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Abstract

A few opportunity rankings which can be defined without relying on
preferences for basic alternatives are compared with respect to a set of
containment monotonicity properties, and represented in terms of flexi-
bility w.r.t. a —possibly variable—set of preferential criteria. It is shown
that a large variety of patterns obtain : in particular a few ‘nice’ opportu-
nity rankings are defined which cannot be possibly represented in terms of
‘unanimous’ indirect preference maximization with respect to a fixed set
of preference orderings on the outcome set. JEL Classification Numbers :
D71, 025.

1 Introduction

Let X be a non-empty finite set of basic alternatives, and P(X) the power set
of X i.e. the set of its opportunity sets. An opportunity ranking (OR) is a
binary relation (P(X), %) : in particular, we shall be mainly concerned with
opportunity preorders i.e. with transitive and reflexive ORs.

The literature on ORs typically relies on a few quite different intuitions
which result in different interpretations of the former. Prima facie, four main
approaches can be distinguished in the study of ORs, namely:

i) ranking opportunity sets in terms of freedom of choice;

ii) ranking opportunity sets in terms of range or diversity;

iii) ranking opportunity sets in terms of flexibility with respect to a set of
preference orderings on X;

iv) ranking opportunity sets in terms of a rigid preference ordering on X.

The ‘freedom of choice’ view tends to rule out any information whatsoever
concerning orderings on X as far as the definition of = is concerned. The



‘diversity’ approach may be construed as relying on some notion of range con-
cerning subsets of X. The ‘flexibility’ approach relies on information about sets
of possibly relevant preferences on X. Finally, the ‘rigid preference’ approach
purports to provide a plausible extension to P(X) of a fized preference rela-
tion on X: thus, it may be regarded as a special limit case of the ‘flexibil-
ity’ approach . By contrast, the relationships among the ‘freedom of choice’,
‘flexibility’ and ‘diversity’ approaches are still less than clear (see e.g. Sen
(1988,1991), Puppe (1995,1996), Sugden (1998)). One view emphasizes the ‘in-
trinsic value’ of ‘freedom of choice’ as an independent preference-free criterion
underlying ORs (see e.g. Sen (1988), Pattanaik,Xu (1990), Klemisch-Ahlert
(1993), Bossert,Pattanaik,Xu (1994), Gravel (1994,1998), Dutta,Sen (1996)).
Another —somehow opposite— view insists that preference for ‘freedom of choice’
essentially reduces to preference for ‘flexibility’ and equates the latter to indirect-
utility (preference)-maximization with respect to a fixed set of relevant prefer-
ences (see e.g. Arrow (1995), or Nehring,Puppe (1999) for two different versions
of this approach to the interpretation of ORs : Sugden (1998) endorses a similar
view but insists that the ‘flexibility’ sobriquet should be reserved for the spe-
cial case where the relevant preference preorders are—essentially— the probable
future preferences of the relevant agent).

The present paper is mainly devoted to a criticism of those two widely held
views. Indeed, it might be argued that the ultimate significance of ‘freedom of
choice’ relies on availability of different alternative choices hence of different re-
vealed preferred basic alternatives: one might perhaps be willing to allow ‘incon-
sistent’ choice functions or nontransitive revealed preference relations, and/or
refer to a contert-dependent set of preferential criteria, but reference to some
set(s) of choice functions or preference relations (revealed or otherwise) seems
to be scarcely avoidable. Thus, the very notion of an ‘intrinsic value of freedom
of choice’ may be apparently re-interpreted in terms of flexibility with respect to
suitable subsets of a universal set of preferential criteria. At the same time, it is
quite unclear why the general notion of ‘flexibility’ with respect to suitable sets
of preferences should be reduced to one particular version, namely ‘unanimous’
indirect-preference-maximization with respect to a (context-independent) fized
base of preferences.

The line of reasoning we advocate here suggests that ‘freedom of choice’
and ‘flexibility’ (and perhaps ‘diversity’ as well) are best regarded as labels
for notions of ‘opportunity’ which simply emphasize reliance on different types
of available information on X. In that connection, the fixed-base unanimous
indirect-preference-maximization (FBU-IPM) version of ‘flexibility’ should be
regarded as a quite specialized —if undoubtedly interesting—case of the latter no-
tion. Thus, a gap opens up —in principle— between the much insisted upon FBU-
IPM notion of ‘flexibility’ and the gemeral concept of ‘flexibility’ with respect
to some possibly variable (i.e. context-dependent) set of preference preorders.
But then, the following issue immediately arises: are there ‘nice’ opportunity
preorders which actually live in the niche provided by that gap? Or, equiva-
lently, are there sensible opportunity preorders which cannot possibly arise from
unanimous indirect-preference-mazximization with respect to some fixed set of



preference preorders?

Those issues can only be settled by providing a set of uncontroversial min-
imum requirements for ‘nice’ ORs and working out a few concrete examples of
ORs of the relevant sort. The present paper is therefore devoted to a first ten-
tative analysis along these lines. It proceeds in the most straightforward —and
elementary— way according to the two steps mentioned above, namely by:

a) establishing a few fundamental preference-free axioms and criteria that
are satisfied by the uncontroversial if undecisive set-containment partial order
—essentially a set of containment-monotonicity properties— to be used as a
common reference base for a comparative assessment of the relevant ORs;

b) generating a suitable list of concrete examples of ORs which have been ac-
tually proposed—or might be considered— under the most abstract label i.e. ‘free-
dom of choice’(with no explicit reference to the fixed-base-unanimous indirect-
preference-maximization(FBU-IPM) version of ‘flexibility’).

In particular, we focus on two (dual) families of monotonicity conditions—
i.e.improvability(I) and essentiality(E) properties— whose significance for our
purposes is enhanced from the fact that FBU-IPM ORs tend to perform rea-
sonably well w.r.t. essentiality properties and badly w.r.t. improvability prop-
erties.Concerning minimum requirements for OR preorders in terms of I-and E-
properties, we adopt here—for the sake of argument— the most permissive stance:
we implicitly treat any non-empty subset from our list of I- and E-properties as
a feasible option for minimum containment-monotonicity requirements.(Notice
that the cardinality-based total preorder is perfectly well-behaved w.r.t. both
I—and E—properties, as well as amenable to a FBU-IPM flexibility interpreta-
tion, but is generally regarded as an arbitrary— hence trivial- OR).

Thus, we try and use the foregoing axioms in order to elicit patterns in the
set of ORs under consideration, and check their credentials as ‘nice’ ORs. Our
findings are largely preliminary (e.g. we do not provide any characterization re-
sult), but telling. Among the ‘freedom of choice’-motivated ORs we consider, we
find: «)one class of ORs (convex ORs) which are a good compromise between
I—and E—properties and amenable to a FBU-IPM flexibility interpretation,
B)two classes of ORs ( set-filtral and convex-set-filtral ORs) which are fairly
good I — E compromises while not being amenable to a FBU-IPM-flexibility
interpretation, ) a class of (total) ORs (the width-based ORs) which are rea-
sonably well-behaved w.r.t. E—properties, badly-behaved w.r.t. I—properties
and not amenable to a FBU-IPM flexibility interpretation, and §)a class of (to-
tal) ORs ( total set-filtral ORs) which are both I—and E—badly behaved and
not generally amenable to any FBU-IPM flexibility interpretation.

In our view, such a remarkable variety of non-trivial ORs does certainly call
for further analysis. However, our preliminary results (especially those under
points 3 and v above) apparently suggest a tentative positive answer to our
question on existence of ‘nice’ non FBU-IPM ORs, confirming by example that
the general label of ‘freedom of choice’—or, for that matter, ‘flexibility’— admits a
far more comprehensive interpretation than the typical emphasis on FBU-IPM
ORs might suggest.

The paper is organized as follows: Section 2 presents the model, and the



results. Section 3 is mainly devoted to a short discussion of some related litera-
ture on ‘flexibility’ and ‘diversity’. Section 4 provides some concluding remarks.
Proofs are confined to an Appendix.

2 Model and results

Let X be the (finite) set of alternatives/opportunities, and P(X) the correspond-
ing set of opportunity sets: we assume #X > 3 in order to avoid trivialities
and the need for tedious qualifications. We are concerned here with defining a
pure opportunity ranking = of P(X), namely a binary relation (P(X), %) that
(weakly) extends (P(X),2) —i.e. A D B entails A > B— the underlying inter-
pretation being that A = B means “A embodies more opportunities( or positive
freedom ) than B ”. We also denote as usual by > and ~ the asymmetric and
symmetric components of 3= , respectively. Moreover, for any set Y, C(Y") will
denote the set of all chains on Y (a chain is a linear order i.e. an antisymmetric,
total and transitive binary relation). In order to meet some basic intuitions
concerning the very idea of an “opportunity ranking” we shall consider some
minimal restrictions on (P(X), =), namely

(Preorder (PR)) (P(X), %) is transitive and reflexive .

(Weak Monotonicity (WM)) For any A, BC X, AUB = A .

A few other monotonicity properties which are satisfied by the set-containment
partial order, and are usually related to ‘freedom of choice’ will also be consid-
ered:

(Weak Set-Improvability(WSI)) For some X’ C X and any A with X’ C
A C X there exists B C X such that AU B = A.

(Weak Point-Improvability(WPI)) For some X' C X and any A with X’ C
A C X there exists z € X such that AU {z} = A.

(Set-Improvability (SI)) For any A # X there exists B C X such that
AUB > A.

(Point-Improvability(PI)) For any A # X there exists € X such that
AU {z} > A.

(Weak Set-Essentiality(WSE)) For some X’ C X and any A with X' ¢ A C
X there exists B C A such that A = A\B.

(Weak Point-Essentiality(WPE)) For some X' C X andany A, X' C AC X
there exists € A such that A > A\ {z}.

(Set-Essentiality(SE)) For any A # () there exists B C A such that A > A\B.

(Point-Essentiality (PE)) For any A # () there exists * € A such that
A= A\ {z}.

Obviously, PI = SI = WSI,PI = WPI — WSI,PE — SE =
WSE, and PE — WPE = WSE, but not vice versa.

It should be noticed that the entire set of monotonicity properties mentioned
above has been subjected to some criticisms on the grounds that there may exist
‘ugly’ alternatives which do not really contribute to improve any opportunity
set. Insisting on the relevance of each of those monotonicity properties clearly
entails that the possibility of such ‘ugly’ alternatives is implicitly ruled out.



The latter assumption can be indeed readily justified by means of the following
acceptance criterion for X: take a reference set of preference relations on some
X’ and choose X C X' such that each x € X is mazimal with respect to at
least one such relation.

Remark 1 In Pattanaik,Xu(1998) two ‘new’ total opportunity preorders are
defined —and characterized— which rely on a fized reference set P ={ Py, .., Py }of
total preference preorders on X, namely (P(X), =(xp)) and (P(X), = p,—))-
Such total opportunity prsorders are defined alf follows: for any A,B C X

A F(#,P) B iff [#(Ui:lkmaXPz‘ A) > #(Uikzl maxp, B)|, and

A &(;i,p,_) B iff [#((Uki:1 maxp, A) N (J,_, maxp, AU B)¢) >

#((U;—, maxp, B) N (U;_, maxp, AU B)°)] .

It should be remarked here that under the acceptance criterion for X as de-
fined above both (P(X), = p)) and (P(X), 7 x,p,—)) reduce to the cardinality-
based OR (P(X), =4 )to be defined below. Hence, under the acceptance criterion
for X the discussion of (P(X), =) we provide below does in fact also cover both
(P(X)a ?(#,P)) and (P(X)7 ?(#,P,—))'

In particular, we are interested here —as mentioned above— in classifying by
their containment-monotonicity properties (and possible preferential content)
several ORs that are usually motivated in terms of ‘freedom of choice’, as well
as in assessing the extent to which they are amenable to a fixed-base-flexible
IPM-interpretation.

To begin with, we should like to substantiate our foregoing claim to the
effect that the notion of ‘flexibility’ with respect to a set of preference preorders
is indeed general enough to support any opportunity ranking. Thus, we start
from the following

Claim 2 Let (P(X), =) be an OR. Then there exist a set P of —possibly indexed—
total preorders (indeed, chains) on X, a function f: P(X)x P(X) — P(P) and
a partial evaluation function v: P(P) — R such that for any A,B C X

A= B if and only if (vo f)(A,B) > 0.

Thus, the foregoing Claim makes precise the idea that any OR —hence in
particular any ranking of opportunity sets in terms of ‘freedom of choice’-can
be expressed in terms of ‘flexibility’ with respect to a set of preferences (see
e.g.Dennett(1984), which may be regarded as a spirited defence of one version
of that view). Here, by ‘more flexible’ we simply mean ‘better’ with respect to
a possibly variable i.e.context-dependent set of ‘relevant’ preferences. It follows
that alternative notions of ‘flexibility’ rankings obtain according to the way one
specifies a) what are the sets of ‘relevant’ preferences, in particular whether
such sets are unit or non-unit and context-dependent or not, and b) what is to
be meant by ‘better’ whenever the set of ‘relevant’ preferences is non-unit, i.e.
what is -or are- the aggregation rule(s) to be used.

It should be emphasized that such a broad notion of ‘flexibility’ is quite dif-
ferent and considerably more general than the ‘flexibility’ concept most workers



in the field have typically in mind, namely ‘unanimous’ indirect-preference-
mazximization with respect to a fized set of preference preorders or, possibly,
some of its extensions to a total OR (see e.g. Kreps(1979), Arrow(1995),
Puppe(1996), Nehring, Puppe(1999)).

In order to make precise this more specialized interpretation of ‘flexibility’
we introduce now the following definition:

Definition 3 ( Fixed base unanimous indirect-preference-maximizing OR w.r.t.
a set P of total preference preorders on X (P-FBU-IPM)) . Let (P(X), ) be
an OR, and P C PR(X) a set of total preorders on X. Then, (P(X),)
is a P-fixed-base-unanimous indirect-preference-maximizing OR iff for any
AB C X : A% B iflforal 2e P : a* 2 b for any a € max> A,
b* € maxs B|. Moreover, (P(X),}) is said to be a fixed base unanimous
indirect-preference-maximizing ( FBU-IPM) OR iff it is a P-fixed-base unan-
imous indirect-preference-maximizing OR w.r.t. some fixed P C PR(X).In

particular, if #P =1 then a P— IPM OR reduces to an IPM OR.

Remark 4 Since X is finite (by hypothesis), the foregoing notion of FBU-
IPM-‘flexibility’ of an OR is clearly equivalent to existence of a finite state
space S and a state-dependent utility function u : X x S — R such that for any
A BCX:A%B if[forallse S, maxgesu(x,s) > max,epu(x,s)|.

The following notion due to Kreps(1979) will be much helpful when studying
the ‘flexibile IPM content’ of different ORs.

Definition 5 (Dominance relation induced by an OR) Let (P(X), ) be an
OR. Then, the dominance relation >="induced by = is defined as follows : for
any A, BC X, A=*Biff A= AUB.

As mentioned above, a prominent particular case of a fixed base P—FBU-
IPM OR (P(X),?) obtains whenever #P = 1. In this case, we say that
(P(X), ) is a rigid IPM OR. Clearly enough, if (P(X), =) is a rigid IPM OR
w.r.t. a total preference preorder R on X, then for any z,y € X : {z} = {y}
iff xRy. This observation suggests the following criterion of rigid preferential
content, which will also be used in order to compare and contrast different ORs
(including preferentially-defined and preference-free ORs).

Definition 6 (Rigid (Strict) Preferential Content of an OR) Let (P(X), ) be
an OR. Then, the rigid preferential content of (P(X), =) is the binary relation
(X, 7 ) where Z. = {(x,y) € X x X : {x} = {y}}. The basic strict preferential
content of (P(X), =) is (X, >.), the asymmetric component of (X, 7y ).

The theoretical setting is now ready for the ensuing analysis. As mentioned
above, while any OR is in principle amenable to a ‘flexibility’ interpretation
(see Claim 2 above), one may suspect that the prevailing notion of ‘flexibility’
as fixed-base-unanimous indirect-preference-maximization is too narrow to ac-
comodate every plausible notion of ‘freedom of choice’ (or ‘diversity’). Thus, the



principal aim of this paper is to give some analytical substance to the foregoing
simple intuition: this will be accomplished by working on a few concrete exam-
ples, namely by defining some relevant ORs (as motivated in terms of 'freedom
of choice’ or ‘diversity’) and showing that they are not amenable to a FBU-
IPM interpretation. The second aim will consist in comparing and contrasting
the ORs under consideration by means of the uncontroversial set-containment
monotonicity properties introduced above: indeed, such a simple set of prop-
erties will prove to be strong enough to elicit a few significant patterns of the
relevant ORs.
Let us start with the following:

Remark 7 The behaviour of FBU — IPM ORs and rigid IPM ORs w.r.t.
the foregoing properties must be considered here for the sake of comparisons.
Indeed, a P-FBF-IPM OR clearly satisfies PR, W M,SE, and its basic prefer-
ential content amounts to mZEP 2, but neither W SI nor WPE need be —in
general-satisfied (recall that preferences in P may be widely diverse, and may
include several mazima). An IPM OR satisfies PR, W M, SE, while their rigid
preferential content obviously corresponds to the underlying (unique) total pref-
erence preorder 2 on X: again, neither WSI nor WPE need in general hold
true, because the case of several maxima is to be taken into account.If, how-
ever, the underlying 2 is a linear order (i.e. a total antisymmetric transitive
relation) then. W PI (just take X' = X\ {max> X} Jand PE are also satisfied.
At the other extreme, it is also worthwhile to consider the containment poset
(P(X),D) : clearly enough, it satisfies PR,W M, PI, PE while its rigid prefer-
ential content reduces— trivially— to the diagonal {(z,y) : x,y € X, and v = y}.
Moreover, D*=2, hence the dominance relation DO*is transitive (we shall see
below the significance of this fact with respect to ‘flexibility’ considerations).

In our review of ORs motivated in terms of ‘freedom of choice’, we start from
ORs that arise in a natural way whenever a) all the alternatives are (potentially)
‘good’ -or ‘not bad’- as implied by the acceptance principle for X mentioned
above, but b) their ultimate significance depends on a threshold effect so that
either each alternative is a significant opportunity or none of them is according
to the location of the menu w.r.t. the minimum standard ( i.e. ‘above’ or
‘below’ the standard). Those requirements — which amount to the introduction
of some sort of “freedom-poverty line”’—can also be regarded as an attempt to
accommodate the widespread treatment of “freedom” as a ‘yes-or-no’ concept
while insisting on the idea of many degrees of freedom. We shall rely on the
following notion:

Definition 8 (Order filter of a preordered set). Let (Y,2) be a preordered
set.An order filter of (Y, 2) is a non-empty set Z C'Y such that for any x,y ,
r€Z andy Z x entail y € Z.

Notation 9 Let (Y,2) a preordered set. We denote by F(Y,2) the set of all
order filters of (Y, 2).



The following specialization of the previous definition will also be used in
the sequel:

Definition 10 (Principal order filter of a preordered set ) Let (Y,2) be a
preordered set. A principal order filter of (Y,2) is a set Z C Y such that
Z={xe€Y:x 2y} for someycY.

Remark 11 For any order filter F of a finite preordered set (Y, ) there exists
a finite set G(F) = {g1,..,9xr} C Y —the set of generators of F-such that
i)F = Ule {z€Y : 2z ¢g:;} andii) not g; 7 g; for any i,5 € {1,...,k} , i #j.If
(Y,z) = (P(X),D) then each generator g; of an order filter F is a set: then,
we shall denote by G"(F') the set of generators of F' having cardinality .

The notion of an order filter enables us to formulate in a natural way a
special type of opportunity ranking that embodies requirements a) and b) for
opportunity rankings as mentioned above (see Suppes(1987), Gekker(1999) for
two earlier proposal of similar ORs, and Vannucci(1999) for a fairly detailed
analysis). This is made precise by the following definitions :

Definition 12 (Filtral opportunity rankings ) A filtral opportunity ranking
(FOR) is a binary relation (P(X), =) such that for some preordered set (P(X), 2
), and some order filter F € F(P(X),2) : for any A,B C X, A = B if and
only if either AZ B or B¢ F

Definition 13 (Set-filtral opportunity ranking) A set-filtral opportunity rank-
ing (SFOR) is a FOR with order filter F' € F(P(X), D).

In words, SFORs replicate the set-containment partial order, except that the
empty set and those opportunity sets which do not meet the minimal standard
embodied by order filter F' are regarded as (pairwise) indifferent.

Notation 14 A FOR with order filter F will also be denoted by (P(X),=r).

What are then the ‘freedom of choice’ properties, and what the ‘preferential’
and ‘flexibility’ contents of a SFOR? This question is answered by the following
proposition:

Proposition 15 Let (P(X),>r) be a SFOR with order filter F' € F (P(X), D).
Then,

i) (P(X), =r) satisfies PR,WM,SI,WPI,WPE but not PI or SE unless
F D P(X)\{0} ie. (P(X),=r) = (P(X),2) in which case it also clearly
satisfies both PI and PFE;

i) (P(X),=%) € (P(X),»r) and the =p —induced dominance relation
(P(X),%) is a FBU — IPM iff F=P(X) ie. (P(X),p)=(P(X),D) :

iit) if GY(F) #( then

Zer={(,2) eXxX:y=2zo0ryec G F) and z ¢ G}(F)} and

—o={(y,2) EX x X :y e GHF) , 2¢ GY(F()};

if GY(F) =0 then =, .= X x X and =, .= 0 .



Remark 16 It should be noticed that for any F € F(P(X),2) , =5C =p.
Indeed, let A =% B.Then, either AD AUB i.e.AD B, or AUB ¢ F (whence
B ¢ F ): in either case, it follows that A =p B

Corollary 17 Let (P(X),=r) be a SFOR with order filter F. Then (P(X), =)
is a fized-base unanimous IPM OR iff F = P(X),i.e.(P(X),>r) = (P(X), D).

Proof. Straightforward from the foregoing Proposition and Remark , by
noticing that (P(X), &’1‘3( )) = (P(X),zpx)). I

The foregoing Proposition and Corollary establish that set-filtral ORs pro-
vide a first class of examples of plausible rankings of opportunity sets in terms of
‘freedom of choice’ which cannot possibly be interpreted as fixed-base unanimous
IPM ORs, except for the trivial case where F' = P(X) i.e. when (P(X),»p=
(P(X), D). On the other hand, our Claim 2 above entails that SFORs are rep-
resentable in terms of general ‘flexibility’ with respect to a context-dependent
set of total preference preorders. One possible ‘flexibility’ interpretation w.r.t.
P(X) x P(X)-indexed total preorders is as follows: for any order filter F, and
A, B C X define

{(t(m,zl)a (A,B)):z€ AUB, >ie C(X\ {m})}
fr(A,B) = it A#Band {A,B}NF #0, and
() if either A=Bor {A,B}NF =1

where for any v,z € X, and >.e C(X\ {z}), vy Z(e,>1) 2 iff either y =z
or y > z. It is easily checked that the restriction of fr to (P(X) x F)|J(F x
P(X)\{(A,B) € P(X) x P(X) : A= B} is an injection.

Then, define [fr(A, B)]; = {-€ C(X): (=,(4,B)) € fr(A, B)}, and posit
1if [(max>( >4) A > (w,>1) max>(z i) B)
for all =, >iye [fr(A, B)]1 # 0
and nat(maxt%%) B (a2 A= A)

for some =, >i)€ [fr(A, B)]1 # 0
—1if [(max> i) B ¥ (4,>1) maxy 51y A)
for all >(w >i€ [fr(A, B)l1 # 0
and not(max>( i) A (i) WAXy B)

for some =, >i\€ [fr(A, B)l1 # 0]
0if fp(A,B) =0 and
undefined otherwise

It is then easily checked that for any A, B C X, v(fr(A,B)) > 0iff A =p B

It should be emphasized that the foregoing ‘flexibility’ representation of
SFORs retains the IPM criterion while using variable context-dependent (non-
singleton) sets of total preference preorders. It should also be remarked that
set-filtral ORs perform reasonably well with respect to improvability properties,
and less so with respect to essentiality properties.

Let us turn now to a total extension of a set-filtral opportunity ranking as
first introduced and discussed — in a specialized version— by Suppes(1987):

v(fF(A7 B)) =




Definition 18 (Total set-filtral opportunity ranking) A total set-filtral oppor-
tunity ranking with order filter F is a binary relation (P(X), =%) such that for
any A,BC X : A =% B if and only if either A€ F or B ¢ F.

Proposition 19 Let (P(X), %) be a total SFOR with order filter F as defined
above. Then,

1) =pis indeed a total preorder that satisfies WM, but neither PI nor PE.
Also, =% satisfies WSI, WPI,and WPE iff #G#X~Y(F) < #X, SI iff F =
{X}, WSE iff F # P(X), WPE iff F is such that max{r: G"(F) #0} >
#X —1, SE iff F = P(X)\ {0} ;

ii) =1 C=h, and (P(X), =%) is not a fived-base unanimous IPM OR ;

W), = {(z,y) e X x X :2€ GYF) ory ¢ G(F) }, hence

e ={(z,y) € X x X :x € GN(F) and y ¢ G'(F)}.

Thus, total set-filtral ORs provide a second example of a class of ‘freedom
of choice’-motivated ORs which are generally not amenable to a fixed-base-
unanimous IPM interpretation. Moreover, total set-filtral ORs perform quite
poorly with respect to both improvability and essentiality properties.

Remark 20 Again, a variable-base unanimous IPM representation of a total
SFOR (P(X), %) may be provided along the following lines. For any A, B C X
, define:
{(=x\5 ®>p)} for some >x\pc C(X\B),>pe C(B)
ifA€ F and B¢ F
{(Zx\a ®>4)} for some >x\a€ C(X\A),>1€ C(A)
ifBeF and A¢ F
(X,~] } if {AB}CF
0if {ALByNF =10
where [X,~] denotes the universally indifferent preorder i.e. ~= X x X,
and @ denotes the ordinal or linear sum for preorders.
Then, posit

fw(A,B) =

1 if max, A 77 max, B for all Z¢€ f4(A, B) and
not(max, B 7 max, A for all e fL(A, B)
—1 if max, B max, A for all Z€ ft(A, B) and
not(max, A > max, B for all 7€ fL(A, B)
0 if max, A7 max.- B for all Ze fp(A, B)
max, B 7 max. A for all Ze fL(A, B)
It follows from the foregoing definitions that for any A, B C X, v(f%(A, B)) >
0 iff A=t B.

v(fi(A, B)) =

and

Next, let us consider for the sake of comparisons the cardinality-based (total)
opportunity ranking as defined below:

Definition 21 (Cardinality-based opportunity ranking) The cardinality-based
OR (P(X),=¢) ts defined by the following rule: for any A,B C X, A =4 B
iff #A > #B .
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Claim 22 Let (P(X), =) the cardinality- based OR. Then,
i) (P(X), =) is a total preorder and satisfies WM, PI, PE;
it) (P(X), =) = (P(X),2) is a fived-base unanimous IPM OR ;
i) Ty ,= X x X, and =, ,=0 .

Hence, as mentioned above, the cardinality-based OR. is perfectly well-behaved
with respect to our improvability and essentiality properties, is devoid of non-
trivial rigid preferential content, and its dominance subrelation is amenable to
a fixed-base-unanimous IPM interpretation.

We proceed now to consider a somewhat hybrid class of opportunity rank-
ings, where the usual motivation in terms of ‘freedom of choice’ is further qual-
ified by considerations concerning outcome-range (or ‘diversity’). This move
requires, however, some reference to the underlying structure of X . Most typi-
cally, a metric on X is invoked(see e.g. Klemisch-Ahlert(1993) who works with a
Euclidean outcome space). Here, we pursue a quite different route to diversity-
modelling, namely we simply require the outcome set to be a partially ordered
set or poset (X,>) (i.e. > is a transitive, reflexive, antisymmetric binary rela-
tion on X). We are not going to push forward any particular interpretation of
(X,>), but — clearly enough— , such a poset is meant to represent a ‘physical’
as opposed to a ‘preferential’ structure ( e.g. think of X as a set of points in a
multiattribute space where attribute-values are chains, > is the meet of those
chains, and (at least) some of the relevant preferences exhibit non >-extremal
bliss points in X, hence are not >-monotonic). It is easily checked that a poset
structure is indeed rich enough to support some significant notions of outcome-
diversity as made precise by the following definitions:

Definition 23 (Convex hulls in a poset). Let (X,>) be a poset. Moreover, for
any x,y € X let us define

[,y =maxs {{zeX:o>y >z}, {zeX:y>2z>a} {2,y}}.

Then, for any A C X the convex hull co>(A) of A w.r.t. > is defined by the
following rule :

co>(A)=N{BCX:B2Aand BD [z,y] for any z,y € B}.

Notation 24 We posit Co(X,>) = {AC X : A= co>(B) for some B C X}.
Moreover, for any A C X we denote the set of > —extreme points of A by
E>(A) = EX(A)U ES (A) where
Ei(A):_{xeATy>xfornoyeA}
E;(A):{xeA:I>yf0rn0y6A}.

Definition 25 (Convex-hull-based opportunity ranking). Let (X, >) be a poset.
Then, the convex-hull-based OR —or > —convexr OR—(P(X), =co. ) is defined
by the following rule : for any A,B C X , -

A zco. B iff co>(A) D cox(B).

A set-filtral version of convex-hull-based opportunity rankings may also be
defined, namely:

11



Definition 26 (Convex-hull-based set-filtral opportunity ranking) Let (X, >)
a poset, and F an order filter of (Co(X,>),2).Then, the convex-hull-based
set-filtral OR (P(X), = (co,,py)with order filter F' (or set — filtral > —convex
OR— is defined as follows: for any A,B C X, A =(co, ) B iff either co»(A) 2
co>(B) or co>B ¢ F.

The relevant monotonicity and flexibility properties of (P(X),=¢.) and
(P(X), % (cos r)) are summarized by the following propositions:

Proposition 27 Let (X, >) be a (finite) poset , and (P(X), =co.. ) the > —convex
OR. Then, -

i) (P(X), %cos ) satisfies PR,WM,WPI, PE but not SI whenever (X,>)
includes a chain of size s > 3;

i) Fro. =Fcos, and (P(X),=%,.) is a fived — base — unanimous IPM
OR ;

m)fﬁ;mzz {(x,y) e X x X : x =y}, hence "oy = 0.

Thus, a >-convex OR shares a considerable amount of ‘nice’ monotonicity
properties with the set-containment poset, is devoid of any non-trivial rigid
preferential content and is amenable to a fixed-base-flexible IPM interpretation.
Hence, >-convex ORs are in that respect a remarkable exception among the
‘freedom of choice’-ORs we consider in this paper. Those somehow ‘distinctive’
properties are however immediately lost if we move to a ‘filtral’ version of >-
convex ORs.

Proposition 28 Let (X,>) be a (finite) poset, and (P(X), &(coz’F)) the set —
filtral > —convex OR with order filter F. Then,

i) (P(X), % (cos,r)) satisfies PR,WM, WPI,WPE ; SI holds iff (X,>)
does not include a chain of size s > 3; PI holds iff ( (X,>) does not include
a chain of size s > 3 and there exists x € X such that {z} € F); SE holds
iff F 2 {{z}:x € F}; PE holds iff F D {{z}:2x € X} and (X,>) does not
include a chain of size s > 3;

i1) ;FCOZyF)ghc%F), and (P(X), Z(cos 7)) 18 M0t a fived—base unanimous
IPM OR if there exist A, B,C C X such that co>(A) 2 co>(C),co>(AUB) ¢
F,co-(BUC) ¢ F and co>(AUC) € F;

W) T o m=1(2,y) € X x X 1z =y or {y} ¢ F} hence

" (con 1 = {(v,y) e X x X : {z} € F and {y} ¢ F}.

Remark 29 For any order filter F € F (P(X), D) a (context-dependent) variable-
base unanimous IPM  representation of (P(X), = (co>,r)) may be defined along
the same lines as for (P(X), =r), provided that AU B is consistently replaced
with E, (AU B) in the relevant definitions.

A total OR based on another order-theoretic notion of outcome-diversity can
be defined as follows:
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Definition 30 (Width-based opportunity ranking). Let (X,>) be a poset.
Then, the > —width-based OR (P(X), zw(>)) is defined as follows: for any
A BCX, Azyey Biffw(>)(A) > w(>)(B) (where for any C C X,
w(>)(C) =maxpcc {#{D :x #y andy # « for any x,y € D such that x £ y}}).

Remark 31 It should be emphasized that if (X,>) is an antichain or equiva-
lently >= {(z,y) € X : x =y}, then for any A C X , w(>)(A) = #A hence

Proposition 32 Let (X, >) be a poset, and (P(X), =y(>)) the > —width-based
OR. Then,

i) (P(X), =w(>)) is a total preorder that satisfies WM and SE; WSI,W PI
and W PE hold iff (X, >) has a unique antichain A* of mazimum size ; SI, PI
and PE hold iff (X, >) is an antichain (i.e. when (P(X), =) = (P(X), 74);

i) Foy>) SFw(z) and (P(X), 7y,5)) @ a fived — base — unanimous IPM

OR if (X, >) is a chain or an antichain, but need not be in the general case;
i11) Zrwe =X X X hence =, = 0.

Remark 33 A variable-base non-unanimous-IPM representation of (P(X), =w(>)
) w.r.t. to P(X)-indexed chains may be defined as follows: for any Y C X,
let {2% . EYR(Y)} € C(Y) be a minimum-size chain union decomposition of
(Y, >v) i.e. a minimum-cardinality-set of chains on some sets Y; CY such that
>y = U,’fg) >y, (where >y=>N(Y xY)) , and posit —for any A,B C X :

_ [ Ca @204 A) s (aa D 2040000 A)s }

fwz) (A, B) = { (=5, D >(x\B1)» B)s (ZBW) @ Z(X\Bkug))aB) , where
>x\an€ C(X\Ay), >x\,)€ C(X\B;) and & denotes the ordinal or linear
sum operation for preorders. Then, for any A, B C X denote

c(A: (A, B)=#{(=.0) € fawz) (A, B) : C= A} = k(A),

o(B:(A,B))=#{(=,0) € frwz)(A,B):C =B} =k(B), and define

1ife(A: (A,B))>c(B: (A B)

U(fw(Z)(A7B)) - -1 ch(B : (A7B)) > C(A: (A7B))

0ifc(A:(A,B))=c(B:(4,B))

Now, consider the well-known Dilworth decomposition theorem for posets
which establises that the width of a finite poset equals the cardinality of its
minimum-size chain (union) decomposition (see e.g. Anderson(1987)). It is
then immediately checked that for any A, B C X, v(fu(>)(A, B)) > 0 iff A = (>
B.

Thus, it is confirmed that the width-based OR —while satisfying the set-
essentiality (SE) property— is also not amenable in general to a fixed-base-
unanimous IPM representation (and embodies a trivial rigid preferential con-
tent). The exceptions only occur in trivial cases, i.e. when (X, >) is a chain
and the width-based total preorder collapses to universal indifference, or when
(X,>) is an antichain and the width-based OR reduces to the cardinality total
preorder.
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Moreover, it should be emphasized that the variable-base flexible representa-
tion of (P(X), Zw(>)) which has been presented above is not of the ‘unanimous’
IPM type (as opposed to the other variable-base flexible representations previ-
ously considered ). This circumstance apparently suggests that the width-based
OR is indeed quite different from the other ORs we have discussed in the present

paper.

3 Related literature

Since the focus of this paper is on alternative rankings of opportunity sets
according to several notions of ‘freedom of choice’, ‘flexibility’ and ‘diversity’—
and on the relationships among them— the amount of related literature is simply
enormous. We can only attempt to provide a very succinct review of such work
in order to substantiate our earlier remarks concerning what is —and what is
not— usually offered in the previous literature under those general labels.

As for ‘freedom of choice’, the relevant literature on opportunity rankings
essentially originates with Sen (1985,1988) and Suppes (1987). Indeed, while
Sen’s seminal contributions have inspired the well-known characterization of the
cardinality-based preorder due to Pattanaik,Xu(1990) and the subsequent con-
tributions on opportunity rankings as previously discussed in the Introduction,
Suppes’s work is the original source of a distinct strand of literature which is
mainly focused on numerical (ratio scale) representations of opportunity rank-
ings (see e.g. Gravel,Laslier, Trannoy (1998)).

The literature on opportunity rankings based upon notions of ‘diversity’ is
even more sparse. There is indeed a wide literature on measures of ‘diversity’
in physics, biology, statistics. One early approach only concerns communities
with a fixed number of species, proceeds to normalize the numerosity of the
latter in terms of biomass units, and provides a ‘diversity’ ranking by relying
on the Lorenz -or majorization- partial order (see e.g. Solomon (1979)). More
recently other classes of ‘diversity’ measures —which typically rely on a suitable
metric as defined on the underlying outcome space- have been introduced in
environmental economics. In particular, Weitzman (1992) and Solow, Polasky,
Broadus (1993) have recently proposed two closely related metric-based classes
of biodiversity measures which rank ecological communities in terms of number
of species and numerosity of each of them. In a more abstract vein, Van Hees
(1999) considers several requirements for metric-based ‘diversity’ rankings of
opportunity sets and provides a few ‘impossibility’ results.

By contrast, the literature on ‘flexibility’ has a long and quite complex tradi-
tion whose roots are mostly in economic theory. A special emphasis on the role
of preference for flexibility as revealed by option values —under the label ‘specu-
lative liquidity preference’— may be dated back at least to Keynes. The notion
of preference for flexibility was subsequently taken up and developed within
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several different models by Marschak (1938), Hart (1942), Marschak,Nelson
(1962), Koopmans (1964), Kreps (1979, 1992), Jones,Ostroy (1984) among oth-
ers. Moreover, the notion of ‘flexibility’ is arguably closely related to existence
of ambiguity and irreversibility. Indeed, intertemporal flexibility encompasses
the notion that a good current decision is sometimes a choice which permits
good later responses to later observations ( see e.g. Arrow,Fisher (1974), Henry
(1974) for early developments of those ideas in the context of environmental
economics, and Pindyck (1991) for further refinements and applications within
standard models of investment decisions).

The first full-fledged axiomatization of a ‘flexibility’-motivated (total) op-
portunity preorder is however due to Kreps (1979), who builds upon Koopmans
(1964). The basic idea is that if an agent is uncertain about her future pref-
erences then she exhibits a preference for flexibility, which can be represented
by a state-dependent utility function. Thus, each state or relevant contingency
‘activates’(indeed, corresponds to) one relevant total preference preorder : an
opportunity set A is ranked above another one —say, B— if and only if at any
state (i.e. according to each relevant preference preorder) its local maxima are
not worse than B’s, and there exists a state s* such that the local maxima of A
are strictly better than B’s. Clearly enough, all this amounts to a dominance—
or unanimity— principle with respect to the state space-indexed set of relevant
total preference preorders: Kreps’s total opportunity preorder is just an exten-
sion of such a dominance partial preorder. Moreover, Kreps (1992) advances
the idea that this model of ‘preference for flexibility’ is best suited to the case
where the state-space corresponds to the set of contingencies the agent is able
to explicitly foresee, while being at the same time perfectly aware that there
are more —unforeseen— relevant contingencies. Nehring (1999) further devel-
ops Kreps’s approach within a full-fledged Savage-style framework, while Arlegi
(1999) provides an alternative characterization of Kreps’s ‘flexibility’-motivated
total opportunity preorder, relying on the notion of consistency with respect
to a single asymmetric preference relation on X. Arrow (1995) — while down-
playing the significance of an axiomatic approach to ‘preference for flexibility’—
does indeed equate ‘freedom of choice’ to ‘flexibility’ and endorses an amended
version of Kreps’s state-dependent indirect-preference-maximization model: by
imposing a probability space structure on the state space, he defines an ex-
pected indirect utility index which extends Kreps’s dominance partial preorder
as described above.

Pursuing another line of reasoning which denies exclusive prominence to
future contingent utilities, many authors have reached a considerable degree of
consensus on the notion that ‘freedom of choice’-motivated opportunity rankings
can—and should— be represented in terms of indirect preference maximization
with reference to a set of possible or plausible preference preorders on X (see
e.g. Jones,Sugden(1982), Foster (1993), Pattanaik,Xu(1998), Sugden (1998),
Puppe (1998)). In particular, Foster (1993) defines an opportunity ranking in
terms of what he calls ‘effective freedom’ by applying the (unanimity) domi-
nance principle to a suitable class of possible preference preorders on X. By
introducing in a suitably general way their multi-preference approach to evalu-
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ating opportunities, Nehring,Puppe (1999) effectively show a tight connection
between those ‘unanimity’-based rankings and ‘flexibility’ rankings of the sort
proposed and axiomatized by Kreps, in that the latter reduces to a total exten-
sion of the former . In fact, those two types of rankings do essentially coincide
when the domain of opportunity sets to be considered reduces — as indeed pro-
posed by Nehring,Puppe (1999)— to the set of containment-comparable subsets
of X. As repeatedly mentioned above in the previous sections, such opportu-
nity rankings share a heavy reliance on the criterion of unanimity of indirect
preference mazximization with respect to a fixed base of preference preorders on
X.

A final remark concerning existence of multi-preference representations of
any OR as stated by our previous Claim 2 is in order here. Due to the basic and
elementary nature of such a result, we are inclined to think that some version of
it might well be already known, perhaps in disguised form. As a matter of fact,
we have not been able to trace any such proposition in the extant literature.
To be sure, our partial evaluation functions as defined in Claim 2 amount to a
partial version of ‘comparison functions’ as introduced in Dutta, Laslier(1999)
( where they are put to a quite different use). Moreover, Claim 2 bears some
resemblance to the well-known McGarvey’s theorem on tournaments which es-
tablishes that for any tournament (i.e. a quasi-total asymmetric binary relation)
there exist a population of voters and a profile of linear preference orders such
that the given tournament is the resulting majority voting tournament (see Mc-
Garvey(1953)). However, it should be emphasized that McGarvey’s theorem
refers to preorders and tournaments which are defined on the same set, while
our Claim 2 establishes a connection between preorders on a set and binary
relations on its power set.

4 Concluding remarks

While tentative and preliminary, the comparative analysis of ‘freedom of choice’-
motivated ORs offered in the present paper enables us to establish two main
points, namely:

e Unanimous indirect-preference-maximization with respect to a fixed base
set of preferences is too narrow a specialization of the general notion of flexibility
w.r.t. a set of preferences to accommodate every plausible opportunity ranking.
In fact, if the foregoing link between the ‘flexibility’ interpretation of opportunity
rankings and unanimous indirect-preference-maximization w.r.t. a fixed set of
preferences is removed, then several new interesting ORs emerge.

e Similarities and differences among those ‘new’ and unconventional ORs
are effectively—if partially— elicited by the set of uncontroversial containment
monotonicity properties introduced and discussed above as well as by their basic
preferential content. In particular, we have shown by example that some non
FBU-IPM ORs are indeed consistent with the IPM-unanimity principle, but
require a variable-and typically non-unit- set of preferences, while others (e.g.
the width-based ORs) might be inconsistent with the IPM-unanimity principle
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as such.

It remains to be seen if and how our elementary base of monotonicity prop-
erties could be possibly augmented in order to obtain some simple characteri-
zations of the ORs discussed in the present paper. This is however best left as
a topic for further research.

5 Appendix: Proofs

Proof of Claim 2. First, posit #X = k , denote by R(X) ( C(X) ) the sets
of all total preorders ( chains ) on X, and notice that #R(X) > #C(X) and
#(P(X) x P(X)) = 2%¢, while #(P(C(X))) = 2¥. Since clearly k! > 2k for
k > 3 (indeed, k! > 2k for k > 4), an injection f: P(X) x P(X) — P(C(X))
can be defined.
Then posit
P={ReC(X): Re f(A,B) for some (A,B) € P(X) x P(X)},
and for any L € P(P), define
1 if there ex1sts (A,B) € P(X) x P(X) such that
=f(A,B) and A > B
0 if there ex1sts (A,B) € P(X) x P(X) such that
v(L) = L=f(A,B)and A~ B
—1 if there exists (A, B) € P(X) x P(X) such that
L= f(A,B)and B~ A
and undefined otherwise
Hence, for any A,B C X, (vo f)(A,B) > 0iff A = B. The case of indexed
total preorders or chains follows as an immediate corollary. ]

Proof of Proposition 15. i) Weak monotonicity is obvious: indeed, for any
A,B e P(X), AUB D A whence AUB =5 A. But then, reflexivity of = is also
obvious. To check transitivity, consider A, B,C' C X such that A > B and
B =F C. Four cases are to be distinguished: a) A O B, B O C :here, A =p C
is a trivial consequence of transitivity of O; b) AD B,C ¢ F,c)B¢ F,C ¢ F :
under cases b) and ¢) A =p C follows immediately from the definition; d)
B ¢ F,B D C : here, C ¢ F by definition of order filter, whence A =p C
(by definition of =p). To check SI, take any A C X, and B = X\ A. Clearly,
XeF,and X =AUB D A. Therefore, AUB =rp Aand not A =p AU B. To
check WPI, take X’ € max5{BC X : B ¢ F} ie. forany B C X',C D X/,
B ¢ F and C € F. Then, for any A such that X' C A C X, and any = € X \A4,
AU {z} € F whence AU {z} »r A . To check WSE, take again any X' €
max5{BCX:B¢F}, AD X'and x € A\X'. By definition, A € F : hence
A D A\ {z} implies A =5 A\ {z}(whether A\ {z} € F or not). Concerning PI,
take any order filter F' of (P(X), D), F C P(X)\ {0}, and any A C X such that
 #A ¢ F. Then A\ {z} ~p A for any x € A. Similarly, if FF C P(X)\ {0}
and ) # A ¢ F, then in particular B =p A for all B C A, hence SF is not
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satisfied. Conversely, if F' O P(X)\ {0} then (P(X),>r) = (P(X),2) hence
both PI and PFE are trivially satisfied .

ii) For any A,B C X, if A =% B then by definition either A O AU B or
AUB ¢ F. If A D AU B then obviously A O B hence by monotonicity
Axp B.If AUB ¢ F then of course B ¢ F whence again A = B. Moreover,
a well-known result due to Puppe (see Puppe(1996), lemma 5) establishes that
for any (P(X),),the = —induced dominance relation (P(X),=*) is a fixed-
base flexible IPM OR if and only if »=*is transitive. Thus, our proof reduces to
showing that for any F € F(P(X),2), (P(X), %) is transitive iff F' = P(X).
Indeed, consider the following counterexample. Let F' = Ule {ACX:ADB;}
where B; C X,i = 1,..,k. Then, take B = 0, ) # A = By # X, and C
such that C\A # 0,(X\C) N B; # 0 for any ¢ = 1,..,k. Notice that the only
implied restriction on F is that F' ¢ {{X}, P(X)} .Hence, clearly enough, 4 D
AUB/,BUC ¢ F,AUC € F,and A 2 C, ie. A =5 B,B =% C and not
A =% C. Next, consider the case F = {X}, and posit A = X\ {z} for some
x € X (recall that #X > 2 by assumption),B = (), and C' = {z} . Here, again,
A =% B (because A D B), B =% C (because BUC = C ¢ F), and not
(A =% C) (because A 2 C and AUC = X € F). Conversely, if F = P(X)
then A =% B, B =% C necessarily imply A O B and B O C, whence A DO C
and therefore A =% C.

iii) Let F be such that G1(F) = {x1,..,2x} # 0. Then, for any x € {x1, .., 2%}
and any y € X\ {z1,., 25}, {x} € F and {y} ¢ F, whence —by definition of & p—
{a} =p {2}, {2z} =F {y} and not {y} = {z}. By contrast, if G*(F¥) = () then
{z} ¢ F for any « € X, hence {y} =g {z} for any y,z € X.OO

Proof of Proposition 19. i) Totality is easily checked (indeed, for any A, B €
P(X) if A € F then A =% Band if A ¢ F then B =% A). In order to check
transitivity, take A, B,C such that A =% B, B =% C. Three cases are to be
considered: A € Fand Be€ FfJA€ Fand C ¢ FFB¢ Fand C ¢ F.In
any case, A =% C follows (by definition). Weak Monotonicity is also easily
checked: for any A, B C X, if AUB ¢ F then B ¢ F as well, hence in any case
AUB =% A. To see that PI cannot possibly hold, consider z1, 29 € X,z # x3.
Then, take AY = X\ {x, 22} ,A' = A°U {x,},A4% = A° U {2}, and assume
PI. Hence A7 =%, AY for some j € {1,2}i.e. A7 € F and A° ¢ F. It follows
that A7 =% B for any B C X, which contradicts PI. Similarly, take C C X
such that #C > 3 and assume PE. Then C »% B (i.e C € F and B ¢ F),
for some B C X such that #B =2, and B »% A (i.e. B € F and A ¢ F) for
some A C X such that #A = 1, a contradiction.Concerning the other relevant
monotonicity properties, W PI is satisfied provided that #G#X~1(F) < #X:
indeed, take € X such that X\ {z} ¢ F (such a x must exist, by hypothesis).
Then, choose X’ = X\ {z} and posit B = {z} : hence X = X' U {z} »% X'.
Conversely, if #G#X~1(F) = #X then X\ {z} € F for each z € X :thus, WSI
fails because for each X’ C X there exists # € X such that X\ {z} DO X’ and
X\ {z} =% B for any B C X.

ST holds true if F = {X} :indeed, forany AC X , X = AU (X\4) - A
such that X' = X\ {«} € F; conversely, if F # {X} then X\ {z} € F for some
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z € X, whence X\ {z} =% A for any A C X, and ST fails.

W SE is satisfied whenever F' # P(X) because one may choose

X'e maxs, {CCX:Cé¢F#0}:

then for any A C X such that X' C A, A =% X’ = A\(A\X'). If, however,
F = P(X) then obviously =%= P(X) x P(X) hence WSE fails. WPE is
satisfied if X\ {«} ¢ F for some & € X : indeed, under that hypothesis one may
posit X’ = X\ {z}, and observe that X =% X\ {z}. Conversely, if X\ {z} € F
for all # € X then for any x € X , X\ {z} =% X, which contradicts WPE.
Finally, if F = P(X)\ {0} then SE holds: indeed, take any A # (). Then,
posit B = A :clearly A € F while ) ¢ F ie.A =% () = A\A. Conversely,
if F # P(X)\{0} we may assume w.l.o.g. that F C P(X)\ {0} (otherwise
F = P(X) under which even WSE fails, as shown above). Hence, A ¢ F for
some A # () : but then, C' =% A for any C' € F, which contradicts SE.

ii) First, notice that A =% B entails either A € F or AU B ¢ F. Since
AUB ¢ F entails B ¢ F, it follows that— in any case- A =% B. In view of the
lemma in Puppe(1996) already mentioned above(see the proof of the previous
Proposition), it only remains to prove that =¥ is not transitive. Indeed, consider
r,y,z € X, A={2},B={y},C ={z},and F={DCX:DD{x,z}}.
Then, A ¢ FFAUB ¢ F \BUC ¢ F while AUC € F : it follows that
A% AUB, B=% BUC but AUC =% A le. =%is not transitive.

iii) For any z,y € X, {z} =% {y} iff either {x} € F or {y} ¢ F, i.e. iff either
r € GYF) or y ¢ GL(F). Moreover, {z} =t {y} iff [{z} € F or {y} ¢ F] and
not [{y} € For {z} ¢ F|]ie. v € GYF)andy¢ G*(F).L]

Proof of Claim 22. i) That (P(X), =) is a total preorder follows from the
basic properties of cardinal numbers. Moreover, for any A,B C X, AUB =4 A
because #A U B > #A. Also, it is immediately seen that for any A C X
P#BCX,andx € X\A,y € B, AU{z} =4 A and B =4 B\ {y}.

ii) For any A,B € P(X), A=} Biff A=y AUB ie#A > #AUB or
equivalently A O B. Hence (P(X), >*#) is transitive and thus-by the lemma
mentioned above— a unanimous IPM OR.

iii) Clearly enough, for any z,y € X, {x} ~4 {y} whence the thesis.[]

Proof of Proposition 27. i) Transitivity follows trivially from the definition,
and from transitivity of O . Reflexivity also follows trivially from the definition,
and from reflexivity of O .Weak monotonicity is also an immediate consequence
of the definition, since A O B obviously entails co> A O co>B. To see that W PI
is satisfied, posit

Ei(X)={r€ X :forany z € X,not z >z },
ES(X)={zeX:forany ze€ X, not x >z },

and notice that #[EZ(X) U ES(X)] > 2 since #X > 3. Then, take a non-
empty set S, S C EX(X)UES (X) and define X’ = SU [X\(EZ(X)UES (X))]:
hence X’ C X, and for any A C X, X' C A C X, and any v € X\A,co>(AU
{z}) D co> A (because z € co> A iff there exist y, z € A such that y > 2 > z, a

contradiction since z € EX(X) U ES (X)), i.e. AU {z} > (cos) A
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PE is checked as follows: for any A C X, A # 0, choose z € max> A (such
a z must exist since X is finite). Then, notice that y > z for no y € X\ {z}( by
antisymmetry). It follows that z ¢ cox(A\ {z}), hence co>A D co>(A\ {z}) i.e.
A o A\ {z}.In order to see that ST is not satisfied if > includes a chain of size
3, take z,y,z € X such that >y > z , then notice that co>(X\ {y}) = co>X
whence X\ {y} =co.. X which contradicts ST.

ii) It can be shown that

(%) for any A, B C X, co>A D co>(AU B) iff co=(A) D co>(B).

Indeed, assume cox(A) O co>(B) and take any z € co>(A U B), i.e. there
exist y,w € AU B such that y > z > w. Generally speaking four cases are to be
distinguished, namely : a) {y, w} C A: here clearly z € co>(A) (by definition);
b) {y,w} C B : in this case, z € co>(B) hence it follows from our assumption
that z € co>(A) as well; ¢) y € A,w € B: in this case, w € co>(B) hence-by
assumption-w € co>(A) . It follows that y > z > w’ for some w' € A, ie.
z € co>(A);d) y € B,w e A: here, y € co>(B) C co>(A), whence vy’ > z > w
for some 3’ € A. Again, it follows that z € co>(A).

Conversely, suppose co>(A) 2 co>(B) i.e. there exists z € co>(B)\co>(A)
hence a fortiori z € co>(A U B)\co>(A) , and co>(A) 2 co>(AU B).

As a consequence of (x), forany A,B C X : A=;, Biff A=, B.
Therefore, (P(X), =0 ) is indeed a fized — base unanimous IPM OR.

iii) It is immediately checked that for any z,y € X, co> {x} D co> {y} iff
x = y hence the thesis follows.[]

Proof of Proposition 28. i) Reflexivity is obvious. Moreover, take A, B, C' C
X such that A F(cow, ) B, and B z(co, ry C: if c0A D co>B , and
co>B D co>C then clearly co>A D co>Cie. A 7 (cos , F) C; if co>C ¢ F, then
A Z(con, 7y C by definition; if co> B ¢ F and co>B 2 co>C then co>C ¢ F
whence again A (., ) C. Thus, transitivity holds.

In order to check Weak Monotonicity, just observe that for any A, B C X,
co> (A U B) D) COEA.

To check WPI , define EX(X), ES(X) as in the proof of the foregoing
Proposition, and B B

Y C X : there exists S such that

X' = max> 0#SC E>(X)=EL(X)UES(X),

Y =SU[X\(F>(X))], and cosY ¢ F

(If no such Y exists, then posit X’ = S U[X\(E>(X))] for some S, ) # S C
E>(X) : since co>X' € F, one may conclude that AU {z} > (cos,#) A from the
fact that co>AU{x} D cosA € F forany A, X D AD X', and any = € X\A).
Now, for any A such that X D A D X', and for any © € X\ A, one may conclude
again that co>(A U {z}) D co>A (by the same argument already provided in
the proof of the foregoing Proposition). Since by definition co>(A U {z}) € F,
it follows that AU {z} > (co. ) A.

To check WPE, consider Y = {Y C X :Y C X\(E>(X)),co>Y ¢ F} and
take X* € max5Y if Y # (. Then, posit X' = X* U {xo} for some zp €
E-(X)if Y#0, and X' = X\(E>(X)) if Y = (. Now, choose any A such
that X' ¢ A C X :if X’ = X* U {x¢} then by definition co»(A4) € F, and
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co>A D cox(A\ {wo})(recall that zg € E>(X)), whence A (e 1) (A\{z0});
it X' = X\(E>(X)) then for any x € A\X' C E>(X), co>A D co>(A\{z})
and by definition—co> A € F, whence again A =, p A\{z}.

Next, suppose that (X,>) does not include a chain of size 3. Then, by
definition X = E>(X). Hence by definition, for any A C X, co>(AUX \A)
co>X D co>A, and ST holds. Conversely, suppose that (X,>) does include a
chain of size 3 (i.e x >y > z for some z,y,z € X). Then, choose A = X\ {y} :
obviously, co>A = X € F hence A = (.. ) B for any B C X, and ST fails.

Now, suppose that (X,>) does not include a chain of size 3 (hence X =
E>(X)) and there exists 2* € X such that {z*} = co> {z*} € F. Then, for
any A C X two cases are to be distinguished: a)z* € Ab)z* ¢ AIf * € A
then for any € X\A4, § # co>(AU {z}) D co>A, and co>(AU {z}) € F,
hence AU {a} =(co, ry A if 2 ¢ A then co> (AU {z"}) D co>(A) and-again—
co>(AU{x*}) € F hence AU{2"} (¢, ) A. It follows that P1I is satisfied.
Conversely, suppose that (X, >) does include a chain of size 3, i.e. there exist
x,y,z € X such that x > y > z. Then, take A = X\ {y} and observe that
co>(A) =X %(cos,r) B for any B C X, which contradicts PI. Also, suppose
that for each z € X, {x} ¢ F. Then, observe that () 7 (cos , F) {z} for any xz € X,
which also contradicts PI.

If F O {BCX:B={xz} for some z € X} then for any A # (), and any
x € A, coxA D coy{z} = {z} and coA € F . It follows that A (.o, ) 0 =
A\A , i.e. SE holds. Conversely, assume that there exists © € X such that
{z} = co>{x} ¢ F. Then, B (. r) {7} for any B C X hence SE fails.

If FO{BCX:B={z} for some z € X} and (X, >) does not include a
chain of size 3, then for any A C X such that A # () and any = € A, co>(A4) D
co>(A\{z}) (because X = E>(X)), co>A € F (because co>A D co>{z} =
{z} € F): it follows that A =, ) A\{7}, hence PE holds. Conversely,
assume that (X, >) does include a chain of size 3, i.e. there exist y,z,w € X
such that y > z > w then X\(E>(X)) # 0. Thus, for any z € (X \(E>(X)),
o5 (X\(E=(X) U {})) = cox (X\ (B (X)), hence X\(Ex(X) U{z}) ~ (. 11
(X\(E>(X))), which contradicts PE.

ii) Let A,B C X : then, by definition, A Fleon,r) B iff either co>(A) D
cos(AUB) or cos(AUB) ¢ F. Now, —as we have already seen above in the proof
of the foregoing proposition— co(A) D co>(A U B) iff co>(A) D co>(B), while
co>(AUB) ¢ F clearly entails cox(B): therefore, %’{co 7)EF(cos, F) - Moreover,
let us consider an order filter F' of (P(X), D) such that for some A,B,CCX:
co>(AUB) ¢ F,co=(BUC) & F,co>(A) 2 co>(C),co-(AJC) € F (e.g. take
(X,>) and z,y € X such that {z,y} C E>(X), F = {D 2> X :D D {z,y}}
where z,y € X,z # y, and posit A = {z},C = {y},B = {2z}, where z €
X\ {z,y}). Then, by definition, A >;’(“co r BB >;’(*co ) C, but not(A >(c0> )
(). Thus, >;2<co>, F)is not transitive and—as a consequence, by Puppe’s lemma as

already mentioned above— (P(X), Flcos,)) 18 MOt & fized — base unanimous
IPM OR. -
i) For any z,y € X, x Z, ., v iff {z} >(os,m {y} ie. iff [either

{z} = co> {z} D co> {y} = {y} or {y} ¢ F] or equivalently iff [either x = y or
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{y} ¢ I |. In particular, it follows that @ (. r) y iff {z} € F and {y} ¢ F.LJ

Proof of Proposition 32. i) Notice that w(>) may be regarded as a nonneg-
ative integer-valued function w(>) : P(X) — Z,. Hence =,,(>)is, by definition,
a linear order. Moreover, Weak monotonicity also holds true by definition (
because the largest > —antichain in A U B is obviously at least as large as the
largest > —antichain in A). To check that SE holds, observe that w(>)(?) =0
and w(>)(A) > 1 for any A # () : thus, for any A # ), A =) 0.

Let us now assume that (X, >) has a unique antichain A* of maximum size
(hence, in particular, #A* > 1). Next, consider the minimum cardinality ‘gap’
between A* and other antichains of (X, >) i.e.

g(A*) = min {#A* — #A: A+ A*, and A is an antichain of (X,>) },

choose B C A* such that #B = #A* — g(A*), and posit X’ = X\(A*\B).
Then, by definition, for any A such that X’ € A C X and any = € A"\ A4,
w(>)(Au{z}) > w(>)(A), i.e. AU{z} =4>) A hence WPI holds. Similarly,
for any A such that X’ C A C X and any € A\X', w(>)(A) > w(>)(A\ {z})
ie. A>y>) A\ {z} hence WPE is also satisfied. Conversely, suppose (X, >)
has (at least) two antichains A’, A” of maximum size, and consider any X’ C X.
First, observe that for any z € X, w(>)(X\ {z}) = w( )(X) hence W PE fails.
Also, if either A’ C X' or A” C X’ then for any B C X, w(>)(X') > w(>)(B),
ie. X' Fw(>) B and WSI fails. Otherwise, choose y € A"\(X" U A”) and
z € A"\(X’ U A’) : then posit A = X\ {z}, and observe that X' C A C X and
w(>)(A) = w(>)(X) i.e. A=y B for any B C X, which also contradicts
WSI.

Next, suppose that (X, >) is an antichain . Then, obviously, for any A, A’ C
X, A#X, A £ xe X\A yec A, wZ(AU{z}) > w(>)(4) and
w(>)(A) > w(>)(A'\ {y}) i.e. both PI and PE hold. Conversely, let (X, >)
be such that there exist x,y € X with > y. Then there exists z € {z,y}
such that w(>)(X\{z}) = w( (X)) 2 w(Z)(X\{z,y}). It follows that for any
B C X, X\ {2z} =u () B which violates SI. Moreover, w(>)({z,y}) = w(>
Y{z}) = w(>){y}) ie. {z,y} ~u(z) {2} ~w(>) {y} hence PE is violated as
well.

ii) Notice that A =} ) B iff w(>)(A) 2 w(>)(A U B).Since clearly —w(>
J(AUB) 2 w(>)(B), it follows that A =,y B. Also, if (X, >) is a chain then
w(>)(A) =1 for any A C X, hence by definition =¥ . \is transitive. If (X,>)
is an antichain then, by definition A %Z(Z) B iff #A DO #B . In both cases,
(P(X), Fro(>)) 18 a fired-base unanimous IPM OR. Suppose however (X, >) is
such that x,y, 2 € X are pairwise distinct elements of X, with x > y and z > y
(or y > z and y > z) but neither x > z nor z > z. Then, w(>)({z}) = w(>
Y{z,y}) = w(>)({z,v9}) = w(>)({z}) = 1, while w(> )({x z}) = 2: therefore
{z} Feo(>) {y}, {y} () {z} and not {x} () {z} . It follows that in this
case = - is not transitive hence (P(X), =}, 5)) is not a fized-base unanimous
IPM OR.

iii) By definition, for any =,y € X, x D ws) Y iff {z} =we) {y) e iff

1) =1 for all

(=
w(>)({z}) 2 w(Z)({y}) which is obv1ously the case since w(>)({z
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X. It follows that =~ =X x X, hence >, =¢.0

T w(Z) T w(2)
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