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1 Demand and utility
A  is any for which ,demand element p x B C px² Á ³ � d � �
showing a commodity bundle demanded at prices , thex p
expenditure px. being Then with

u px p~ ² ³c� ,

which is the associated , is such that , sobudget vector u x  ux² Á ³ ~ 1
it is a demand element, in this case the ofnormal normalization 
²p xÁ ³.  Various conditions involving demand elements can be1

stated well and more simply in terms of their normalizations.
 A is any which is reflexive andutility order R C C � d
transitive,

xRx,  xRyRz  xRz¬ ,

xRy x y.being the statement that has at least the utility of 2

 The of any relation is the relation holdingchain-extension R R 
S

between extremities of R-chains, given by

xRz y xRyR Rz.
S

� ² v Ä³ Ä

This is the same as the , or the smallest transitivetransitive closure
relation containing , being transitive, containing , and containedR R
in every transitive relation that contains The extended conditionR. 

xRyR Rz xRzÄ ¬

is equivalent to transitivity, which therefore is equivalent to the
condition

R R
S

� Á

for  to be identical with its chain-extension, or transitive closure.R
 With as the and the , whereR complement R  converseZ

1 In present notation, with  as the non-negative numbers, is the (non-6 B  budget space ~ 6�

negative row vectors) and the  (column vectors). Then any C   commodity space p B,~ �6�

x C px  x p. � �determine for the value of the commodity bundle at the prices Sometimes6

when dealing with demand functions  should be the positive numbers. As a syntax rule, a6

scalar multiplies a row vector on the left and a column vector on the right.
2 With a binary relation , beside the usual because is set, also the statements R x y R R xRy,² Á ³ �

x Ry y xR x y  R x R� � Á ³or are available to assert is an element of , or that has the relation  to²

y.
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xRy xRy xR y yRx� � �,  ,Z

we have
² ³ ~ ² ³ ÁR RZ Z

so there is no ambiguity in the expression for the R  converse
Z

complement.
 The relation of equivalence in , or the relation, isR indifference 
the symmetric part

E R R~ q Z,

an equivalence relation, symmetric, reflexive and transitive, since
R Eis an order. The equivalence classes , which are equally the%

sets  or the , these being the same from symmetry, are suchxE Ex
that , so their union is , andx E C� %

xEy E E  xEy E E O¯ ~ Á ¯ q ~ Á% & % &

so any pair are either disjoint or identical. Hence they constitute a
partition of , expressing as a union of disjoint subsets.C C 
 The antisymmetric part of , the relation, isR strict preference 

P R R~ q
Z
,

which is a strict order, irreflexive and transitive , since is an3 R 
order.
 The subrelations and form a partition of E P RÁ

P E O  P E R.q ~ Á r ~

 An order is  ifR complete

� xRy  yRx¬ ,

so for any pair of elements, if they do not have the relation one
way, then they have it the other, or they have it one way or the
other and possibly both. That is, , and equivalently, R R P R .

Z Z
� ~

 A order  is such thatsimple R

xRyRx x y.¬ ~

For an order, this is equivalent to

xRyR Rx x yÄ ¬ ~ ~ Ä

Otherwise, this is the condition for any relation to be ,R anticyclic
or for the absence of cycles of distinct elements. For a reflexiveR-

3 Beale and Drazin (1956) recognize this transitivity which is basic for the scheme adopted
here. Also indifference, sometimes treated as absence of preference and then problematic
because without transitivity, is here taken to be a positive condition made from comparison
both ways, necessarily transitive, as required if we are to have an equivalence relation.
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relation, it is the condition for the transitive closure to be a simple
order.
 The relations and of and are given byI D identity distinction 

xIy x y  xDy x y� ~ Á � £ .

For any simple order , the symmetric part is , soR E I~
equivalence in reduces to identity. In this case the antisymmetricR 
part is identical with the irreflexive part, , from which P R D R~ q
is recovered as the reflexive closure, R P I.~ r
 A of a simple order is another which properlyrefinement R S 
contains it,

R S  R S.� Á £

 A order is one which is simple and complete.total 

Theorem 1.1  Any simple order is either a total order, or it has a
refinement, and not both.

 Suppose is a simple order, but not complete, so for some R x yÁ

x y, xRy, yRx,£ � �

and let be with the element adjoined. Then , reflexiveQ R x y  Q² Á ³
since is reflexive, is also anticyclic. For any cycle must beR Q-
either an cycle, impossible since is anticyclic, or it containsR- R 
the link together with an chain from to , which by²x y  R- y xÁ ³
transitivity of implies , contrary to hypothesis and so againR yRx
impossible. Since therefore is reflexive and anticyclic, itsQ 
transitive closure is a simple order. It properly contains , sinceR
from with the transitivity of we haveR Q R �

R R Q~ � Á
S S

and also while showing that Hence it is axQy xRy  R Q. 
S S

Á £�
refinement of R.
 Now suppose is a total order, simple and complete. Then itT 
cannot have any refinement. For were one, we would haveR 
T R  x y� Á Áand for some 

x y, xRy, xTy.£ �

But then because is complete, and then also  and then,T yTx  yRxÁ Á
since is simple, so there is a contradiction.R x y  ~ Á
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Corollary  In a finite set, any simple order is either a total order, or
it has a total order refinement.

 For, because the set is finite, so the set of orders is also, any
chain of refinements of a given simple order must terminate. This
can only be in a simple order without refinement and hence, by the
Theorem,  in a total order, refining the original.

Theorem 1.2  Any simple order is either a total order, or it has a
total order refinement.

 This restates the theorem of Szpilrajn (1930). Above is a proof
for the finite case. The general proof depends on the axiom: every
chain in a set of sets has a maximal refinement. A in a set chain S
of sets is a subset such that, for any either C S A B C  A B� Á � Á �
or It has another chain as a if AB A. D refinement C D. � �
maximal chain is one without refinements.
 If a given simple order is a total order, then it has noR 
refinement, and otherwise it does, by Theorem 1.1. In that case let
S R Sconsist of and its refinements. By the axiom, the chain in 
which consists of alone has a maximal refinement Then theR M. 
union of the elements of is a refinement of and itT M M R  ~ r Á
must be a total order. For otherwise, by Theorem 1.1, it would
have a refinement and then the set obtained by adjoiningT  M  b bÁ
T  M S M, Mb to would be a chain in that refines contradicting that 
is maximal.

For any order , the quotient relation , in the quotientR R EH ~ °
space  whose points are the equivalence classes of , is a9 ~ C E E°
simple order, such that

E E xRy% &H ¯ Á

such  being defined becauseH

xEx yEy . . xRy x RyZ Z Z Zw ¬ ¯ .4

4 The ‘indifference map’ introduced by Pareto, which represents utility free of the numerical
aspect, brings attention to the utility order as constructed from a simple order of indifference
classes. It really is a preference map even though it may have been called an indifference map
because, from monotonicity considerations, when the classes are given there can be no doubt
at all about their order.
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Theorem 1.3  Any order is contained in some complete order with
the same equivalence relation.

 Apply Theorem 1.2 to the quotient relation .H

Corollary  R R  For any order there exists a complete order suchb

that
R R  P P .� Á �b b

 For
R R . . P P  E E .� ¬ � ¯ ~b b b

 A is any It the utilityutility function C . represents � 6¢ ¦
order for whichR 

xRy x y .� ² ³ � ² ³� �

In this case, for the symmetric and antisymmetric parts,

xEy x y  xPy x y .¯ ² ³ ~ ² ³Á ¯ ² ³ � ² ³� � � �

Any utility order so representable by a utility function is
necessarily complete.

2 Demand–utility compatibility
Relations connecting a demand element and a utility order ²p x  RÁ ³
are defined by

H py px  xRyZ � � ¬ ,

which corresponds to the  familiar in cost-benefitcost-effectiveness
analysis, and asserts is as good as any bundle that costs no more,x 
and

H yRx  py pxZZ � ¬ � ,

cost-efficiency x , that any bundle as good as costs as much.
 While represents , making a bundleH  utility maximization x Z

that has maximum utility for the money spent, represents H  costZZ

minimization x , making have minimum cost for the utility
obtained. These are equally compelling, generally independent
basic economic principles. A later issue involving stricter
conditions concerns whether is the unique bundle admitted byx 
these conditions.
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 The combination
H H H� wZ ZZ

defines  between the demand and the utility.compatibility
 In terms of normalizations, these conditions become

uy   xRy,  yRx  uy ,� ¬ ¬ �1 1
respectively.
 Introducing relations byW, V, I B C � d

uWy uy ,  uVy uy ,  uIy uy ,� � � � � ~1 1 1

by which any commodity bundle is or a budgety within, under on 
u, the conditions are stated

uW xR,  Rx uV.� �

 The following has reference to a given utility order , andR
demand element with normalization ² ²p, x  u, x .³ ³

Theorem 2.1  If is complete and is closed, then R xR H H .ZZ Z¬

 From the hypothesis, together with H , we have to deduce H .ZZ Z

We have

 uVy yRx H  ¬ � ¡ ZZ contrapositive

  xRy ¬ ¡ completeness

  �uV xR.

But is closed, and is the closure of HencexR uW uV. 

uW xR,�

which is H . Z QED
 We have  at a point if there is a bundle whichoversatiation y z 
is less but as good, that is,

z y zRy.� w

The denial of such a possibility, or , requiresinsatiability

z y zRy� ¬ � .

Theorem 2.2  If  is insatiable, then R H H .Z ZZ¬

 With denial of , and assumption of , we will find theH HZZ Z

insatiability hypothesis contradicted.
 1 1From the denial, for some Then forzRx uz  z. uy  w � �
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some Then by , from we have , which withy z. H uy  xRy� �Z 1
zRx zRy z yand transitivity gives , and this together with �
contradicts the hypothesis. QED
 A function is �²x  non-decreasing  semi-increasing  or³ Á Á
increasing according to the conditions

x y x y� ¬ ² ³ � ² ³Á� �

x y x y� ¬ ² ³ � ² ³Á� �

x y x y� ¬ ² ³ � ² ³� � � .5

The three different conditions are increasingly restrictive for a
continuous function. For a differentiable function  with gradient�

g they require
g o  g o  g o.� Á � Á ��

 For an example of the intermediate case, the Leontief type
function

�² ¸x t : at x³ ~ � ¹max ,

for any , is semi-increasing but not increasing.a C�
 Representation of utility by a semi-increasing function assures
insatiability.

Theorem 2.3  If the utility is representable by a continuous semi-
increasing function, then H H .Z ZZ¯

 With the representation by a continuous function, we have the
completeness and closure which provides  by TheoremH HZZ Z¬
2.1. If also the function is semi-increasing, the insatiability
condition in Theorem 2.2 is obtained so that H H . Z ZZ¬ QED
 Consequently, for the conjunction required by compatibility,H 
under such usual conditions we have both  and H H H¯ ¯Z

H . HZZ ZOr in place of the traditional  of demand analysis, for cost
effectiveness or utility maximization, the for cost-efficiency orH  ZZ

cost minimization can serve just as well, and permits another
development.

3 Strict compatibility
The condition

H py px yRx  y xo � � w ¬ ~ ,

5 For notation, for all , , x y x y  for all i.x y x y  i x y x y x y� � � � � � w £
�� � � � �� �
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here put symmetrically, has alternative statements,

(i)  ,py px y x yRx� w £ ¬ �

which exposes a relationship with , andH Z

(ii)  ,yRx y x  py pxw £ ¬ �
with H .ZZ

 We also consider

H py px y x  xRy yRx* � � w £ ¬ w � ,

which, in the case of being complete, is equivalent to (i), and soR 
to .H o

 According to , any bundle as good as and costing no moreH x o

must be identical with Reflexivity of already allows itself isx. R x 
such a bundle, so the converse is already present.
 The antisymmetric or strict part of being , inR P R R~ q

Z

terms of this
H py px y x  xPyi � � w £ ¬ .

For the case where is complete,  and hence , soR R R P R
Z Z
� ~

H H .i becomes the same as o

 As appears from forms (i) and (ii), when is adjoined toH  o

each of and we obtain the versions of theseH  H  strict Z ZZ

conditions, that require to be the unique bundle which attains thex 
required maximum utility, and minimum cost.
 While the conjunction of and provides compatibility ,H  H  HZ ZZ

we have the conjunction of the strict versions andH H  o w Z

H H  strict compatibility. o w ZZ to define Since

² w ³ w ² w ³ ¯ w ² w ³H H H H   H H Ho o oZ ZZ Z ZZ , 

this condition is also H H.o w

Theorem 3.1  Strict compatibility, simultaneously requiring strict
cost-effectiveness and strict cost-efficiency, is obtained by the
condition , which implies , and is equivalent to if isH H H  R i o

complete.

 It is immediate that
H   H Hi Z¯ wo ,

and also
H   H .o ¬ ZZ

Therefore, with , we haveH H H� wZ ZZ
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H  H Hi ¯ wo ,

as required. Consequently also . The last part has alreadyH Hi ¬
been remarked.

4 Utility-cost
The based on  isutility-cost function R

�² ³ ~ ¸ ¢ ¹p, x   py yRx ,min

which, when it is defined, tells the cost at prices of attaining thep 
utility of a commodity bundle According to this definition, forx.  6

all pÁ
�² ³ � � Áp, x  py y Rx for all 

and
�² ³ ~ � Àp, x  pz z Rx for some 

Uniqueness for such , provided by strict compatibility, will bez
significant when we come to consider the differentiability of  as a�

function of p.
 Generally we have the cost limit function

�² ³ ~ ¸ ¹p, x   py  yRxinf  : ,

which is always defined, and coincides with the cost function
when this is defined. When it is, as is assured by the cost-
efficiency part of the compatibility condition, we can say  is�

attained. For this definition of ,�

�² ³ � � Áp, x  py y Rx for all 

and for any t p x� ² Á ³Á�

py t y Rx� � À for some 

In other words,  is a greatest lower bound of the values ,� ¸py¹yRx

being a lower bound while any value greater is not.
 From the form of its definition as lower limit of a family ¸py

6 This form of definition which has reference to an order, any reflexive transitive binary
relation  in the commodity space, serves to emphasize the absence of prior assumptions, evenR
that utility has a numerical representation. It is important in other connections, as when ( )� p, x
takes special forms which cannot be stated with the usual definition which involves a
numerical utility level, for instance when , which makes expansion paths to�² ³ ² ³ ² ³p, x p x~ � �

be rays and is significant in dealing with price indices, or ( ( ) ( ) ( ), which� �p x) p x pÁ ~ b� �

makes them general lines, as required for the “New Formula” of Wald (1939), account of
which is in my 1987 book.
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¹ �yRx py y Rxof homogeneous linear functions , with gradients ,
�²p, x  p.³ is concave conical  in 7

Theorem 4.1  For any , the function is attained for ,x p, x  p 0�² ³ �
if the sets  are closed.Rx

 Since , we also havexRx

�² ³ ~ ¸ � ¹p, x   py  py px, yRx ,min  :

and, for , the budget setp 0�

¸ � ¹py  py px :

is compact, and so is its intersection with if this is closed.Rx 
Hence, by the theorem of Weierstrass, the minimum of in thispy 
intersection is attained.

Theorem 4.2

 (i) The inequality
�² ³ �p, x px

holds for all  and .p x

 (ii) The equality
�²p, x px³ ~

is equivalent to the condition H .ZZ

Proof (i):

 From the definition of ,�

yRx  p, x py¬ ² ³ �� .

Therefore, since , we have the inequality.xRx

Proof (ii):

 With the case of the equality, we have

yRx  py px¬ � ,

which is  Conversely, from this we directly getH .ZZ

�² ³ �p, x px.

7 A function is if its graph is a cone or, what is the same,f x  conical x y y f x  ² ³ Á ³ ¢ ~ ² ³¹¸²

f xt =f x t t 0 .² ³ ² ³ ² � ³
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But in any case we also have the inequality (i), and hence the
equality.

Corollary  H  If holds, then  is attained.ZZ �

 The Theorem shows it is attained, with the value px.
Consequently we have

�² ³ ~ ¸ ¢ ¹ ~p, x   py yRx px.min

Theorem 4.3  For all ,p

xRy p, x p, y¬ ² ³ � ² ³� � ,
for all , x y.

 By transitivity of R,

  Ry  zRx zRy¬ ² ¬ ³%

  Rx Ry¯ �

  inf inf¬ ¸ ¸pz  z Rx pz  z Ry¢ � ¹ � ¢ � ¹

  p  x p  y¯ ² Á ³ � ² Á ³� � Á

and hence the conclusion.

5 Cost differentiability
The approach to investigating differentiability of as a�²p x  Á ³
function of will be made with reference to a given normalp o �
demand element , with , strictly compatible²u x  ux u oÁ ³ ² ~ ³ �1
with the utility.
 Take , so , and , soS Rx x S p p x~ � ³ ~ ² Á ³�² �

�² ³ ~ ¸ ¢ � ¹p   py y Sinf

is the of the set  The strict compatibilitysupport function S.
provides that

�² ³ ~ ~u ux 1,
and

y S y x  u uy.� w £ ¬ ² ³ ��
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 We investigate the differentiability of  at the point ,� p u~
with gradient to be given by

�" Z ~ x.8

 Directly from the form of its definition,  is a concave conical�

function, as remarked already in reference to .�

 Since it is conical, it has any as a  ify bounding gradient

�² ³ � �p py p ofor all ,

and a  at the point if moreoversupport gradient p u ~

�² ³ ~u uy.9

 The bounding gradients of  are a closed orthoconvex  set,� 10

identical with the closed orthoconvex closure of the original set ,S
or with itself if this is already closed orthoconvex (as, forS 
instance, when is representable by a continuous increasingR 
quasiconcave utility function). The support gradients describe the
boundary of this set.
 Since  is concave, differentiability at depends on the� p u ~
support gradient there being unique. In that case the differential
gradient exists, and coincides with the unique support gradient.11

 From its definition as support function of ,  is the largestS �

function that admits as a set of bounding gradients. Then theS 
compatibility provides as a support gradient at the point , andx u
since this is strict compatibility, it is the unique one which is also
an element of For differentiability, we need to exclude theS. 
possibility that there might still be some others, not elements of S.
 The elements of the closed orthoconvex closure of are allS S 

~

bounding gradients of . This is the largest set which has  as� �

support function. Its boundary, the , describes allsupport locus
possible support gradients, including which is a support gradientx 

8 This corresponds to the proposition frequently offered as an unrestricted mechanical rule and
referred to as “Shephard’s Lemma”, or the “Shephard-Uzawa-McFadden Lemma”.
9 A function has as a if this is linear and for all in thef x) l x) linear bound f x) l x) x ² ² ² � ²

domain, and it is a at a point if also in which case its gradient is asupport y f y) l y), v ² ~ ²

support gradient f x y, fof at the point for which a necessary and sufficient condition is that ~

² c ² � ² c ³x) f y) v x y  x. for all There is some difference in dealing with a conical function.
 For a conical function , any is a if for all , and this is af x) v bounding gradient f x vx x² ² ³ �

support gradient y f y vy.at a point if also  Discussion of these definitions and related² ³ ~

points is in my 1987 book, Pt. V, Ch. 2.
10 A set is if , and if also convex.X orthogenous x X x y y X orthoconvex � w � ¬ �
11 The Support Theorem for convex functions assures the existence of a support at any interior
point in the open set where it is defined. But here we already have a support provided at the
point , with gradient given by We appeal now just to the Differentiability Theorem whichu x. 
asserts differentiability at exactly those points where the support is unique.
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of  at the point � u.
 While, from strict compatibility,

uI S y uy y S xq ~ ¸ ¢ ~ w � ¹ ~ ¸ ¹Á1

this being the set containing the element alone, all the supportx 
gradients to  at the point describe the closed convex set� u 

N ~ ¸ ¢ ~ w � ¹ ~ q Áy uy y S uI S
~ ~

1

which includes . The question is whether  is properly largerx N

than ̧ x .¹
 There can be no comment about this without entertainment of
some auxilliary assumption about the utility If is representedR. R 
by a continuous semi-increasing quasiconcave function, then
S Rx S S

~
~ ~is already closed orthoconvex, so . Then immediately

N ~ ¸x¹, and the issue disappears. But without some limitation on
R this is not assured.
 The assumption that is closed will suffice. For, withS Rx ~
this, and , so thatu o�

uy y z uz~ w � ¬ ��1 1,

the intersection of the closed convex closure of with itsS S 
~

supporting hyperplane is unchanged when is replaced by theuI S 
~

convex closure of . Then� S  S�

 ~N uI S
~

q

 uI S~ q � �

 uI S~ º q »

 x~ � ¸ ¹ �

 x .~ ¸ ¹
 Hence:

Theorem 5.1   If is a demand element strictly²p x  p o  Á ³ ² � ³
compatible with a utility for which the set is closed, andR Rx 
� �²p x  RÁ ³ Áis the utility-cost function based on then  is
differentiable as a function of with gradient p x.Á �� Z ~

6 Demand–utility logic
With prices and an amount of money to be spent on somep, M 
bundle of goods there is the budget constraint Given ax, px M. ~
function that determines the unique maximum of ax F p, M  ~ ² ³
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function  under any budget constraint, is a � F demand function
which has  as a utility function, or is from .� �derived 

 With any given function it may be asked whether or not it isF  Á
consistent in being so associated with a utility function. The
function first must have the propertiesF 

pF p, M M,  F p, M F M p, ,² ³ ~ ² ³ ~ ² ³c� 1

usually attributed to consumer demand functions. Then a function
� is sought for which, for all is the uniquep and M, x F p, M  ~ ² ³
maximum of  under the constraint that is,� px M, �

py M y x  y x .� w £ ¬ ² ³ � ² ³� �

 For simplification, introduce the sobudget vector u M p, ~ c�

the budget constraint is stated The px M ux . standard~ ~ 1
demand function determines the demand function itsF normal f, 
normalization, given by

f u F u, ,² ³ ~ ² ³1
with the property

uf u ,² ³ ~ 1

from which it is recovered as

F p, M f M p .² ³ ~ ² ³c�

 It is simpler, and has other advantage, to deal with the question
about through its normalization  For similar reasons, a utilityF f.
order can take the place of the utility function. If it is the orderR 
represented by the function, it provides all that is important about
the function. But it is natural to have an arbitrary order in view,
free of such representation.
 A demand function is with a utility if everyf compatible R 
demand element which, being such that , so it²u x  x f u  Á ³ ~ ² ³
belongs to , is compatible with . With denoting thisf  R  H R  � ² ³
condition, asserts the existence of a such a compatible , or theH  R�

consistency f.of 
 Similarly can assert , and theH R  strict compatibility H  

� �

* *² ³

strict consistency f.of 
 For we have that for all , and ,H R  u x f u

�

* ² ³ ~ ² ³

uy y x  xRy yRx� w £ ¬ w �1 .

Therefore, for any cyclic sequence u u u u  � � � �Á Á Ã Á Á Á Ã Á

u x u x u x� � � � �c� �� w � wÄw �1 1 1
®
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x Rx Rx� � �Ã
®

x Rx .� �

But also
u x x x   x Rx� � � � � �� w £ ¬ �1 .

Therefore

u x u x u x� � � � � �� w � wÄw �1 1 1
®

x x .� �~

This condition on , to be denoted , has been seen to be af K
�

*

consequence of the strict consistency of ,f

H   K .
� �

* *¬

From the cyclic symmetry, it is equivalent to the strict cyclical
consistency condition

u x u x u x� � � � � �� w � wÄw �1 1 1
®

x x x .� � �~ ~ Ä ~

Then it is also equivalent to

u x u x u x� � � � �c� �� w � wÄw �1 1 1
w

x x x x x x� � � � �c� �£ v £ vÄv £
®

u x .� � � 1
and to

u x u x u x� � � � �c� �� w � wÄw �1 1 1
w

x x� �£
®

u x .� � � 1

 This last form shows the condition obtained by Houthakker
(1950), elaborating the `revealed preference' method of Samuelson
(1948). A part of it is that

u x x x   u x� � � � � �� w £ ¬ �1 1,

which is Samuelson's condition.12

 Let , the relation of R u) directly revealed preference f� ²
associated with the budget , be defined byu

12 Samuelson dealt with the two-commodity case, for which his and Houthakker's condition
are equivalent, as proved by Rose (1958), and again by Afriat (1965).
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xR u y x f u� ² ³ � ~ ² ³ w �uy ,1

and let , the relation of , be the transitiveR revealed preference f�

closure of the union of these,

R R u .� �~ �
"

S

² ³ 13

This is reflexive  because the are reflexive, and transitive14 R u  � ² ³
by construction as a transitive closure, so it is an order.
 Another expression for , proceeding from the originalK

�

*

statement, is that, for ,x f u~ ² ³

uy yR x  y x� w ¬ ~1 � .

Since , this is equivalent touy xR y� ¬1 �

uy y x  xR y yR x� w £ ¬ w �1 � � ,

that is, H R , so we have
� �
* ² ³

H   K   H R   H
� � � ��
* * * *¬ ¬ ² ³ ¬ ,

and hence:

Theorem 6.1 H   H R   K
� � ��
* ¯ ² ³ ¯* * .

In other words, a demand function is strictly consistent, or strictly
compatible with some utility order , if and only if it is strictly15

compatible with its own revealed preference order, and this is if
and only if the strict cyclical consistency condition holds.16

 The relation of is the strict orstrict revealed preference f 
antisymmetric part of ,R�

P R R� � �

Z
~ q ,

and the relation is the symmetric partrevealed indifference 

E R R� � �

Z~ q .

13 Also Hirofumi Uzawa, dealing with this subject in the 1950s, made use of the transitive
closure.
14 Rather, it is reflexive just at points in the range of the demand function. Without altering
anything important but to give respect to the definition of an order, it could be made reflexive
by taking its reflexive closure, or union with ‘=’.
15The present theorem has no requirements at all about the utility order, or about the demand
function. Samuelson and Houthakker sought a continuous numerical utility, involving
auxilliary assumptions about the demand function and a differential equation method. The
following asks less about the demand dunction and the utility: for a demand function to havef 
a lower semicontinuous numerical utility, it is necessary and sufficient that Houthakker's
condition holds and the sets be closed.f x  c�² ³
16From recollection I believe Kotaro Suzamura offered a similar proposition.
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 The relation is thedirectly revealed strict preference 
irreflexive part of ,R�

S R D� �~ q ,

so this is irreflexive by construction, though not transitive. Its
transitive closure,

T S� �~
S

,

is the relation, transitive byrevealed strict preference 
construction, not necessarily irreflexive.
 Other expressions for areK  

�

*

(i) E I� ~

(ii) P S� �~

(iii) P T� �~

(iv) is transitiveS  �

(v) is irreflexiveT  �

(vi) S T� �~

 With revealed preferences there can be none of the “violation
of transitivity” sometimes entertained, and no inconsistencies
obtained from them alone. They are transitive by construction and
any contradictions come only when they are taken together with
the less well-noticed revealed non-preferences. With Samuelson,
for instance, these are provided by

py px y x yRx,� w £ ¬ �

as part of the strict compatibility , or instead there are fewerH *

coming from
py px yRx,� ¬ �

which is the part of the weaker compatibility condition H  H.ZZ

7 Demand–utility calculus
Consider a normal demand function , strictly compatible with af
utility for which the sets are closed. If  is the utility-costR Rx �

function based on then, for any ,R u

ux (u x x f u . ~ w Á ³ ~ ¯ ~ ² ³1 1�

 1For a fixed  and , so , the functionu x f u ux~ ² ³ ~

�² Á ³ ~ ¢ ¹v x vy yRxmin¸
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is defined for all , and such thatv

�² Á ³ � �v x vy y Rxfor all ,
and

�² Á ³ ~ �v x vz z Rx.for unique 

 Now with already fixed, andx 

� �~ ²v x  w vÁ ³Á ~ Á�c�

we have
vz  wz .~ Á ~� 1

 Since  is concave in , uniqueness of  is equivalent to � �v z
being differentiable as a function of , with gradientv

�# Z ~ z.
Also,
 wz~1

 w z  � ² Á ³� Theorem 4.2

 min def ~ ¸wy yRz  ¢ ¹ �

 min  and Theorem 4.3� ¸wy yRx  zRx¢ ¹

 w x  ~ ² Á ³� def �

 v x  w ~ ² Á ³� �c� def and conical �

  v x .~ ~ Á ³1 � �²

so that
� �² Á ³ ~ ² Á ³w z w x ~ 1.

But
wz w z z f w .~ w ² Á ³ ~ ¬ ~ ² ³1 1�

Hence , which also establishes uniqueness of as az f w z ~ ² ³
support gradient of .�

 By the differentiability theorem, we now have  differentiable,�

with gradient
�# Z ~ f w w v.² ³ ~, where �c�

 If a concave function in an open set is differentiable
everywhere, then it is continuously differentiable. From this now
follows the continuity of as a function of This goesf v  v.  ² ³�c� 17

some way towards continuity of , but further restrictions on aref R 
required to obtain that.18

17This is continuity of the ‘compensated demand functionr’.
18Katzner (1970) and Afriat (1980, pp 89ff) give proofs that a demand function is continuous
if it has a continuous utility function. Afriat also proves continuity on assumption of a utility
order for which the sets are open and Px xPy cl Px Py.¬ �
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 If is given to be differentiable, then can bef z �# Z ~
differentiated, to obtain

�# # # $
Z

#
Z ~ ~z z w ,

where

w v v w zZ Z c� c� Z c� c� Z Z

# # #~ ² � � � � �³ ~ c ~ ² c ³1 1 ,

so there is the formula

� �# # $
c� Z Z

Z ~ ² c ³z w z1 .

 If now is given to have continuous derivatives, then  hasf �

continuous second derivatives. It then follows, by a theorem of the
differential calculus , that the matrix  of these is symmetric.19 �# #Z

Since  is concave in , it must also be negative semidefinite.� v

 1Now let Then , , , and we getv u. w u z x~ ~ ~� ~

�" "Z ~ s,
where

s x u x .~ ² c ³"
Z Z1

 In terms of the standard demand function whichx F p M  ~ ² Á ³
derives from with , we havex f u  u M p~ ² ³ ~ c�

x x u� "
Z

�
~ ,  x x u ,4 "

Z

4
~

and
u M u p M u MZ c� Z Z c� Z c�

� 4
~ ~ c ~ c1,  ,

so there is the alternative expression

s M x x x .~ ² b ³� 4
Z

From here, but for the factor which makes no significantM 
difference, is seen identical with the matrix of s Slutsky
coefficients, usually given as

s x p x M x .�� � � � �~ C °C b ²C °C ³

 We now have the following:

Theorem 7.1  For a demand function with continuous derivatives
to be strictly compatible with a utility for which the sets areR Rx 
closed, it is necessary that the Slutsky matrix be symmetric and
negative semidefinite.

 For instance the demand function

19For instance, if and  both exist and either one is continuous, then they are equal.f  f%& &%
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x a M pa~ ² ° ³,

for any , with normalizationa C�

x a ua~ ² ° ³1 ,

is strictly compatible with the utility function

�² ¸x t : at x³ ~ � ¹max ,

and the Slutsky coefficients all vanish, so the matrix is both
symmetric and negative semidefinite.
 This example of “The Case of the Vanishing Slutsky Matrix"20

should have mystery for any follower of Slutsky, who required a
condition properly intermediate between being negatives 
semidefinite and negative definite, impossible if vanishes.s 
 Slutsky, and others, consider the problem

max �²x  px=M³ ¢ Á

where  is assumed differentiable, whose solution is to determine�

unique . From first order Lagrange conditionsx F p M~ ² Á ³

�% Z ~ Á�p

the symmetry of is obtained. Then from second order conditions,s 
the symmetric matix is required to be something more thans 
negative semidefinite, going towards its being negative definite,
though it cannot possibly be that since is an identity.sp   o Z ~
This condition is thatSlutsky negativity 

q p  qsq  < ,—� ¬ Z 0

where means for some 0 and is theq p q  tp t ,  q p —� ~ £ �
denial.
 Another excess requirement, related to this one, also comes
from the approach. For, from the Lagrange conditions with the
budget constraint, we have

�% Zx px M~ ~� � Á

and so, eliminating the Lagrange multiplier,

M p xc� c�
% %~ ² ³ Á� �Z Z

which determines the budget vector as a function of u M p x.~ c�

The demand function, which at first just determines as a functionx 
of , therefore has an inverse.u
 We have followed a path initiated by McKenzie (1957) for
obtaining necessary conditions, requiring to be symmetric ands 

20Journal of Economic Theory 5 (1972), 208-223.
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negative semidefinite. Though lesser requirements than Slutsky's,
these still had promise as sufficient conditions.
 The proof of sufficiency  has several parts.21

1.   With the elements of and of we mayx  x x   x / u  x , � �� � � "~ C C
form

x   x x   x   x x   x   x x   x��� � �� �� � �� �� � �� ��~ ² c ³ b ² c ³ b ² c ³,

Such coefficients are important for Frobenius's theorem on
the integrability of linear differential forms. The identity22

�
�

x u   s   s��� � �� ��~ c

assists the discovery that

x     s   s ,��� �� ��~ ¯ ~0  

by which the is identified with symmetry of s classical
integrability conditions for the linear differential form with
coefficients x f u .~ ² ³

2.  From symmetry of there is obtained the existence in thes 
neighbourhood of any point of functions  and , the� �

integrating factor integral x .and , such that � �~ " Z

3.  From this local form of the condition there is passage to a
global form, with a single integral  defined everywhere in�

the budget space. This can be either an increasing or a
decreasing function, and it can be chosen decreasing, with
� � �� c0, if necessary by replacing  by .

4.  Then being negative semidefinite assures  iss �

quasiconvex.

5.  Since  is decreasing quasiconvex,  given by� �

�² ³ ~ ³ ¢ � ¹x v vxmin¸ ²� 1

in any case increasing quasiconcave, is such that

� �² ¸ ²u y uy .³ ~ ³ ¢ � ¹max 1

6. Then

ux u x x f u~ w ² ³ ~ ² ³ ¯ ~ ² ³Á1 � �

and this shows is strictly compatible with .f �

21In Afriat (1980); it is a main objective of this entire volume.
22Afriat (1954), reproduced in Afriat (1980), pp 214ff.
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 1With the expression the Slutsky matrix iss x u x , ~ ² c ³"
Z Z

expressed as a product of a Jacobian, and a factor which, because
ux , n . ~ c1 1is idempotent and so a projector, of rank This
exposes otherwise obscured features about the Slutsky matrix, for
instance the identity , which excludes the possibility of su o sZ ~
being negative definite, or that the rank of is for thes n  c 1
invertible case and otherwise less. It also provides a way of
viewing Hicks's distinction of and income substitution effects,
using resolution of a budget differential , and hence thedu
corresponding differential , into components by meansdx x du~ "

Z

of the projector and its complement:

du   u x du u x du .Z Z Z Z Z Z Z~ ² ³ b ² c ³1
The part

² ³ ~ ² ³u x du u x duZ Z Z Z Z Z

leaves the budget direction unchanged, or corresponds to an
income change while prices are fixed, making the “income effect".
The complementary part, when there is a utility, keeps this
constant, and is the “substitution effect". Here we see any change
resolved by means of projections into a sum of Hicksian “effects".

8 Demand correspondences
A is any collection of demand elements,demand correspondence 
so it is any for which The D B C pDx px 0. domains� d ¬ �
8 9� �B, C are given by

8 9~ ¸ ¢ £ ¹ ~ ¸ ¢ £ ¹p pD O , x Dx O ,

so also D .� d8 9

 The relation defined byE 

uEx pDx u (px) p� w ~ c�

is such that , so it is a  demanduEx ux normal¬ ~ 1
correspondence, in this case the  of normalization D.
 A normal demand function provides the correspondence forf E 
which

uEx x f u .¯ ~ ² ³

Distinguishing the case of an that represents a function, we haveE 
that, for all , possibly in some restricted domain,u

uE O  uEx y x y.£ Á Á ¬ ~



23

 With a standard demand function , the correspondence F D
given by

pDx x F p px� ~ ² Á ³

determines the demand elements that belong to it.
 Questions that up to now have concerned a single demand
element or a demand function can be applied equally well to an
arbitrary demand correspondence.
 It can be noted that strict consistency, or strict compatibility
with some utility, of a correspondence, or possibly many-valued
demand function, implies it is single valued and so an ordinary
demand function. For if commodity bundles are associatedx x  � �Á
with the same budget  so from Samuelson'su ux ux  Á � �~ Á ~ Á1 1
condition we have

ux ux x x� � � �� w � ¬ ~ Á1 1

and hence x x .� �~
 In dealing with correspondences which are not functions,
instead of strict consistency it is appropriate to entertain their
consistency, in any case the more basic requirement from
economic principles.
 Another point is that the usual treatment of demand functions,
following Slutsky, and then Hicks and Allen, deals with a
differentiable utility function, required by the Lagrangian method
employed. An unobserved consequence is that the demand
function has to be invertible. In “The Case of the Vanishing
Slutsky Matrix" the demand function is not invertible and the
utility function not differentiable.
 We deal now with arbitrary demand correspondences, and later
finite ones for which constructive methods become possible.
 A demand correspondence will be dealt with through itsD 
normalization , so any condition on becomes one on TheE E D. 
elements are taken to be indexed in an arbitrary set , soI

E u x .~ ¸² Á ³¹� � ��0

The case of a demand function requires

u u x x�  �  ~ ¬ ~ Á

and for a 1–1 correspondence,

u u x x .�  �  ~ ¯ ~
With

r s u u x x£ ¬ £ v £�  �  Á
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to exclude duplicate elements, as will be assumed, these conditions
are equivalent to

r s u u£ ¬ £�  Á

and
r s u u x x£ ¬ £ w £�  �  .

 The cross-coefficients

D u x� �  ~ c 1

are determined from ordered couples of demand elements
belonging to Then there are D. chain-vectors

D D D D���Ã� �� �� � ~ ² Á ÁÃ Á ³

formed from these.
 Utility has so far been attributed to the commodity space, from
which derives an indirect utility, for the budget space. Instead out
of regard for a basic symmetry, we can deal with relations defined
directly between demand elements. These can then induce
relations in the commodity space, as usual, and equally well and in
just the same manner, also in the budget space.
 A relation  between demand elements is defined byW I I+ � d

rW s i D 0.+ ��Ã � ² v Ã³ �

In terms of the  which makesW B C� d

uWx ux¯ � Á1

a relation  between demand elements is givenq+ � dI I
immediately by

r s u Wxq+ �  � Á
so

r s D 0.q+ � ¯ �

Then is identical with the transitive closure,W  +

W .+ +~
S
q

It is both reflexive, since

D u x 0�� � �~ c ~ Á1

and transitive, from this expression. Hence it is an order, of the
demand elements that make the given correspondence D.
 The usual revealed preference relation , in theR C C+ � d
commodity space, is now given by the formula

xR y rW s x x u y .+ + �  � ² v ³ ~ w � 1
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But just as well, in a dual fashion, a relation  instead inS B B+ � d
the budget space can be defined by

uS v rW s ux v u .+ + �  � ² v ³ � w ~1

 Any order has a dual whereR C C R B B  � d � d Áy

uR v uWx vWy xRyy � ² v ³² w ³ Á

and any  has a dual whereS B B S C C  � d � d Áx

 uS v vWy uWx xSy.x � ² v ³² w ³
Then we find

S R  R S .+ ++ +

y x~ Á ~

These are not complete orders. But in a comparable fashion, when
we have direct and indirect utility functions  with the usual� �Á
properties, semi-increasing and semi-decreasing, quasiconcave and
quasiconvex, so they are connected by

� � � �~ Á ~ Áy x 
where

� �y x² ³ ~ ³ ¢ ¹Á ² ³ ~ ³ ¢ ¹Áu x uWx  x u uWxmax min¸ ² ¸ ²� �

if are the complete orders they represent, then these areR  S Á
connected by

S R  R S .~ Á ~y x

 The difference between  and , for going from to and y x C B C
to , arises just because we want the utility equality B x u�² ³ ~ ² ³�

for a compatible demand element and not ² ²u x  x uÁ ³Á ³ ~ c ² ³Á� �

or want and to be matched similarly. With replaced by theR S S 
converse , or  by  the difference disappears.SZ � �c Á 23

9 Canonical order
A of is any complete order such thatcanonical order D  M

s r D 0  s r D 0M L¬ � Á ¬ � Á� � 

L M L M being the antisymmetric part of . This is given by ~
Z

since is complete. Hence the conditions, taken in oppositeM 
order, are equivalent to

D 0 r s  D 0 r s.� � � ¬ Á � ¬M L

23This is quite like the way in LP the dual of a standard max problem is given as a standard
min problem instead of another standard max problem, though there it is just for simplicity.
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 From the first condition here, since  is transitive, it followsM

that W . From this, with the second condition as originally+ � M

stated, we have
rW s r s D 0+  �¬ ¬ � ÁM

and hence
rW s D 0.+  �¬ �

 This last condition is restated by the condition K  given by+

K D 0 D 0+ �Ã  �� � ¬ � Á

which therefore has appeared necessary for the existence of a
canonical order.
 Also it is sufficient. For , now taken in contrapositive form,K+

is equivalent to
D 0 sW r� +� ¬ � ,

and from the definition of ,W+

D 0 rW s.� +� ¬
These combine to give

D 0 rV s.� +� ¬

By Theorem 1.2, Corollary, there exists a complete order  suchM

that
W  V .+ +� Á �M L

Immediately, this has the properties of a canonical order, hence the
following.

Theorem 9.1  For any demand correspondence , the conditionD
K  + is necessary and sufficient for the existence of a canonical
order.

 The strict cyclical consistency condition, of Houthakker,
formerly applied to a demand function, now in application to an
arbitrary demand correspondence produces a conditionD 

K D 0 x x D 0.
+ �Ã �   �
* � � w £ ¬ �

A restatement of this condition is that

rW s x x D 0+ �   �w £ ¬ � Á
and equivalently,

D 0 x x rW s. � �  +� w £ ¬ �

But we already have
D 0 rW s� +� ¬ Á
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so this is equivalent to

D 0 x x sV r. � �  +� w £ ¬

 Here it can be noted that another statement of the condition K
+

*

is that it requires the relation of equivalence in I W W  W+ + ++

Z~ q
to be such that

rI s  x x+ �  ¯ ~ Á

and with this it follows that

rV s rW s x x .+ + �  ¯ w £

 By Theorem 1. , Corollary, there exists a complete order � M

such that
W  V ,+ +� Á �M L

and for this we now have

D 0 r s� � ¬ ÁM

and
D 0 x x s r. � �  � w £ ¬ L

Since  is complete so that , these conditions in reverseM L M~
Z

order are equivalent to

r s x x D 0   r s D 0.M Lw £ ¬ � Á ¬ ��   �  �

These are the conditions required for a complete order  to be aM

strict canonical order.
 It has appeared that is a sufficient condition for theK  

+

*

existence of a strict canonical order.
 Also it is necessary. For from

D 0 r s� � ¬ ÁM

equivalent to the second requirement since  is complete, takenM

with the transitivity of , it follows that Then from thisM W . + � M

with the first,
rW s x x D 0+ �   �w £ ¬ � Á

which is another statement of K .
+

*

 We now have the following.

Theorem 9.2  For any demand correspondence , the conditionD
K  

+

* is necessary and sufficient for the existence of a strict
canonical order.

 Beside the strict cyclical consistency condition , ofK
+

*
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Houthakker, stated
D 0  x x� Ã� �  � ¬ ~ Á

which assures uniqueness of a bundle chosen under a budget, there
is the condition

D 0  u u� Ã� �  � ¬ ~ Á

which assures uniqueness of a budget under which a bundle is
chosen, and also

D 0  r s� Ã� � ¬ ~ Á

which, with exclusion of duplicates, assures both, and provides a
1—1 correspondence between bundles and budgets having the
relation D.
 Instead, to abandon both of these inessential uniqueness
requirements, there is the condition statedcyclical consistency K  +

D 0  D 0� Ã� � � ¬ ~ Á

which is implied by all the foregoing, and is most appropriate for
dealing with a general demand correspondence. An alternative
statement is that

D 0  D 0�Ã� �Ã�� ¬ ~ Á

or, what is the same,
� ��D 0.�Ã�

Theorem 9.3  A demand correspondence is (strictly) consistent, or
(strictly) compatible with some utility order, if and only if it is
(strictly) compatible with its own revealed preference order, and
this is if and only if the (strict) cyclical consistency condition
holds.

 The proof is similar in each case to that of Theorem 6.1.

 In application to a finite demand correspondence, cyclical
consistency becomes a finitely testable condition. The last theorem
represents it as a test for consistency of the correspondence, or the
existence of a compatible utility. But it is also a test for the
solubility of a certain finite system of homogeneous linear
inequalities.  The algorithm for finding a solution depends on24

first taking the demand elements in a canonical order. Any solution
is associated with compatible utility functions with the classical

24The 1960 paper contains the earliest account, followed by 1964, 1970 (contains a synopsis),
1973, 1974, 1981 (deals with utility subject to the conical restriction important for price
indices), and 1987; also Varian (1992).
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properties, concave and semi-increasing, finitely constructible in
either polyhedral or polytope form. Alternatively, utility functions
are found in the budget space, convex and semidecreasing, from
which compatible quasiconcave semi-increasing functions in the
commodity space are derived by linear programming formulae.
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