is therefore established. O

Remark 15 In order to check general independence of the foregoing conditions,
consider the following examples with #X > 4:

i) (P(X),>4) is a preorder that satisfies WM, and E»,is ULF ( and an
order embedding of (P(X),>x)) but is not exactly doubly filtral ;

1) (P(X), 1) (where=,={(A,B) € P(X) x P(X) : either A=X or A= B})
is a (trivial) preorder that does not satisfy WM, and such that E.. | is ULF, ex-
actly doubly filtral and an order-embedding of (P(X), =) ( because E.. | (A) =
0 forany A#X, and E,. (X)=X );

iii) (P(X),=}) , where F ={ACX:AD {z,y}} and

Fr=rr U{({z}, {y}), Qu} . {2})} for some x,y,z € X such that

#{z,y,z} =3 : here, by definition, E%; = E,_ ., while = }satisfies WM, but
is not transitive;

w) (P(X), = (>)), where

- (>) _{ (A,B) e PX)xP(X):A=X, or AD B, or B#X and }

T= max> A > max> B , or A=( and B = {z} for some x € X

and (X, >) is a linear order (i.e. an antisymmetric,total, transitive binary
relation), is a preorder that satisfies WM (by definition), while E._ >y is exactly
doubly filtral (because E, >y(A) = A iff A= X ) and an order-embedding, but
does not satisfy ULF .

No claim of elegance or special prominence is made concerning the foregoing
characterization of FORs . What is claimed is that characterizations of this
sort —i.e. in terms of E-operators— may be much helpful for improving our un-
derstanding of the main structural differences between alternative opportunity
rankings.

3 Filtral opportunity rankings : aggregation

Under the most obvious interpretation, FORs can be regarded as the individual
evaluations—or opinions— on alternative opportunity sets which are entertained
by agents of a certain society (even a Minskian “society of mind” might perhaps
be included among the possibly relevant interpretations). A natural question
then immediately arises: can FORs be aggregated according to some ‘nice’
general rule, and-if so— how?
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Aggregation problems for opportunity rankings have been previously ad-
dressed by several authors. Indeed, Suppes(1987) includes a short discussion on
the aggregation of total opportunity rankings as defined on different sets of alter-
natives, and admitting representations by numerical ratio scales. Dutta,Sen(1996)
consider ways of aggregating the cardinality-based and the indirect-utility-maximization
total opportunity preorders, and tackle the issue by reducing it to a two-agent
Arrow-like aggregation problem on a restricted domain of profiles. In what
follows we address the problem within a generalized ordinal Arrowian setting.

To begin with, we recall here the notion of an aggregation rule in an ordinal
Arrowian framework .

Let X be the non-empty finite set of basic alternatives, N be the non-empty
finite set of agents, n = #N, PR(P(X)) the set of all preorders on P(X),
and F*(P(X)) the set of all filtral opportunity rankings ( we already know
from our first proposition above that F*(P(X)) C PR(P(X))). We also posit
=0={(A,B): A= X, or B=1{), or A= B },and denote by f §(P(X)) the =¢-
augmented set of filtral opportunity rankings i.e. F§(P(X)) = F*(P(X))U{=0}
(it can be easily checked that $=gis indeed a preorder that safisfies both FI
and RWM , but not WM : hence, obviously >o¢ F*(P(X)) ). For any P C
PR(P(X)) a N—profile on P is a function 7 : N — P. The set of all N—profiles
on P is denoted by PY. For any profile 7 € [PR(P(X))]", and any pair
(A,B) € P(X) x P(X) we posit N(m, (A4,B))={i€ N:(A,B) € n(i)} (where
m(i) =3=;). Similarly, for any 7 € [PR(P(X))]"¥ and any =€ PR(P(X)) we also
posit N(m, =) ={i € N:forany A,BC X, if A > B then (4, B) € ()}, and
N*(m,=)={i€ N:forany A,BC X, if (A,B) € n(i) then A > B}.

An aggregation rule on [PR(P(X))]V is a function f : DV — D’ with
D,D’" C PR(P(X)) (the intended interpretation being that (A4,B) € f(m)
whenever A embodies more freedom than B, according to ‘aggregate’ oppor-
tunity ranking f(7) ). The following well-known properties of aggregation rules
are also to be recalled :

(Independence) for any A, B C X, and for all 7,7’ € DV | if N(m, (A, B)) =
N(7',(A, B)) then (A, B) € f(r) iff (A, B) € f(7').

(Unanimity, (or Pareto Efficiency)) for any A, B C X, and any m € DV, if
N(m, (A, B)) = N then (A, B) € f(n).

(Anonymity) for any permutation (i.e. bijection) o : N — N, and any
7w € DN, f(r,) = f(r) (where for any i € N : 7, (i) = 7(c0(i)) ).

Some other important —if less standard—properties of aggregation rules will
also be used in the sequel ( see e.g. Monjardet(1990) for a presentation of such
properties in a more general setting, and with a slightly different terminology ):

( Isotony ) : for any m,7’ € DV | if for every i € N, and for any A, B C X,
(A,B) € m(i) entails (A,B) € 7'(i) then for any A,B C X, (A,B) € f(m)
entails (A4, B) € f(n').

( Idempotence ) : for any m € DY | if a =€ D exists such that 7 (i) =3= for
every i € N , then f(m) =}=.

(Bi-Idempotence) : for any m € DV | if a pair {3=,='} C D exists such that
7(i) € {3, %'} for every i € N, then f(m) € {&=,%'}.

(General Neutral N-Monotonicity): for any »=, '€ PR(P(X))and 7,7’ €
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[PR(P(X)|V, if N(m,3)) C N(«',3') then [((A,B) € f(rx) for any A,B C X
such that A = B ) entails ((C, D) € f(7') for any C, D C X such that C' 3" D)].

(Dual General Neutral N-Monotonicity): for any »=,»>'€ PR(P(X)), and
7,7 € [PR(P(X))]N , if N*(m, =) C N*(x',3) then [ ( (4, B) € f(r) entails
A = B for any A,B C X) entails ((C,D) € f(n') entails C' »=' D for any
C,DCX)]

It turns out that FORs—as opposed to, say, total preorders or linear orders—
admit ‘nice’ i.e.independent,Pareto efficient and anonymous aggregation rules.
In order to prove this fact, a few definitions are to be recalled. A lattice is
a partially ordered set (L,>) i.e. a transitive, reflexive, antisymmetric binary
relation such that for any x,y € L, both a lowest upper bound x vV y and a
greatest lower bound x Ay exist for the pair {z,y}. A lattice is distributive if
for any z,y,z€ L: aAN(yVz)=(zAy)V(zAz) (orequivalently zV (yAz) =
(zVy)A(xzVz)). The following lemma is the crucial step for proving the positive
result on aggregation rules alluded to above.

Lemma 16 (F§(P(X)),2) is a distributive lattice isomorphic to the lattice
(F(P(X)),C) of order filters of (P(X),2) as ordered by set-inclusion.

Proof. To begin with, it is well-known that (f (P(X)),C) is a distribu-
tive lattice (see e.g. Anderson(1987), lemma 13.1.4). Hence, proving our
lemma amounts to exhibiting a latticial isomorphism h : (F(P(X)),C) —
(F§(P(X)),2) or equivalently a bijection h mapping the set f(P(X)) of all
order filters of P(X) onto F§(P(X)) and such that, for any F, F’ € F(P(X)),
F C F’ if and only if h(F) D h(F").

Thus, we define a function h : F(P(X)) — F§(P(X)) by positing, for any
Fe r(PX)N\{PX)},

h(F) ==r={(A,B): A,B C X, and either AD Bor B¢ F},

and h(P(X)) =i¢ . Clearly enough, > pis defined in an unambiguous way,
hence h is well-defined as a function. If F, F’ € F(P(X)) and F # F’, then
wlo.g. A€ F\F' for some A C X. If A= {,then F = P(X) # F’ hence by
definition h(F) =%o# h(F') ==p € F*(P(X)). If A # (), then by definition
() = A and not ) =p A, whence h(F) # h(F’). Moreover, if =€ F*(P(X))
then by definition == pi.e. == h(F) for some F € F*(P(X)). It follows that
h is indeed a bijection .

Next, consider F, F" € f (P(X)) such that F' C F’ . Two cases must be dis-
tinguished, namely F’ # P(X) and F/ = P(X).If F’ # P(X) then by definition
F C F’ entails h(F') = {(A,B): A,BC X, and either AD Bor B¢ F'} C
{(A,B): A,B C X and either A D B or B ¢ F} = h(F), and vice versa.

If F' = P(X), then

hMF') =%o={(A,B): ABC X, and A=X, or B=0,or A= B} C

C{(A,B): A,BC X and either AD B or B ¢ F} = h(F)

while h(F) 2 h(P(X)) =g obviously entails FF C P(X). O

Proposition 17 Let f: [F5(P(X))]N — F§(P(X)) be an aggregation rule for
the =9 —augmented set of FORs. Then i) f satisfies Anonymity, Indepen-
dence,Unanimity, Isotony and Bi-Idempotence iff —for any = € [F §(P(X))]~ -
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f(m) = U{SQN:#SZLn/ZJ—H} Nics ™(i), i.e.f is the Simple Majority Rule ; i) f
satisfies Anonymity, General Neutral N-Monotonicity and Idempotence iff —for
any 7 € [F§(P(X)]N - f(r) = Nicn 7(@) , i.e. f is the Unanimity Rule; iii) f
satisfies Anonymity, Dual General Neutral N-Monotonicity, and Idempotence
iff ~for any w € [F5(P(X))|N = f(7) = Ujen (i) , i.e. f is the Acceptance
Rule.

Proof. This proposition is a straightforward corollary of Lemma 16 as com-
bined with some known results on lattice-polynomial aggregation functions as
presented in Monjardet (1990). In particular, i) follows from our Lemma and
Corollary 7.4 in Monjardet(1990) which characterizes the majority aggregation
rule on distributive lattices; ii) follows from our Lemma and Corollary 1 as
stated in Barthélemy, Leclerc, Monjardet (1984); iii) follows from (latticial)
dualization of the argument implicit in ii) . O

It should be remarked that the foregoing Proposition amounts to a strongly
positive result on Arrowian-style aggregation (it should also be emphasized here
that the set of indirect-preference-maximizing total preorders arising from a
linear order on X is order-isomorphic to the set of all linear orders on X and
therefore—in view of Arrow’s Impossibility Theorem— not amenable to a ‘nice’ ag-
gregation process, while the cardinality-based total preorder on P(X) is uniquely
defined hence not amenable to any non-trivial aggregation).

Indeed, as mentioned above, we may use the label ‘nice’ — consistently with
standard Arrowian aggregation theory—for aggregation rules satisfying Anonymity,
Independence, and Unanimity (i.e. Pareto Efficiency). Then, it is immediately
checked by direct inspection that the Simple Majority Rule, the Unanimity Rule,
and the Acceptance Rule as defined above are indeed ‘nice’. Our previous claim
to the effect that the set of FORs (as properly augmented) allows for ‘nice’
solutions of the classic aggregation problem is therefore established.
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