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Abstract -This paper explores general equilibrium asset pricing implications in a two-period model in which
the production side explicitely describes the thermodynamic process unavoidably connected with production.
We show that steady state of the production process, i.e. thermodynamic equilibrium, has a one to one

correspondence with the absence of arbitrage possibilities. This provides an alternative definition of the
absence of arbitrage.
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1 Introduction

This paper explores the definition of absence of arbitrage possibilities and equilib-
rium for an economy with complete capital markets in which production depends
on time. As it has been forcefully argued by Gerogescu Roegen (1971) in his cri-
tique of the Neoclassical description of the production process through the familiar
production function, the omission of the time dependency results in a very peculiar
description of reality. His starting point is provided by the observation that an irre-
versible thermodynamic process is at the basis of every real world transformation.
In this light, the Neoclassical description of the physical production process omits
fundamental features like irreversible qualitative change and entropy creation. This
has to do with the omitted role of time in the production process. In his analysis
the omission of time may only be justified if the “factory system” is in a steady
state (Georgescu Roegen (1971), p.238), which is not the case for the vast majority
of production processes.

We highlight here some implications for general equilibrium analysis of a fully
realistic technological description where production has not reached a steady state,
which accomodates qualitative change and the role of time. This is achieved by
adopting as production process a basic thermodynamic process that has not yet
reached a steady state. ! The technological description of the single good produced
in this economy is that of “hot water”, and it is chosen to unveil, in the simplest
possible way, the thermodynamic aspect of the production process. Although the
choice of the hot fluid production process may not seem of general interest, it is
indeed the process behind the production of many goods, including the commodity
with the widest possible use in the economic system, i.e. electric energy produced
through thermal plants. Still the technological description adopted here is just
a simple example of a thermodynamic characterization of the production process
and leaves open for further research the identification of more articulate and useful
thermodynamic descriptions of the production side.

We argue that we can have an equilibrium in this economy, i.e. in its contingent
claims markets, if and only if a termodynamic equilibrium in the production side,
i.e. no time dependency, has been achieved. The need for simultaneous equilibrium
of the production and exchange side of our simple economy is obviously a feature of
general equilibrium. However, the notion of equilibrium in the production side of the

Tt is well known in the finance literature that equilibrium asset pricing conditions, in continuous
time, may be represented with the same type of diffusion equations that describe heat dynamics.
The Black and Scholes (1973) result is a case in point: their equation for the price of a call option
is solved noting that it essentially the same as the unidimensional heat transfer equation (Black
and Scholes, (1973), p.644). This fact is interpreted as a mere coincidence that completely different
phenomena, like a no arbitrage condition in financial markets and the temperature field in a uniform
mean, may be described using the same mathematics. We show in this paper that, in economies with
a realistic production side as well as financial markets, there exist instead a deep interaction between
financial and thermodynamic equilibrium which may be exploited to characterize the financial notion
of absence of arbitrage. We may however start from the less radical consideration that a basic input
to every production process is one of many forms of energy, which may always be reconducted to
thermal energy in a (non ideal) Carnot cycle.x



economy we focus on is different from the usual producer’s equilibrium. We focus in
depth on a specific technological aspect of the production process, namely the use
of a specific form of energy as input of the production process. For this particular
input, departure from equilibrium is formally defined as a time-varying temperature
field. This provides a strong characterization of arbitrage which is different from the
traditional one.

In the present analysis, we go beyond simply considering thermodynamic rela-
tions as a pure formal analogy to economic relations, like in Lisman (1949) insightful
thermodynamic interpretation of the budget constraints theory of Davis (1941). 2
However, we also clearly depart from the approach postulating an identity between
energy and value.

After defining formally the notion of thermodynamic equilibrium, we show that
this is a necessary and sufficient condition for the absence of arbitrage.

The plan of the paper is as follows: in Section 2 the thermodynamic production
technology adopted in the model is presented and the definition of thermodynamic
equilibrium of the production side is given. In Section 3 the equilibrium of the econ-
omy is derived. In Section 4 it is shown that the absence of arbitrage possibilities
in the financial market of this economy is equivalent to the notion of thermody-
namic equilibrium presented in Section 2. The intuition behind the formal result is
also provided. Section 5 concludes the paper providing ideas for the extension and
application of the result.

2 The Production Process

We consider an economy evolving in the time interval [—1, 1], populated by individ-
uals who consume a single good at time 7 = 0 and 7 = 1. Conditional on the state
of the world at time 7 = 0, the future state of the economy is uncertain and may
evolve at time 7 = 1 into one of two possible states. We describe next the technology
employed for the production of the single good, which is based, in this example, on
the use of thermal energy.

2.1 Production Technology

Every individual produces the single good according to the same technology. Pro-
duction of the good is achieved by heating a fluid, which is available in nature at
no cost in unlimited quantity, until it reaches a temperature greater or equal to k.
Some amount of thermal energy is freely available in nature for this purpose, and it
has no other economic use. The minimum temperature k is a technological require-
ment. The fluid, which is available in nature at a temperature, Ty, lower than k, is
useless until is heated. A source of heat at temperature 77 is exogenously available
to achieve this task. We may call this highly technological good hot water .

2See Mirowski (1988) for a review of energy based economic models. Mirowski generally
terms neo-simulators followers of such approach, who “regard the physics merely as a metaphorical
resource..”.



We may now describe the production process more formally. We assume that the
heating of the fluid occurs through conduction only, and is a non stationary process
(it depends on time) involving the production of entropy. Given x > 0 the amount
of the good (heated fluid) produced, production must satisfy the implicit constraint

T(tvmaT(le) > k?

where ¢ is the amount of time during which heating occurs. The functionT'(¢, x, Tp, T1)
describes the temperature of the marginal unit produced and it is positive, monoton-
ically decreasing in x and has continuous first and second derivatives. Temperature
T(t,z, Ty, T1) satisfies Fourier’s equation
or o I oT
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(1)

where kg is the thermal conductivity with respect to energy, c¢ is the fluid specific
temperature coefficient of energy per unit of mass and p denotes mass density. For
simplicity, we may refer to the solution with %Z‘ = 0?; given z = x/(20V/1),

T(t, Z,To,Tl) =To+ (Tl — To)[l — erf(z)} .

A thermodynamic equilibrium is achieved if temperature does not vary with time,
that is, may be defined by

oT

o = 0. (2)
Although this technological description is quite general, for convenience, we can vi-
sualize this production process as the heating of a fluid, initially at temperature 1,
contained in a cylindric capacitor with section of unit area, with perfectly insulated
walls, the upper surface of which is subject to exogenous heating at a higher tem-
perature T;. Given = > 0 the depth at which the temperature is measured inside
the cylinder, its distribution is described by the function T'(t, x, Ty, 11). 3

2.2 Two-period production and investment

After having described in the preceeding section the physical aspects of production
technology, we now turn to the description of the production - investment choice of
agents in the economy. In our two-period economy, producers must make consump-
tion good available at two different dates, 7 = 0 and 7 = 1. For completeness, we
start by describing the production process prior to the consumption date 7 = 0. At
time 7 = —1, while the fluid inside the container has the initial temperature 1y, the
upper surface is brought at the temperature 77 > Tp. After one period, at time 0,
it is therefore available for consumption any quantity xo which satisfies:

3This technological description highlights the qualitative change that inputs of production may
go through to become outputs. Time here is a factor of production. As clearly highlighted by
Georgescu Roegen (1971, Chapter IX), there is a subtle difference between a model of production
involving qualitative change and a KLEM neoclassical production function.



T(1,x0,T0,T1) > k . (3)

Denoting %y the production for which (3) holds as an equality, at time 7 = 0 the
quantity xg < Zg is instantaneously removed from the container, leaving inside the
residual quantity of the produced good Ty — xp. This implies that (3) holds as
an inequality. The amount of the consumption good Ty — xg available at time 0
represents investment. What is invested here, i.e. set aside for future use, is clearly
an amount of thermal energy. Figure 1 illustrates the production process in the time
interval [—1,0] (Period I).

After the removal of the produced quantity ¢ in 7 = 0, the remaining fluid (residual)
is further heated until time 7 = 1; the initial temperature of the fluid in the period
(0,1] (Period II) depends on the amount of heated fluid removed at time 7 = 0. We
may therefore write that, at the beginning of the second period, Ty = T(’] (x0); given
however the monotonic relation between xy and its temperature T'(1, g, Ty, T1), we
may equivalently define Ty = T{/(T(1,xo,T0,T1)). * Given this initial condition of
the fluid, the production constraint for period Il production, x;, may be written:

T(1, 21, Ty(xo), 1) > k . (4)

At the end of period 11 it is rational to use all the available production for consump-
tion, and the constraint (4) holds as an equality.

2.3 Uncertainty

Assume now that the initial temperature 77 for period 11 is uncertain and becomes
known immediately after 7 = 0, after the choice z¢ is made. the initial temperature
11 represents the state of nature for the second period, and may take two possible
values: T} with probability p, or T with probability 1—p. This produces a different
technological constraint depending on the state of nature.

Denote ¢ production at the end of period II and state u and z¢ production at
the end of period II and state d. This yields the two state dependent technological
constraints:

T(l,.’L’%,Té(iﬁ'o),Tf) >k s (5)

“We leave the function 1¢(zo) unspecified. Any function such that the implicit function defined
in (0,Zo) by (4) holding as an equality is concave would do. We may imagine for simplicity that
immediately after time 0 the initial temperature of the fluid instantaneously attains a spatially
uniform value (average), which depends on zo. Or, we may consider, with greater complications,
that the initial temperature of the fluid is not spatially uniform, although it will be fully defined
by T (o)




In order to simplify notation, set

T('CUO) = T(lvwovT(]?Tl)?
T(iUi,ZUQ) = T(l,.’L’i,Té(iBo),Tf)

Figure 2 describes the production process between time 7 = 0 and time 7 = 1
assuming the generic state s occurred.

3 Equilibrium with complete markets

We now briefly describe equilibrium under complete markets. Each of the individu-
als, denoted j = 1,..., N, maximizes expected utility defined over consumption at
time 7 = 0 and at time 7 = 1 in the generic state s, denoted C’g , C{s respectively.
When consumption at time 7 = 0 is used as numeraire, the first order conditions
of the consumer’s problem define state prices that we denote P,, P;. ® We assume
that each consumer is also a producer, and that state prices that clear the markets
exist. We now describe in greater detail producer’s equilibrium.

3.1 Producer’s optimum

Consider now the productive sector. Each producer faces the problem:

max xg+ Pyx] + Pdac‘li ,
iy
sub T(xo) >k,
T(x%, x0) > k |
T(24,20) > k

Assume regularity conditions such that an internal solution 0 < xg < Tg obtains at
time 7 = 0 and only the last two constraints are binding. The first order conditions
imply:

SFormally the problem is

Magz pU’(C3,C4,) + (1 — p)U(C3,C4y)

subject to the constraint (78 + P,CY, + PsCl, = x}, where U7(.,.) is the concave utility function
of the individual j, C7, C{, denotes his consumption. P, is the Arrow-Debreu price of state s and
zo is the initial wealth at time 0. The first order conditions of the consumer’s problem define the
state prices P,, Pj.

6 Assuming every consumer is also a producer, we have

N N N

J _ J o _ u J o _ d
E Cy = Nzo, E Ci, = Nz, E C{,=Nzxj.
Jj=1 Jj=1 Jj=1



—dxy = P, dx¥ + Pydax | (7)

which represents a no-arbitrage condition. Using consumption at time 0 as nu-
meraire, from the producer’s first order condition (7) an arbitrage opportunity is
the possibility to achieve a marginal improvement in the production plan such that

dzxog >0
dz{ >0
dzd > 0

with the inequality being strict in at least one case. That is, it is possible to increase
marginally production in a time and state without giving up marginal amounts of
production in another time and state. 7

4 Thermodynamic interpretation of arbitrage

In this setting, we may give an additional interpretation to the equilibrium and the
related absence of arbitrage opportunities. We show that an arbitrage possibility
implies a thermodynamic disequilibrium and a consequent flux of thermal energy
representing the arbitrage gain (loss), measured in terms of energy. Due to the ther-
modynamic disequilibrium created by the arbitrage possibility, the energy arbitrage
gain automatically flows to the individual who realizes it. Under the assumptions
contained in the previous sections, we are now ready to verify the following;:

Proposition: no arbitrage possibilities exist if and only if thermodynamic
equilibrium is achieved.

"Individuals in this economy use the same production technology and have the same endowment,
so their optimal production plan (xg,m‘f,m“f) is the same, although their consumption plans may
differ. Each individual cannot increase its production or consumption in a time and state without
decreasing production or consumption at another time and state. If we define the excess demand
for the consumption good of individual j at different times and in different states ng, dC{u, dC{ @
and define

dcy, dci, dc;

An arbitrage possibility, which would prevent equilibrium, would be an allocation 1 = [n1,72] in
which:

Y:|:dw7f dm(f:| V:|:dw0:|.

nY >0, and nV <0

with the inequality being strict in at least one case. As it is well known, there are no arbitrage
possibilities if and only if there exist two strictly positive constants, P’ = [m,,74], such that
YP = —V holds Vj.



To make the point, consider the energy market. ® This allows us perform a
change of numeraire and use the thermal energy cost of the marginal unit produced
instead of consumption good available at time 0. In a competitive market, marginal
energy cost would be equal to marginal energy revenue and market price.

Adopting a classical thermodynamic approach, from Fourier’law (see for example
Fuchs (1996), p.314) the instantaneous flux of thermal energy through the fluid at
each depth is:

Io(a) = 1 2o 0
where Kg > 0 is the temperature coefficient of energy. Consider the producer’s
problem under the new numeraire:

max X0 IE(.%'()) + P, ZUqf IE(.%'()) + Py .%'Cli IE(.%'()),
mo,m’f,m‘f

sub T(xo) >k,
T(x%, x0) > k |
T(x%, x0) > k
The producer’s first order conditions under the new numeraire require:
Kp(xo + Pya + Pyxd) 02T (x0)
I(xo) Oz}

Comparison with (7) immediately reveals that no arbitrage possibilities will exist if
the second order partial derivative appearing in the producer’s first order conditions
under the new numeraire is equal to zero. From the heat equation (1) it is both
necessary and sufficient that

—dxy = Pydx? + Pydad — dxo. (9)

o7 ()
ot

8The delivery of thermal energy in this market is straightforward. To see this, recall that under
the production technology adopted there exists a monotonically decreasing relation between the
temperature of the marginal unit produced and production. Consider for simplicity two producers,
A and B. Producer A achieves a marginal in crease in production, to be delivered against thermal
energy. If producer B does not do the same, z# = 2® + dz. Since temperature is monotonically
decreasing in production, 2z > 2% at the margin implies 7'(z*) < T'(z2?), and a unidirectional
temperature gradient is therefore created between the fluid of A and the fluid of B.
This gradient allows for the automatic transfer of thermal energy from B to A: it is sufficient
the containers (productive plants) are linked through a perfect thermic conductor to deliver en-
ergy. Denoting Ay the distance between the two containers, making this distance infinitesimal the
temperature gradient between the two containers will be

=0, (10)

dT , T(z® + Ay) — T(z®) , T(z® + Az) — T(2P) dT
—— = lim — = lim — = ——
dy  Ay—0 Ay Az—0 Az dz

that is, for marginal difference between the level of production of two producers, the absolute value
of temperature gradient between the two containers at the margin is equal to the gradient inside
the container measured in the z direction. See Figures 3 and 4.



which is the definition of thermodynamic equilibrium (2), to have

0%T ()

Ox?

Therefore, thermodynamic equilibrium is sufficient for the absence of arbitrage.
On the other hand, the change of numeraire should be irrelevant for the equilib-
rium allocation, so for the no arbitrage condition (7) to hold it is clearly necessary

that (10) holds.

=0.

4.1 Interpretation

If the production process is not in a steady state at time 7 = 0, the change of
numeraire is not irrelevant. In fact under the new energy numeraire there will be
an increase in the value of the firm as a consequence of the increase of the energy
content of the marginal unit produced at time 7 = 0, that is Ig(xo).

Clearly, before steady state of the production process is reached, production
will not be entirely efficient, as some excessive amount of thermal energy will be
used to bring the initial layers of fluid at a temperature greater than the “efficient”
temperature k. If xg > 0, the marginal unit of the produced good available at time
7 = 0 will have an enegy content, which becomes its market price, that is lower than
the average energy content of the quantity xg. In a steady state economy production
would be more efficient. However this cannot be achieved in finite time.

If production is not in steady state, to maximize the value of the firm the pro-
ducer will set at the highest possible level the energy price Ig(zg). If Ig(xo) is
monotonically decreasing and concave in zq, for any positive prices Ps this will lead
to the corner solution xg = 0, that is no production at time 7 = 0, and the receipt
of an energy amount I5(0) >, Psaj. Hence, if (10) does not hold for every «, under
the new numeraire markets will not clear.

So, either the no arbitrage condition defined under the new numeraire holds, or
temperature varies through time, i.e. there is neither thermodynamic equilibrium
nor economic equilibrium. Only thermodynamic production processes that are al-
ready in steady state at time 7 = 0 are compatible with economic equilibrium and
absence of arbitrage possibilities.

5 Conclusions

This paper provides a view as to why the mathematical models associated with ther-
modynamic phenomena may also be used in the description of financial equilibrium
and absence of arbitrage possibilities. By recognizing that a thermodynamic pro-
cess is at the heart of a production process, it is shown a one to one correspondence
between thermodynamic equilibium of the production process and the equilibrium
of the financial market in which contingent claims on production are exchanged.
Thermodynamic and economic equilibrium are not only isomorphic, a lesson which
is already evident from the use of the same mathematics in physics and economics,



but rather they are connected. In the present context, this is highlighted by as-
suming an amount of (thermal) energy as numeraire, namely the amount needed to
produce in the most efficient way a unit of a specific good.

The connection with thermodynamic equilibrium adds a dimension to the formal
analysis of economic equilibrium with time dependent production. In particular, if
steady state of the termodynamic production process is not achieved, by switching
to an energy numeraire, we may exploit an arbitrage possibility which prevents
equilibrium.

The result presented in this paper may be straightforwardly extended to multiple
goods and multiple periods (or continuous time economies). A simple way to extend
this setting to multiple goods is to assume that each good is a different fluid heated
at the same temperature greater or equal to k. A different fluid is characterized by
a different diffusion coefficient o. If we exclude the possibility of joint production
process, each good is produced by a distinct capacitor (process).

If we take the view that a description of the production process in which produc-
tion depends on time is indeed realistic, some mechanism which prevents arbitrary
switches of numeraire is required to achieve equilibrium. Forcing the use of a mon-
etary numeraire through cash in advance constraints may be a way to guarantee an
equilibrium.



Figure 1

At time 7 = —1 the fluid in the container is at the temperature Tp. The upper surface
is brought to the temperature T7 > Tp. After a unit of time the fluid temperature
in relation to its depth is T'(z), which is lower the deeper inside the container.

Figure 2

At time 7 = 0, after the removal of the produced amount xy, the residual is at a
(non uniform) higher temperature T"(xy) > Ty. Further heating until time 7 = 1
from the upper surface at the new temperature 77 results in the produced amount
x5, which has a marginal temperature equal to k.




Figure 3

Figure 4
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