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1 Demand and utility

A demand elements any ( ,p)x B dor which px0 ,
showing a commodity bundlex demanded at priges , the
expenditurébeing px.Then with

u=(px 'p
which is the associatdulidget vector(,u X is such thatc 1 |, so
it is anormal demand element, in this case t@malization  of
(p,x).1 Various conditions involving demand elements can be
stated well and more simply in terms of their normalizations.
A utility order is any RC Cx C which is reflexive and
transitive,
XRX, XRyRz= xRz

XxRybeing the statement that has at least the utility?of

The chain-extensiorof any relation Ris the relationR holding
between extremities of R-chains, given by

xRz= (V y-) XRyR - Rz.

This is the same as theansitive closure , or the smallest transitive
relation containind@R , being transitive, containiRg , and contained
in every transitive relation that contaiRs  The extended condition

XRyR -+ Rz= xRz

Is equivalent to transitivity, which therefore is equivalent to the
condition

_'
RC R

for R to be identical with its chain-extension, or transitive closure.
With R as thecomplementand R the conversewhere

1in present notation, witl? as the non-negative numiBees (2, ibutiget space (non-
negative row vectors) and = 2" tleommodity space (column vectors). Then apy B,

x € Cdeterminepxe {2 for the value of the commodity bundle at the priges Sometimes
when dealing with demand functiotiz ~ should be the positive humbers. As a syntax rule, a
scalar multiplies a row vector on the left and a column vector on the right.

2With a binary relatiorR , beside the us@aly) € R  becaBse is set, also the statetRgnts

x € Ryor ye xRare available to assdrtx ¥ is an elementRf , or tlxat has the reldtion to

y.



XRy= ~ xRy xR ¥ YRX
we have

(R)=(R/,
so there is no ambiguity in the expressﬁh for domverse
complement
The relation of equivalence R , or thedifference relation, is
the symmetric part
E=RNR,

an equivalence relation, symmetric, reflexive and transitive, since
Ris an order. The equivalence clas€gs , which are equally the
setsxE or theEx , these being the same from symmetry, are such
thatx € E, , so their union i€ , and

XEy< E = E, xEy& EN E= O

S0 any pair are either disjoint or identical. Hence they constitute a
partition of C, expressin@ as a union of disjoint subsets.
The antisymmetric part ® , thsrict preference relation, is

P=RNTR,

which is a strict order, irreflexive and transifive , sirRe is an
order.
The subrelationE anB form a partition Rf

PNE=0O PUE= R.
An orderR iscompleteif
~ XRy = YyRX
so for any pair of elements, if they do not have the relation one
way, then they have it the other, or they have it one way or the
other and possibly both. That R,CR ,and equivalerfehy, R.
A simpleorder Ris such that
XRYyRX= Xx= .
For an order, this is equivalent to
XRYR -+ RXx= »= ¥ ---

Otherwise, this is the condition for any relati@n toadicyclic
or for the absence &- cycles of distinct elements. For a reflexive

3Beale and Drazin (1956) recognize this transitivity which is basic for the scheme adopted
here. Also indifference, sometimes treated as absence of preference and then problematic
because without transitivity, is here taken to be a positive condition made from comparison
both ways, necessarily transitive, as required if we are to have an equivalence relation.



relation, it is the condition for the transitive closure to be a simple
order.
The relationd an® aflentity andistinction are given by

Xy=x=y, xDy= x££ y

For any simple orderR , the symmetric part =1 , so
equivalence iR reduces to identity. In this case the antisymmetric
part is identical with the irreflexive paR,= RN D , from whiéh
Is recovered as the reflexive closure= PU I.

A refinementof a simple order R is anotherS which properly
contains it,

RC S R£ S.

A total order is one which is simple and complete.

Theorem 1.1 Any simple order is either a total order, or it has a
refinement, and not both.

Suppose&R is a simple order, but not complete, so for some
X#Y, ~ XRy,~ YRX,

and letQ beR with the elemefix y adjoined. Thén , reflexive
sinceR is reflexive, is also anticyclic. For ag cycle must be
either anR- cycle, impossible siné® is anticyclic, or it contains
the link (x,y) together with arR- chain frony tax , which by
transitivity of R implies yRx, contrary to hypothesis and so again
impossible. SinceQ therefore is reflexive and anticyclic, its
transitive closure is a simple order. It properly cont&ns , since
from R C Qwith the transitivity ofR we have

- =
R=RcC Q
= : : - .
and alsoxQy while~ xRy showing thalR4¢ Q. Hence it is a
refinement oR.
Now supposel is a total order, simple and complete. Then it

cannot have any refinement. For wédRe  one, we would have
T C R and for somex y

X# Y, XRy,~ XxTy.

But then becaus€& is compleid,x and then gRa and then,
sinceR is simplex= Yy so there is a contradiction.



Corollary In a finite set, any simple order is either a total order, or
it has a total order refinement.

For, because the set is finite, so the set of orders is also, any
chain of refinements of a given simple order must terminate. This
can only be in a simple order without refinement and hence, by the
Theorem, in a total order, refining the original.

Theorem 1.2 Any simple order is either a total order, or it has a
total order refinement.

This restates the theorem of Szpilrajn (1930). Above is a proof
for the finite case. The general proof depends on the axiom: every
chain in a set of sets has a maximal refinemergh&n in &set
of sets is a subs€& C S such that, for afayBe C either B
or BC A. It has another chaild as efinement & D. A
maximalchain is one without refinements.

If a given simple ordelR is a total order, then it has no
refinement, and otherwise it does, by Theorem 1.1. In that case let
S consist of R and its refinements. By the axiom, the chairSin
which consists oR alone has a maximal refinemént  Then the
unionT = U M of the elements d¥l is a refinement®f and it
must be a total order. For otherwise, by Theorem 1.1, it would
have a refinement™, and then the bkt obtained by adjoining
T* to Mwould be a chain i that refinéd, contradicting tivat
IS maximal.

For any ordelR , the quotient relatidb= R/ E , in the quotient
spaceC = C/E whose points are the equivalence classEs of , is a
simple order, such that

E.RE, & XRy
such’R being defined because
XEX A YEY = . XRy= X Ry

4The ‘indifference map’ introduced by Pareto, which represents utility free of the numerical
aspect, brings attention to the utility order as constructed from a simple order of indifference
classes. It really is a preference map even though it may have been called an indifference map
because, from monotonicity considerations, when the classes are given there can be no doubt
at all about their order.



Theorem 1.3 Any order is contained in some complete order with
the same equivalence relation.

Apply Theorem 1.2 to the quotient relatigh

Corollary For any ordeR there exists a complete or&er such
that
RcC R, PCc P .

For
RcCR .= . PCcPe E E .

A utility functionis any ¢: C— (2. It representghe utility
orderR for which

XRy= ¢(X) > ¢(y) .

In this case, for the symmetric and antisymmetric parts,

XEy & ¢(X) = ¢(y), xPys o( 3>9o(y .
Any utility order so representable by a utility function is
necessarily complete.

2 Demand-utility compatibility

Relations connecting a demand elem@nk) and a utility drder
are defined by
H =py< px= xRy

which corresponds to theost-effectiveness familiar in cost-benefit
analysis, and assernts is as good as any bundle that costs no more,
and

H” =yRx = py> px

cost-efficiencythat any bundle as good as costs as much.

While H’ representstility maximization , makingk a bundle
that has maximum utility for the money speft] represeoss
minimization making x have minimum cost for the utility
obtained. These are equally compelling, generally independent
basic economic principles. A later issue involving stricter
conditions concerns whetha&r is the unique bundle admitted by
these conditions.



The combination
H=H'AH"

definescompatibility between the demand and the utility.
In terms of normalizations, these conditions become

uy<1 = xRy, YR uy1l ,
respectively.
Introducing relation$V, V, IC Bx C by

UWy= uy<1, uVy{= ux 1, ulg uy1 ,

by which any commodity bundle isithin, under oon a budget
u, the conditions are stated

uWcC xR, RxC uV.
The following has reference to a given utility order , and

demand elemerp, X) with normalizati¢m, X .

Theorem 2.11f Ris complete an&R is closed, thed’ = H .

From the hypothesis, together witH H , we have to deduce H .
We have

uVy = ~ yRx -~ H' contrapositive
= XRy " completeness
SLuvV C xR.
ButxRis closed, andiW is the closure alV. Hence
uWwcC xR,

which isH’. QED
We haveoversatiation at a point if there is a bundie which
Is less but as good, that is,
Z< Yy A ZRy.

The denial of such a possibility, msatiability , requires
z<y= ~ zZRy

Theorem 2.2If Ris insatiable, thetd’ = H”.

With denial ofH” , and assumption &f’ , we will find the
insatiability hypothesis contradicted.
From the denialzRxA uz< 1 for somez. Theruyx 1  for



somey > z. Then byH | fromuy<1 we hav&Ry , which with
zRx and transitivity gives zRy, and this together witle vy
contradicts the hypothesiRED

A function ¢(X) is non-decreasing semi-increasing or
increasingaccording to the conditions

X<y = (¥ <oy,
X<y = (¥ <oy,
XSy = 0¥ <o(y>

The three different conditions are increasingly restrictive for a
continuous function. For a differentiable functipn  with gradient
g they require

g=>09>a g> o.

For an example of the intermediate case, the Leontief type
function
d(X) = max{t:at< x},

for anya € C, is semi-increasing but not increasing.
Representation of utility by a semi-increasing function assures
insatiability.

Theorem 2.3If the utility is representable by a continuous semi-
increasing function, theH’ < H”,

With the representation by a continuous function, we have the
completeness and closure which provites= H'’ by Theorem
2.1. If also the function is semi-increasing, the insatiability
condition in Theorem 2.2 is obtained so tHdt= H". QED

Consequently, for the conjunctidh  required by compatibility,
under such usual conditions we have bbth=s H' Bines-

H”. Or in place of the traditional’ of demand analysis, for cost
effectiveness or utility maximization, thé”  for cost-efficiency or
cost minimization can serve just as well, and permits another
development.

3 Strict compatibility
The condition

HC°=py < pxA YRx= y= X

SFor notationx <y= x < y foralli ,x< y= x< yA x£ y, X ¥ x< y foralli.



here put symmetrically, has alternative statements,

(i) py < pxA y# x= ~ YRX
which exposes a relationship with  , and

(i) YRXA y# x= py> px
with H”.
We also consider
H™ = py < pxA y# x= XRy\ ~ YRx
which, in the case d®® being complete, is equivalent to (i), and so
toH?°.

According toH ° , any bundle as goodxas and costing no more
must be identical witlx. Reflexivity oR already allows itself is
such a bundle, so the converse is already present.

The antisymmetric or strict part A being= RN R ,in
terms of this

H* = py < pXA y# X= XxPy

For the case wher® is compleﬂ_'é,c R and hefee R , SO
H* becomes the same dS.

As appears from forms (i) and (ii), wheh® is adjoined to
each of H’ andH” we obtain thetrict  versions of these
conditions, that require to be the unique bundle which attains the
required maximum utility, and minimum cost.

While the conjunction oH’ anH” provides compatibilidy
we have the conjunction of the strict versioHS A H' and
H° A H” to definestrict compatibility. Since

(HOAH)A(HCAH") < HOA(H' AH"),
this condition is als®é1 ° A H.

Theorem 3.1 Strict compatibility, simultaneously requiring strict
cost-effectiveness and strict cost-efficiency, is obtained by the
condition H* , which impliesH , and is equivalent tb® Rf s
complete.

It is immediate that
H* & H°AH/,
and also
H° = H”.
Therefore, wittH=H’ AH"” , we have



H*< H°AH,
as required. Consequently aHd = H . The last part has already
been remarked.

4 Utility-cost
Theutility-cost functionbased onR is

p(p,¥) = min{py: yR} ,
which, when it is defined, tells the cost at pripes of attaining the
utility of a commodity bundle.? According to this definition, for
all p,
p(p, ¥ < pyforall ye Rx
and
p(p, X = pzZfor some z= RX

Uniqueness for suck , provided by strict compatibility, will be
significant when we come to consider the differentiability of as a
function ofp.

Generally we have the cdsnit function

p(p, ) = inf{py. yR},
which is always defined, and coincides with the cost function
when this is defined. When it is, as is assured by the cost-
efficiency part of the compatibility condition, we can say is
attained.For this definition of ,

p(p, ¥ < pyforall ye Rx
and for anyt > p(p, X),
py < tfor someye Rx

In other wordsy is a greatest lower bound of the valpgsrx :
being a lower bound while any value greater is not.
From the form of its definition as lower limit of a fami{ypy

6This form of definition which has reference to an order, any reflexive transitive binary
relationR in the commodity space, serves to emphasize the absence of prior assumptions, even
that utility has a numerical representation. It is important in other connections, ag when ( )
takes special forms which cannot be stated with the usual definition which involves a
numerical utility level, for instance wherip, x) = 8(p¢(X , which makes expansion paths to

be rays and is significant in dealing with price indicesp @ xX=8 p¢ X)+Hv) p (), which
makes them general lines, as required for the “New Formula” of Wald (1939), account of
which is in my 1987 book.
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}yrx Of homogeneous linear functioqy , with gradiegts Rx
p(p, X) is concave conicéal imp.

Theorem 4.1For anyx , the functiop(p, X is attained fpr> 0
if the setsRx are closed.

SincexRx, we also have

p(p, ¥ = min{py: py< px, yRx ,
and, forp > 0, the budget set
{py: py< px
Is compact, and so is its intersection WRx if this is closed.

Hence, by the theorem of Weierstrass, the minimumpyof  in this
intersection is attained.

Theorem 4.2
(i) The inequality
p(p, X < px
holds for allp andk .
(i) The equality
p(p, X) = pX

is equivalent to the condition’H .

Proof (i):
From the definition op

yRX = p(p, X< py
Therefore, sinc&Rx , we have the inequality.

Proof (ii):
With the case of the equality, we have
YRX = py=> px
which isH”. Conversely, from this we directly get

p(p, X) > pX.

7A function f(x) is conical if its graph{(x y: y= f X} is a cone or, what is the same,
f(xt)=f ()t (t> 0).
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But in any case we also have the inequality (i), and hence the
equality.

Corollary If H” holds, thernp is attained.

The Theorem shows it is attained, with the valpe.
Consequently we have

p(p, X = min{py: YR} = px.

Theorem 4.3For allp,

xRy = p(p, ¥ > p( p, Y,
for all x, y.

By transitivity ofR,
Ry = (zRx= zRy
& RXC Ry
= inf{pz: z¢ R4 >inf{ pz z Ry

< p(p, ¥ >p(R Y,
and hence the conclusion.

5 Cost differentiability

The approach to investigating differentiability ofp, X) as a
function of p > o will be made with reference to a given normal
demand elementu, x) (ux=1) , withu> o , strictly compatible
with the utility.

TakeS= Rx, soxe S, and( p=p( p X , SO

o(p) = inf{py: ye 3
Is the support function of the set S. The strict compatibility
provides that
o(u) = ux=1,
and
y € SA y# x= o( < uy.
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We investigate the differentiability of at the pom=u
with gradient to be given by
oy = X8

Directly from the form of its definitiony is a concave conical
function, as remarked already in reference to
Since itis conical, it has aryy adaunding gradient if

o(p) < pyforall p> q
and asupport gradientat the pointg= u if moreover
o(u) = uy?

The bounding gradients of are a closed orthocotvex set,
identical with the closed orthoconvex closure of the originabset ,
or with S itself if this is already closed orthoconvex (as, for
instance, whernR is representable by a continuous increasing
quasiconcave utility function). The support gradients describe the
boundary of this set.

Sinceo is concave, differentiability pt=u depends on the
support gradient there being unique. In that case the differential
gradient exists, and coincides with the unique support gratfient.

From its definition as support function & o, Is the largest
function that admitsS as a set of bounding gradients. Then the
compatibility providesx as a support gradient at the point , and
since this is strict compatibility, it is the unique one which is also
an element ofS. For differentiability, we need to exclude the
possibility that there might still be some others, not elemerts of

The elements of the closed orthoconvex closire Sof are all
bounding gradients of . This is the largest set whichchas as
support function. Its boundary, theupport locus , describes all
possible support gradients, includirg which is a support gradient

8This corresponds to the proposition frequently offered as an unrestricted mechanical rule and
referred to as “Shephard’s Lemma”, or the “Shephard-Uzawa-McFadden Lemma”.

9A function f(x) hasl(x) as dinear bound if this is linear anfl X< ( x) for al in the
domain, and it is aupport at a point if alsby)}= [y), in which case its gradient is a
support gradienbf &t the point x= y,for which a necessary and sufficient condition is that

(x) — f(y) < (x— y)for all x.There is some difference in dealing with a conical function.

For a conical functioh(x) , any isleounding gradient iff )x< vx for allx, and this is a
support gradientat a point yif also § y= vy. Discussion of these definitions and related
points is in my 1987 book, Pt. V, Ch. 2.

10 A setX isorthogenousif x X X y> & Xand orthoconvekalso convex.

11 The Support Theorem for convex functions assures the existence of a support at any interior
point in the open set where it is defined. But here we already have a support provided at the
pointu, with gradient given by. We appeal now just to the Differentiability Theorem which
asserts differentiability at exactly those points where the support is unique.
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of o at the point.
While, from strict compatibility,

ulNnS={y: uy=1A ye §=1{ %,
this being the set containing the elemegnt alone, all the support
gradients tor at the point describe the closed convex set

X={y:uy=1Aye S}= un's

which includesx . The question is wheth®  is properly larger
than{x}.

There can be no comment about this without entertainment of
some auxilliary assumption about the utiRy R is represented
by a continuous semi-increasing quasiconcave function, then
S= Rxis already closed orthoconvex, &= S . Then immediately
X = {x}, and the issue disappears. But without some limitation on
R this is not assured.

The assumption tha& = Rx is closed will suffice. For, with
this, andu > 0, so that

uy=1Ay< z= uz> 1,

the intersection of the closed convex chsE?e f  with its
supporting hyperplanal is unchanged wign is replaced by the
convex closure< S> of . Then
X=ulns
=uln <S>

=(ulns
= < {x} >

= {x}.

Hence:

Theorem 5.1 If (p,x) (p> 0 is a demand element strictly
compatible with a utilityR for which the séRx is closed, and
p(p,X) is the utility-cost function based orR thepn is
differentiable as a function @f  with gradignt = x.

6 Demand-utility logic

With pricesp, and an amour of money to be spent on some
bundle of goods, there is the budget constrpii M. Given a
function x = F(p, M) that determines the unique maximum of a



14

function ¢ under any budget constraift, iglemand function
which hasp as a utility function, orderived fragn

With any given functiorf, it may be asked whether or not it is
consistentin being so associated with a utility function. The
functionF first must have the properties

PF(p. M) =M, F(p,M = R M!p1),
usually attributed to consumer demand functions. Then a function

¢ is sought for which, for alp and M, x= H p, M is the unique
maximum of¢ under the constrajt < M, that is,

py< MAY# X = o(y <o(X.

For simplification, introduce thbudget vector &= M! p, so
the budget constrainpx= M is stateak=1. The&tandard
demand functior determines thermal demand function its
normalization given by

f(u)=F(u,1),
with the property
uf(u) =1,

from which it is recovered as
F(p, M) =f(M'p).

It is simpler, and has other advantage, to deal with the question
aboutF through its normalization  For similar reasons, a utility
orderR can take the place of the utility function. If it is the order
represented by the function, it provides all that is important about
the function. But it is natural to have an arbitrary order in view,
free of such representation.

A demand functiorf icompatible with a utilityR if every
demand elemenfu,x) which, being such that f(u , SO it
belongs tof , is compatible witR . With;(R  denoting this
condition,H, asserts the existence of a such a comp#&ible , or the
consistencyf f.

Similarly H}(R) can asseristrict compatibility , and§| the
strict consistencepf f.

ForH;(R) we have that for ali , ar= f(y

UY<1AY# X= XRW ~ YyRX
Therefore, for any cyclic sequengg U, ... , U,, W, ... ,

UpXg STA WX <IA---AU, 1% <1
U
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XoRX ... RX%,
U
XoRX%,, .
But also
UpX < 1A X% # %, = ~ X RX.
Therefore
UpXy SIAUX <IAN---AUY, %<1
U
Xo = X
This condition onf , to be denotdd} . has been seen to be a
consequence of the strict consistency of
H} = K}

From the cyclic symmetry, it is equivalent to thiict cyclical
consistencygondition

UpXp STAWX <1IA---AUY, x<1
Y
Xo =X == Xy .
Then it is also equivalent to

UpXp STA WX S IA-AU, 1% <1
N
Xo ZX VX FE RV -V X1 #F K
J
U X > 1.
and to
UpXp STA WX S IA-AU, 1% <1
N
Xm 7 X0
U

U X > 1.

This last form shows the condition obtained by Houthakker
(1950), elaborating the ‘revealed preference’ method of Samuelson
(1948). A part of it is that

UpXt KIAX #% = UX>1,

which is Samuelson's conditida.
Let Rf(u), the directly revealed preferenceelation of f
associated with the budget , be defined by

12 samuelson dealt with the two-commodity case, for which his and Houthakker's condition
are equivalent, as proved by Rose (1958), and again by Afriat (1965).
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XRe(Uy= x= f{yAuy <1,

and letR; , therevealed preferencerelation of {f be the transitive
closure of the union of these,

RfZL:JRf(LD-l?’

This is reflexivé4 because t;(U)  are reflexive, and transitive
by construction as a transitive closure, so it is an order.
Another expression foﬂ(} , proceeding from the original

statement, is that, for=f(u) |,
uy <1AYR X= y= X
Sinceuy <1 = xRy, this is equivalent to

Uy<1Ay# X= xR W ~ yR X
that is, H( R) , so we have
H; = K, = H/(R) = H,
and hence:

Theorem 6.1 H; < H}(R) & K.

In other words, a demand function is strictly consistent, or strictly
compatible with some utility ord&r , if and only if it is strictly
compatible with its own revealed preference order, and this is if
and only if the strict cyclical consistency condition hotéls.

The strict revealed preferenceelation of fis the strict or
antisymmetric part oR;

P=RNK,
and therevealed indifferencerelation is the symmetric part
Ef = Rf N Rf .

13 Also Hirofumi Uzawa, dealing with this subject in the 1950s, made use of the transitive
closure.

14 Rather, it is reflexive just at points in the range of the demand function. Without altering
anything important but to give respect to the definition of an order, it could be made reflexive
by taking its reflexive closure, or union with ‘=".

15The present theorem has no requirements at all about the utility order, or about the demand
function. Samuelson and Houthakker sought a continuous numerical utility, involving
auxilliary assumptions about the demand function and a differential equation method. The
following asks less about the demand dunction and the utility: for a demand function to have
a lower semicontinuous numerical utility, it is necessary and sufficient that Houthakker's
condition holds and the sdts!(x)  be closed.

16From recollection | believe Kotaro Suzamura offered a similar proposition.
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The directly revealed strict preferencerelation is the
irreflexive part ofR; ,
S=RnND
so this is irreflexive by construction, though not transitive. Its
transitive closure,

_}
T =9,
is the revealed strict preference relation, transitive by

construction, not necessarily irreflexive.
Other expressions fdft} are

(i) E;=I
(i) Pr=5
(iy P, =T,

(iv) Sy is transitive
(v) T;isirreflexive
(i) Ss=T;

With revealed preferences there can be none of the “violation
of transitivity” sometimes entertained, and no inconsistencies
obtained from them alone. They are transitive by construction and
any contradictions come only when they are taken together with

the less well-noticed revealed non-preferences. With Samuelson,
for instance, these are provided by

py < pXA y# X = ~ YRX,

as part of the strict compatibilitd” , or instead there are fewer
coming from
py < pX = ~ YRX,

which is theH” part of the weaker compatibility condittdn

7 Demand-utility calculus

Consider a normal demand functibn , strictly compatible with a
utility R for which the setsRx are closed. gf is the utility-cost
function based oR then, for any

UXx=1Ap(UuX =1« x= f(y.
For a fixedu andk= f(u) ,sox=1 ,the function
p(v, %) = min {vy: YR
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is defined for alv , and such that

p(v, x) < vyfor all ye Rx
and
p(Vv, X) = vzfor unique zc RX.

Now with x already fixed, and

p=pV,X), W=p 'y
we have
VZ=p, Wz=1.

Sincep is concave in , uniquenesszof is equivalem to
being differentiable as a functionwf , with gradient

Pv = L.
Also,
1=wz
> p(w, 2 Theorem 4.2
= min{wy: yRz} defp
> min{wy: YRx} zRxand Theorem 4.3
= p(W, X) defp
= p~lp(v, X def wand conicap
=1 p=p(V,X.
so that
p(W,2) = p(W ¥ = 1.
But

wz=1Ap(w2a=1= z= {w.

Hence z= f(w) , which also establishes uniquenesszof as a
support gradient g .
By the differentiability theorem, we now haye differentiable,
with gradient
po = f (W), wherew= p1v.

If a concave function in an open set is differentiable
everywhere, then it is continuously differentiable. From this now
follows the continuity off (p~!v) as a function ofl”  This goes
some way towards continuity 6f , but further restrictiondRon are
required to obtain thaf

17This is continuity of the ‘compensated demand functionr’.

18Katzner (1970) and Afriat (1980, pp 89ff) give proofs that a demand function is continuous
if it has a continuous utility function. Afriat also proves continuity on assumption of a utility
order for which the se®x are open atity= cl PxC Py.
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If f is given to be differentiable, them, =z can be
differentiated, to obtain

Pviv = Ly = 4y V\[);
where
w, = (Vp '), =p 1= Vp~?p, =pl(1- W2),
so there is the formula
Pv'v = p_lzw(l - WZ’)
If now f is given to have continuous derivatives, then  has
continuous second derivatives. It then follows, by a theorem of the

differential calculu&® , that the matrpx., of these is symmetric.
Sincep is concave m , it must also be negative semidefinite.

Now letv = u. Thenp =1 w= u,z= X, and we get
Puuy = S

where
S=X%(1—UuX).
In terms of the standard demand functioa F(p, M) which
derives fronx = f(u) withu= M~!p, we have
Xp = )<U/Lyjl XM - qu]/\j!
and
u =M1, u, =—-pM?2=—-uM",

so there is the alternative expression

S= M(X% + xu X) .

From here, but for the factdvl  which makes no significant
difference, s is seen identical with the matrix d@lutsky
coefficientsusually given as

Sij = 0%/0p + (0%/OM) % .

We now have the following:

Theorem 7.1For a demand function with continuous derivatives
to be strictly compatible with a utilitR  for which the sé®x  are
closed, it is necessary that the Slutsky matrix be symmetric and
negative semidefinite.

For instance the demand function

19For instance, if;, andl, both exist and either one is continuous, then they are equal.
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x = a(M/pa),
for anya € C, with normalization
X = a(1/ua),

Is strictly compatible with the utility function
d(X) = max{t:at< x},

and the Slutsky coefficients all vanish, so the matrix is both
symmetric and negative semidefinite.

This example of “The Case of the Vanishing Slutsky Matfix"
should have mystery for any follower of Slutsky, who required a
condition properly intermediate betwees being negative
semidefinite and negative definite, impossible if vanishes.

Slutsky, and others, consider the problem

maxo(X) : px=M,

where¢ is assumed differentiable, whose solution is to determine
uniquex = F(p, M) . From first order Lagrange conditions

¢I' = /\p7
the symmetry o6 is obtained. Then from second order conditions,
the symmetric matixs is required to be something more than
negative semidefinite, going towards its being negative definite,
though it cannot possibly be that sinegg = o0 is an identity.
This Slutsky negativitondition is that

q+4-p = agsd <0,
whereq | p meangy = tp for some~x ,0 andf- p is the
denial.
Another excess requirement, related to this one, also comes
from the approach. For, from the Lagrange conditions with the
budget constraint, we have

QX =ApX=AM
and so, eliminating the Lagrange multiplier,

M _1p = (qu/X) _1¢x’ )
which determines the budget vectoe= M ~'p  as a functior. of
The demand function, which at first just determires as a function
of u, therefore has an inverse.

We have followed a path initiated by McKenzie (1957) for
obtaining necessary conditions, requiriag to be symmetric and

20 Journal of Economic Theo#y (1972), 208-223.
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negative semidefinite. Though lesser requirements than Slutsky's,
these still had promise as sufficient conditions.
The proof of sufficiencs® has several parts.

1.

4.

5.

With the elements of angy = 0x0uy of , we may
form
X = % (%k — %) + X( % — %)+ x(Cix— ¥,
Such coefficients are important for Frobenius's theorem on
the integrability of linear differential forms. The idenfiy

2o Xk = 8§ — $
assists the discovery that
Xjp = 0 < § = §,
by which thesymmetry of sis identified with classical

integrability conditionsfor the linear differential form with
coefficientsx = f(u).

. From symmetry o§ there is obtained the existence in the

neighbourhood of any point of functions and , the
integrating factorand integral such thaty = v,

. From this local form of the condition there is passage to a

global form, with a single integrat  defined everywhere in
the budget space. This can be either an increasing or a
decreasing function, and it can be chosen decreasing, with
1 < 0, if necessary by replacing by

Then s being negative semidefinite assurgs 5
guasiconvex.

Sincey is decreasing quasiconvgx, given by
d(X) = min{y(v): vx< 1}

In any case increasing quasiconcave, is such that
(u) = max{¢(y): uy< 1} .

6. Then

ux=1Ap(U) =¢(X < x= f(v,

and this shows$ s strictly compatible with

211n Afriat (1980); it is a main objective of this entire volume.
22 Afriat (1954), reproduced in Afriat (1980), pp 214ff.
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With the expressiors= x, (1— U X), the Slutsky matrix is
expressed as a product of a Jacobian, and a factor which, because
ux=1, is idempotent and so a projector, of rank- 1. This
exposes otherwise obscured features about the Slutsky matrix, for
instance the identitgu’ = o , which excludes the possibilitysof
being negative definite, or that the rank ©f ns-1 for the
invertible case and otherwise less. It also provides a way of
viewing Hicks's distinction ofincome andsubstitution effects,
using resolution of a budget differentidlu , and hence the
corresponding differentialx = %, dU , into components by means
of the projector and its complement:

du' = (UX)dd+ (1— d % du.
The part
(u'xX")du = (X du)

leaves the budget direction unchanged, or corresponds to an
income change while prices are fixed, making the “income effect".
The complementary part, when there is a utility, keeps this
constant, and is the “substitution effect”. Here we see any change
resolved by means of projections into a sum of Hicksian “effects".

8 Demand correspondences

A demand correspondence any collection of demand elements,
so it is anyD C B x C for whichpDx=- px> 0. Thedomains
B C B,C C Care given by

B={p:pD# O} ,C={x Dx# Q,

so alsdD ¢ B x C.
The relationE defined by

UEx= pDxA u= (px)' p

iIs such thatuEx = ux=1, so it is anormal demand
correspondence, in this case tteemalization [@f
A normal demand functioh provides the correspondé&nce for
which
UEX & x= f(U .

Distinguishing the case of & that represents a function, we have
that, for allu, possibly in some restricted domain,

UE# O UEX Y= x= .
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With a standard demand functidh , the correspondéhce

given by
pDx= x= F(p pX
determines the demand elements that belong to it.

Questions that up to now have concerned a single demand
element or a demand function can be applied equally well to an
arbitrary demand correspondence.

It can be noted that strict consistency, or strict compatibility
with some utility, of a correspondence, or possibly many-valued
demand function, implies it is single valued and so an ordinary
demand function. For if commodity bundlgs X are associated
with the same budgeat, soy =1, ux =1, from Samuelson's
condition we have

Uy <1AUX < 1= X=X,

and hencey = X .

In dealing with correspondences which are not functions,
instead of strict consistency it is appropriate to entertain their
consistency, in any case the more basic requirement from
economic principles.

Another point is that the usual treatment of demand functions,
following Slutsky, and then Hicks and Allen, deals with a
differentiable utility function, required by the Lagrangian method
employed. An unobserved consequence is that the demand
function has to be invertible. In “The Case of the Vanishing
Slutsky Matrix" the demand function is not invertible and the
utility function not differentiable.

We deal now with arbitrary demand correspondences, and later
finite ones for which constructive methods become possible.

A demand correspondend2  will be dealt with through its
normalizationE , so any condition da@ becomes oneDon The
elements are taken to be indexed in an arbitrarly set , so

E={(U,%X)}rer-
The case of a demand function requires
u. = U = X = X,

and for a 1-1 correspondence,

U =U & % = X%.
With
r4s = U # WV X% # X,
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to exclude duplicate elements, as will be assumed, these conditions
are equivalent to

r#s = u#u,
and

r#s = U # WA X% # X
Thecross-coefficients
Drs = U X — 1

are determined from ordered couples of demand elements
belonging toD. Then there aohain-vectors

Drij...ks = (Dria Dij7 cee Dks)

formed from these.

Utility has so far been attributed to the commodity space, from
which derives an indirect utility, for the budget space. Instead out
of regard for a basic symmetry, we can deal with relations defined
directly between demand elements. These can then induce
relations in the commodity space, as usual, and equally well and in
just the same manner, also in the budget space.

A relationW,, C | x | between demand elements is defined by

IWps=(V i..)D,. s <0.
In terms of thaV C Bx C which makes
UWX & ux< 1,

a relation Wy C I x| between demand elements is given
immediately by

r'wps = u. W,
S{o)

r'Wps < D, <0.

ThenW,, is identical with the transitive closure,
_’
Wp =Wp.
It is both reflexive, since
DTT:uTXr_]-: 07

and transitive, from this expression. Hence it is an order, of the
demand elements that make the given correspond®nce

The usual revealed preference relatilp C Cx C | in the
commodity space, is now given by the formula

XRpy=(V Wp $ x= XA UK 1.
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But just as well, in a dual fashion, arelathC Bx B  instead in
the budget space can be defined by

UHv=(V 'H $ ux<1A ¥« Uu.
Any orderRC Cx ChasaduaR C Bx B where
UR v= (V UWX( A vWy xRy
andanySC Bx B hasadu8 c Cx C where
uS'v= (Vv VWY( A uWx xSy.

SD = F%? R) = % .
These are not complete orders. But in a comparable fashion, when
we have direct and indirect utility functions vy  with the usual
properties, semi-increasing and semi-decreasing, quasiconcave and
guasiconvex, so they are connected by

V=97, ¢ =197,

Then we find

where

¢"(u) = max{g(x) : UWR, (X = min{¢( B: uWK
if R, Sare the complete orders they represent, then these are

connected by
S=R, = S.

The difference between and |, for going frGm Bto &hd
to B, arises just because we want the utility equality) = ¥(u)
for a compatible demand elemgfot, x), and oK) = —y( U,
or wantR andS to be matched similarly. With replaced by the
converseS’ , oty by, the difference disappears.

9 Canonical order
A canonical orderof Ds any complete ordé®  such that
sWr = D,>0 9r= D,>Q

Y being the antisymmetric part % . This is given By= W'
since W is complete. Hence the conditions, taken in opposite
order, are equivalent to

D, <0 = rmWs, D,< 0= 1Vs.

23This is quite like the way in LP the dual of a standard max problem is given as a standard
min problem instead of another standard max problem, though there it is just for simplicity.
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From the first condition here, sind¢#®’ Is transitive, it follows
that Wp C W. From this, with the second condition as originally
stated, we have

r'Wps = Ws = D, > Q
and hence
r‘Wps = D, > 0.

This last condition is restated by the condition K given by
KD = Dr...s < 0 = Dsr > 07

which therefore has appeared necessary for the existence of a
canonical order.
Also it is sufficient. FolKp , now taken in contrapositive form,
IS equivalent to
D, <0= ~sW

and from the definition oVp

D, <0 = r"Wps.
These combine to give
D, <0 = rVps.

By Theorem 1.2, Corollary, there exists a complete ortler  such
that
Wp CW, Vp C V.

Immediately, this has the properties of a canonical order, hence the
following.

Theorem 9.1For any demand corresponderidge , the condition
Kp is necessary and sufficient for the existence of a canonical
order.

The strict cyclical consistency condition, of Houthakker,
formerly applied to a demand function, now in application to an
arbitrary demand corresponderize produces a condition

Kp =D, s <OAX # X% = D, > 0.
A restatement of this condition is that

'WpsA % # % = 0,> 0
and equivalently,
DSTSO/\XT#ij ~ r\/\bs.

But we already have
Drs S 0 = rWDS
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So this is equivalent to

Dsy SOAX # X = S\HT.

Here it can be noted that another statement of the con#itjon
is that it requires the relatidp = Wp N'W,,  of equivalencéih
to be such that

rps & X = X,
and with this it follows that
'Vps < IWphSA % # X .

By Theorem 13 , Corollary, there exists a complete oitler
such that

and for this we now have

D,s <0 = s,
and
Dy SOAX # X = T.

SincelV is complete so that= W', these conditions in reverse
order are equivalent to

MWsAX #% = D, >0 Vs= 0D,> 0.

These are the conditions required for a complete arder  to be a
strict canonical order.

It has appeared tha;, is a sufficient condition for the
existence of a strict canonical order.

Also it is necessary. For from

D,. <0 = rWs,

equivalent to the second requirement siWge Is complete, taken
with the transitivity ofV , it follows thatV, € W. Then from this
with the first,

'WpsA % # % = D, > Q

which is another statement K, .
We now have the following.

Theorem 9.2For any demand corresponderide , the condition
K}, is necessary and sufficient for the existence of a strict
canonical order.

Beside the strict cyclical consistency conditidf, , of
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Houthakker, stated
Drs...r S 0= X = X,

which assures uniqueness of a bundle chosen under a budget, there
Is the condition
Drs...r < 0= U = u,

which assures uniqueness of a budget under which a bundle is
chosen, and also
Drs...r < 0= r= S

which, with exclusion of duplicates, assures both, and provides a
1—1 correspondence between bundles and budgets having the
relationD.

Instead, to abandon both of these inessential uniqueness
requirements, there is tiegclical consistency conditiog  stated

Drs...r < 0= Drs - Oa

which is implied by all the foregoing, and is most appropriate for
dealing with a general demand correspondence. An alternative
statement is that

D, , < 0= D, .= Oa

or, what is the same,
~ Dy » S 0.

Theorem 9.3A demand correspondence is (strictly) consistent, or
(strictly) compatible with some utility order, if and only if it is
(strictly) compatible with its own revealed preference order, and
this is if and only if the (strict) cyclical consistency condition
holds.

The proof is similar in each case to that of Theorem 6.1.

In application to a finite demand correspondence, cyclical
consistency becomes a finitely testable condition. The last theorem
represents it as a test for consistency of the correspondence, or the
existence of a compatible utility. But it is also a test for the
solubility of a certain finite system of homogeneous linear
inequalities?* The algorithm for finding a solution depends on
first taking the demand elements in a canonical order. Any solution
Is associated with compatible utility functions with the classical

24The 1960 paper contains the earliest account, followed by 1964, 1970 (contains a synopsis),
1973, 1974, 1981 (deals with utility subject to the conical restriction important for price
indices), and 1987; also Varian (1992).
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properties, concave and semi-increasing, finitely constructible in
either polyhedral or polytope form. Alternatively, utility functions
are found in the budget space, convex and semidecreasing, from
which compatible quasiconcave semi-increasing functions in the
commodity space are derived by linear programming formulae.
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