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Abstract

In this paper we present a formal definition of the notions of economic regime and regime dynamics.

Starting from these definitions, we discuss a multiple regime dynamic model generating an endogenous

unemployment-price adjustment mechanism. Two different employment regimes are introduced and the

regime dynamics properties of the model are analyzed. Specifically, we assume that the equations gov-

erning employment and prices dynamics undergo a discontinuous change in regime when a critical value

of unemployment rate is reached. Depending on parameter values, we show that this model is capable of

producing a rich variety of dynamic behavior, including complex irregular fluctuations. The main result

of this paper is the representation of the regime dynamics via symbolic dynamics. In particular, we show

that the regime dynamics of the model can be represented by a shift of finite type that depends on

parameter values. In some particular cases, we can also have a representation via directed vertex graphs.

An important consequence of this is the possibility of measuring the complexity of the model by using

the topological entropy measure.
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1. Introduction

Very often, economic dynamic models are held to be represented by one system of
differential or difference equations only, and not by two or more such systems. Sometimes this is a
useful simplification, but in most instances, economic behavior is not necessarily governed by the
same dynamics laws whatever values the state variables reach. The economic conditions determine
the dynamic behavior and then qualitative changes in these conditions generate different
relationships governing behavior. More and more this is recognized in the literature. If we agree in
defining an economic regime as a set of rules and institutions that represents the whole economy
and generates its qualitative dynamical behavior, changes in regime are particularly associated with
changes in the economic dynamics generated by changes in the rules and/or institutions.
  

This paper is organized as follows. In section 2, I present a formal definition of the notions
of regime and regime dynamics. In section 3, I discuss a dynamic model generating an endogenous
unemployment price adjustment mechanism produced by Nickell (1987, 1988, 1990), Layard and
Nickell (1986), and Layard, Nickell and Jackman (1991)1 and extended in Day, Ferri and Greenberg
(1993). Then, two different employment regimes are introduced (section 4) and the regime
dynamics properties of the model are analyzed (section 5). Specifically, I assume that the equations
governing employment and prices undergo a discontinuous change, or switch in regime, when a
critical value of unemployment rate is reached. Depending on parameter values, I show that this
model is capable of producing a rich variety of dynamic behavior, including complex irregular
fluctuations. The main result of this paper is the representation of the regime dynamics via symbolic
dynamics. In particular, the model is represented by different shifts of finite type that depends on
parameter values. In some particular cases, we can also have a representation via directed vertex
graphs. An important consequence of this is the possibility of measuring the complexity of the
model by using the entropy measure.

2. Regimes and regime dynamics

Intuitively speaking, a dynamic regime is a qualitative behavior that can be clearly
distinguished from other behaviors called, likewise, regimes. If we agree in representing different
economic regimes with different models then an economy with multiple regimes must be
represented with some kind of hyper-model. Thus, the equations representing this hyper-model
must change when the economy change regime. We can formalize this fact with the following
definition.

Definition: Given a dynamical system (D, f) and a partition {D1, D2, …, Dn}of the domain D, a
regime is a pair (Di, fi) (i = 1, 2, …, n) where fi = f |Di is the restriction of the function f to the set Di.

This definition reflects the fact that different regimes are described by different local
models. Of course, when n = 1, we are in the standard one regime situation. To be interesting, a
partition should slice the state space into (at least) two or more nonempty sets Di.

2 The presence of
multiple regimes provides alternatives: a variety of regimes is available to construct one’s own
history. In this case, it can be quite rich, for we have a twofold dynamics, one within a given regime
and one across regimes. Their mixing can produce any kind of dynamic behavior. Regime changing
corresponds to a form of structural change because is the model of the economy that is changing.
So, in this work we will focus upon this dynamics across regimes (we will call it regime dynamics)
to study structural changes in the economy.

                                                
1 In Nickell’s model, dynamics is shock dependent.
2 Observe that φ i (Di) is not necessarily a subset of Di. Thus, paths can traverse from one regime to another.
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Regime dynamics is defined on the finite set of regimes and to represent it we make the next
move: we label each regime by a symbol of an adequate alphabet and we describe the evolution of
the economy in terms of regime changing with a symbolic sequence. This representation is called
coded dynamics and is related (and partly overlaps) with the mathematical branch called symbolic
dynamics. Such proximity often permits the use of well-established symbolic dynamics techniques,
as we will illustrate in section 5.  The use of these techniques makes the fundamental difference in
our approach from the conventional approach in state space where state variables are vectors of real
numbers.

In order to illustrate these concepts, I will analyze a simple macroeconomic model produced
by Nickell (1987, 1988, 1990), Layard and Nickell (1986), and Layard, Nickell and Jackman (1991)
and extended by Day, Ferri and Greenberg (1993) with the introduction of two different
employment regimes. Depending on parameter values, this model can produce a rich variety of
dynamic behavior, including irregular fluctuations. The coded-symbolic dynamics methods are used
to represent in a simple and effective form the regime dynamics of the model.

Next section begins by summarizing the Nickell model and its properties. Then I describe
the kind of  (discontinuous) regime switching mechanism introduced in Day, Ferri and Greenberg
(1993), I analyze the unemployment and price dynamics and their relationships with regime
switching and business cycles, and derive the regime dynamics properties of the model.

3. The model

In this section I discuss a dynamic model generating an endogenous unemployment price
adjustment mechanism. The understanding of this mechanism is one of the paradigms in economic
theory and this is reflected by, for example, the important role of Phillips curve in macroeconomics.
The model is described by the aggregate demand function
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where Y is aggregate output, M the supply of money, P the general price level, G autonomous
expenditure, and by the production function
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where L is aggregate labor utilization. Pricing behavior in the goods and labor markets is
represented by two equations determining the target price of output and desired real wage. The
target price of output is given by
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where 0πe is the markup under conditions of full capacity and stable prices. The adjustment D for
anticipated price changes and under-utilized capacity is given by
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where eP is anticipated price, Ŷ is potential output, L̂  is the size of the labor force in terms of a
standard work week and b.2 βπ = . The target real wage is

H
L

Y
e

P

W
.0γ= ,                                                          (5)

where L
Y  is the average output of labor, 0γe  is the target share given full employment and constant

prices with 00 <γ . H is an adjustment term for the outcome of bargaining when prices are expected
to change and unemployment exists given by
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In a full employment competitive equilibrium in which workers receive the marginal

product, we must have: ββ πγ /1  and 00 == ee . Out of equilibrium the outcome depends on the
relative strengths of management and labor of employment, which in turns depend on the influence
of price expectations and the level of employment and capacity utilization as represented by the
adjustment factors D and H. Then we can interpret    and  11 γπ as reflecting nominal inertia and

22   and  γπ  as measuring real rigidity.

Taking natural logarithms in (1), (2), (3) and (5) (after the substitution of D and H in (3) and

(5) respectively), using the fact that ( )β
LBY ˆˆ = , and denoting by p = Log(P), w = Log(W),  l =

Log(L), y = Log(Y), m = Log(M) and g = Log(G), we obtain the price equation

)ˆ()( 210 llppylwp e −+−+−++= πππ ,                                   (7)

the wage equation

)ˆ()( 210 llpplypw e −+−+−+=− γγγ ,                                   (8)
the demand equation

gpmy 210 )( ααα +−+= ,                                               (9)
and

ullyy .)ˆ(ˆ ββ =−=− ,                                                 (10)

Equations (7)-(10) form a complete static model that determines temporary equilibrium output,

prices, real wage, and unemployment u for given values of m, g and ep .

At a self-fulfilling price equilibrium at which ppe ~= , we get the stationary states
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Observe that with the hypothesis of ppe ~= , the parameters    and  11 γπ reflecting nominal
inertia do not appear at the equilibrium levels, but the real inertia ones 22   and  γπ  do. We can
particularly note that the equilibrium of unemployment u~ depends on the importance of real inertia
and on the extent to which the markup coefficient 0π  and the target wage share coefficient 0γ
depart from the competitive equilibrium values (of –Log � and Log � respectively).

4. Dynamics of the model with naive expectations

The dynamics of the model depends on the expectation formation. Let e
tp be the price

expected at the beginning of period t and suppose that

t
e
t pp =+1 ,                                                           (15)

that is, the price estimate for the next period is simply the current price. This is called naive
expectations.

Substituting (15) into equations (7) and (8) we obtain a standard Phillips curve representing
the tradeoff between price increases and the rate of unemployment, which depends on parameters
measuring both nominal and real rigidities.
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Using equations (7)-(10) and expectations hypothesis about prices, we obtain the first order
difference equation representing the dynamic behavior of unemployment:
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The dynamics of the model is very simple. If ,10 << λ (or equivalently if
( ) ( )22111   and  γπαγπβ ++ are positive) then the steady states u~ and p~ are asymptotically stable and

there are no business cycles. If 1≥λ (or equivalently if ( )221 γπα + is negative)3 the adjustment
                                                
3 Note that 2π , which measures the marginal influence of unemployment on price markup, could be negative. This is

suggested if economies to scale occurred at relatively low output levels, but at higher levels diseconomies prevailed. If
the change over is rather abrupt, then 2π could also change rather abruptly as some output or unemployment level was

reached.
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process is unstable. In this case if the initial unemployment uu ~
0 > , unemployment and price level

increase monotonically in a continuing inflationary depression. If uu ~
0 < , then unemployment and

price level decrease monotonically in a deflationary boom.

To allow the possibility of generating irregular fluctuations, we can proceed in the way of
empirical economists adding random shocks to the model but I will show that irregular fluctuations
can also be brought only by the intrinsic forces represented in the model if we introduce the
possibility of different unstable regimes of unemployment. Each regime is characterized by a
particular adjustment mechanism (or model) and regime switches allows for complex dynamics.
Regimes represent different dynamical behaviors and the transition from one regime may be rather
abrupt. For example, at low inflation rates the expectations about future prices changes may not
play a great role but when inflation becomes grater than certain levels, a qualitative change may
occur in the economic mechanisms that allows people to protect themselves against the effects of
future price changes. Following Day, Ferri and Greenberg (1993), I assume that when a threshold is
passed, the reaction of either or both price and wage-settings strategies change, and that this

threshold is represented by some value of the unemployment rate, su . This threshold divides

Regime 1 of low employment from Regime 2 of high employment. This critical level su is not an
equilibrium value of unemployment; it is just a level separating an economy with high

unemployment rates from one with low rates. Let denote by     and   , ,  , , 1
2

1
2

1
1

1
1

1
0

1
0 γπγπγπ the

prevailing values of the parameters for unemployment rates below su and the corresponding model
by
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For unemployment rates above su , I denote the prevailing values of the parameters by
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Then different set of equations for different specific situations govern the behavior of the
economic system and though the separate elements of this model are linearly structured, the overall
system is nonlinear. Then, this model is a clear example of the intuition of regime that we have in
mind: regime coincides with local model and particularly in this case local models are linear.

 If we define the function f  by
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the model is represented by the first-order difference equation

)(1 tt ufu =+ .                                                        (26)

The map f is piecewise linear with a discontinuity at su and dynamics depends upon the
values of the parameters  ~ and ~ ,  , 2121 uuλλ .

Observe that being linear in each regime, the map f could have two, one or zero fixed points. There
is a great variety of possible dynamical scenarios for the model depending upon the angular
coefficients of f at each regime and the quantity of fixed points but I am not going to analyze all
these possibilities. I think that it is enough to show that we can generate a very complex regime
dynamics. This will be the scope of the next section

5. Regime dynamics of the model

Let ( ) ( ) 22221111
~1  and  ~1)( uuzuuufz sss λλλλ −+=−+== . The difference between  z1 and  z2

measures the intensity of the jump from one regime to the other. It’s easy to show that for a
continuous of parameter values the interval [z2, z1] is s trapping set: all trajectories must enter this
interval and remain there. This is the first case I will analyze. In the second case I will show that
there are parameter values where the introduction of regimes in the model do not affect the

Figure 1: Graph of the map f

The intervals R1 = [0,us] and R2 = [us,+�] are
respectively regimes 1 and 2 and f is linear in
each regime. At us there is a discontinuity of f
that allows for regime switching and as usual,
regime dynamics is described by symbolic
sequences in R1 and R2.

us

us

u

f(u)

R2R1
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qualitative dynamics. Obviously, this is not an interesting case because it is no possible to change
regime.

1. If  z1 > us > z2 ��Ê1, Ê2∉( z2, z1) (i.e., Ê2 ��]1 or Ê2 ≤ z2) the interval [z2, z1] is invariant by f and
all trajectories with initial condition between Ê1 and Ê��EHFRPH� WUDSSHG� LQ� WKLV� LQWHUYDO�� ,I�� LQ

addition, λ1 ≤ 1 and λ1 ≤ 1 there are not steady states and all trajectories become trapped in the
interval [z2, z1]. In these cases the phase diagram of the dynamical system has the appearance
shown in figure 2.

Thus, for the selected parameter values all the interesting dynamics happens in the invariant
interval [z2, z1]. Starting outside, all trajectories after finite iterations go toward  [z2, z1] and
remain trapped there or diverge to infinity. Thus, I concentrate my attention on the dynamics in
the invariant interval [z2, z1]. Observe that in this interval there are no fixed points of f (if we
exclude the extreme cases where Ê2 = z1 or Ê1 = z2) and a point which begins in one regime after
finite iterations must enter the other regime. Thus, fluctuations are the generic behavior. Figure
3 shows the graphs of map f restricted to the selected interval for different values of the
parameters. In particular, graphs (a)-(d) illustrate some extreme cases are depicted where the
regime dynamics can be well represented by a shift of finite type (and then by a directed graph

su

u

f(u)

z1z2

z1

z2

Figure 2: Graph of the map f; z1 > us > z2 ��Ê1, Ê2∉( z2, z1).

In these cases the interval [z2, z1] is invariant by f and all trajectories with
initial condition between Ê1 and Ê2 become trapped in this interval. If, in
addition,  λ1 ≤ 1 and λ1 ≤ 1 there are not steady states and all trajectories
become trapped in the interval [z2, z1].



8

and the associate matrix).4 Figure 4 illustrates the transition graphs and transition matrices
representing these particular cases.

                                                
4 See Brida (1999) for the proofs and more details on the symbolic representation.

Figure 3: Graphs of the
restriction of f to the invariant
interval [z2 , z1] for different
values of the parameters

All the interesting dynamics
happens in this interval. In
particular, cases (a)-(d) show the
possibility of regime dynamics
represented by a shift of finite
type.us

us

z1z2

z2

z1

R2

R2

R1

R1

us

us

z1z2

z2

z1

R2

R2

R1

R1

us
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z1z2

z2

z1

R2

R2

R1

R1

(c) (d)

us

us

z1z2

z2

z1

R2

R2

R1

R1

(a)

us

us

z1z2

z2

z1

R2

R2

R1

R1

(b)
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Case (a) is very simple: if the adjustment process starts at the high employment regime 2,
unemployment decreases until the trajectory enters the interval (us, z2]; at this point the next
iterate cross the switching point us and low employment regime 1 is entered. Here begins to
alternate regime. Then, starting at the invariant interval, the unique possibility for a trajectory is
to alternate regime and then the only possible sequences of regimes are

R1 R2 R1 R2… R1 R2… = (R1 R2)
∞ and R2 R1 R2 R1… R2 R1… = (R2 R1)

∞

All punctual trajectories in this simple case are cycles of period 2, but for closer parameter
values we can construct cyclical punctual trajectories of period k, with k ≥ 2. These cases
illustrate the possibility of stable cycles of unemployment and prices involving alternating
periods of boom and inflation with periods of recession and deflation.

Cases (b)-(d) illustrate the possibility of very complex dynamics in the model. Here regime
dynamics can be viewed like a Markov chain in two states and unstable nonperiodic fluctuations
occur for almost all initial unemployment levels. It is clear that the complexity of each case is
not the same; for example cases (b) and (c) have lower entropy than case (d).
(d) is surely the most complex case: regime dynamics is represented by the full shift in two
symbols. In this case every sequence of regimes is possible and the unemployment process
became unpredictable if we don’t know the initial condition with infinite accurately.

Figure 4: Transition graph  and adjacency matrix for the partition P = {R1, R2}
and the map f restricted to the invariant interval. Cases (a)-(d) of figure 3.

A zero in the ij entry means that there is no arrow from i to j and a one means that there
is an arrow from i to j, where i,j = R1, R2.

R1 R2 





=

01

10
A (a)

R1 R2






=
01

11
A (b)

R1 R2






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11
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A (c)

R1 R2 





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11

11
A (d)
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In (b) the stage of every trajectory in regime R2 is for exactly one period (of course, it can stay
in regime R2 for more than one period before being trapped in the invariant interval [z2,z1]).
Then the possible symbolic sequences representing the regime dynamics can be constructed
using the directed graph of Figure 4 (b): every R2 must be followed by R1, but R1 can be
followed by either symbols.
(c) is the symmetric case of (b) if we interchange the roles of regime R1 and R2.

I have described the dynamic behavior of these four extreme cases but; what can we say about
regime dynamics in a generic case for the parameter values in question?
We can note that:
i) there are no stationary states, except when Ê2 = z1 or Ê1 = z2 where being unstable fixed
points, they do not affect the dynamic behavior
ii) if a trajectory starts at the high employment regime 2, unemployment decreases governed by
the second regime equation until the switching point is crossed and low employment regime 1 is
entered.
iii) if a trajectory starts at the low employment regime 1, unemployment increases governed by
the first regime equation until the switching point is crossed and high employment regime 2 is
entered.

Then we have that generically regimes 1 and 2 are reversible and the adjustment process
changes cyclically (in a periodic or non-periodic way) from one regime to the other. The
duration within each regime depends on the parameter values and fluctuations could be periodic,
quasi-periodic or irregular. In particular, it must be noted that the duration of the stage of a
trajectory within regime Ri is non greater than the duration of the stage of the trajectory with
initial condition zj within regime Ri (i, j = 1,2; i ≠ j). In a generic case, regime dynamics cannot
be represented by a two vertex directed graph5 like we did for the extreme cases, but we can
state that the possibilities for regime switching are from the simplest case (a) where every
regime sequence is periodic with switches between regime 1 and 2 to the more complex case (d)
represented by the full shift where every regime sequence is possible including cycles of any
order and non-periodic sequences. In spite of this, it is important to remark that in a generic
case, regime dynamics can be represented in a symbolic way with a shift of finite type. In order
to illustrate this point, let suppose (without loose of generality) that z1 leaves regime R2 at the
nth iterate and z2 leaves regime R1 at the mth iterate; i.e.,

z1, f(z1), f
  2(z1), …, f n-1(z1)∈ R2; f

 n(z1)∉ R2 and z2, f(z2), f
  2(z2), …, f m-1(z2)∈ R1; f

 m(z1)∉ R1.

This means that we are in a generic case between cases (a) and (d). Then, it is clear that

p1 = (R1)
m+1  = R1 R1… R1 (m+1 times) and p2 = (R2)

n+1  = R2 R2… R2 (n+1 times)

are forbidden “paths” for the symbolic dynamics representing our two regime dynamics. If we
denote by � = { p1, p2}; then the shift space (of finite type) of forbidden words �, denoted by
 �, is the symbolic representation of all possible sequences of regime in our dynamic process. It
should be noted that we cannot write down all these sequences because there is an uncountable
infinite number of them. In spite of this, it is very simple to verify if certain sequence in the
symbols R1 and R2 is a possible path representing the regimes traversed by a trajectory of our
model: we have to check that this sequence contains no sub-sequences p1 and p2.

                                                
5 See Brida (1999), Adler (1998) and Alligood, Sauer and Yorke (1997) for a discussion in graph representations of
shifts of finite type.
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At this point, we are able to discuss about the complexity of the model. The natural way to
measure it is entropy. We know that with a two regimes model, we can get a maximal entropy
level h = log2 2 = 1 and a minimal entropy h = 0.

For the particular cases (a) – (d), being regime dynamics represented by a direct vertex
graph and its transition matrix, it is simple to calculate the entropy. Here we have that h = log2

λM, where λM is the largest positive eigenvalue (called the Perron-Frobenius eigenvalue) of the
transition matrix M. Then, it is clear that in case (a) is h = 0, in case (d) is h = 1, and in cases (b)
and (d) is ))/((h 251log2 += . For other parameter values, the computation is not so easy. If m
and n are the natural numbers such that z1 leaves regime R2 at the nth iterate and z2 leaves
regime R1 at the mth iterate, then h = h(n,m) increases monotonically with n and m from 0 to 1.

Finally, we will not describe the price dynamics of the model but, according to (16), it can be
noted that fluctuations in ut result in price fluctuations.

2. Suppose that z1, z2 > us like the map sketched in graph (i) of figure 5. Here, a trajectory starting
in regime 1 (and with initial condition grater than Ê1) escapes into regime 2 and become trapped
in this regime. But regime 2 is closed in the sense every trajectory starting there will not escape
into regime 1. We cannot see paths taking from regime 2 to the other regime. Thus, regime
sequences can only be of the form

R1 R1 …R1 R2… R2 R2… = R1 R1 …R1 (R2)
∞ ,

R2 R2 R2… R2 R2… = (R2)
∞ or

R1 R1 R1… R1 R1… = (R1)
∞.

We have the symmetric situation if we assume z1, z2 > us. This is the case of graph (ii) of Figure 5
where there are no paths taking from regime 1 to regime 2. In this case the characteristic regime
sequences are of the form

R2 R2 …R2 R1… R1 R1… = R2 R2 …R2 (R1)
∞ ,

R2 R2 R2… R2 R2… = (R2)
∞ or

R1 R1 R1… R1 R1… = (R1)
∞.

Now, let consider the case z2 > us > z1. A representative graph for the adjustment mechanism
with parameter values verifying these conditions is shown in figure 5 (iii). For these parameter
values we have that f(R1) ⊆ R1 and f(R2) ⊆ R2 implying that there are no paths taking from one to
the other regime; i.e., both regimes are stable. Thus, regime sequences can be either of the form

 R2 R2 R2… R2 R2… = (R2)
∞ or

R1 R1 R1… R1 R1… = (R1)
∞.
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Summarizing, we found that, for the parameter values of these section the introduction of regimes
into the model cannot produce fluctuations and the same conclusions of simple dynamics of the
original model can be stated. This is the consequence of the irreversibility property of both regimes.
Other qualitative parameter conditions can be considered but all of them lead to similar dynamic
behaviors of the results outlined above.

6. Conclusions

In this paper I have presented a simple macro model with two unemployment regimes, in
which the active regime depends on whether the previous period’s unemployment is above or below
a threshold value. This multi-regime model can be viewed like a formalization of the economic
intuition that different mechanisms govern economic behavior in different situations of state. In
spite of the simplicity of the model, being linear in each regime with a discontinuous jump, it can
give rise to aggregate fluctuations between employment and prices in absence of stochastic
components. Thus, the introduction of two different regimes into the model can generate a quite
different scenario than the simple dynamics of the original linear model. For a continuous of
parameter values, the model is capable of generating cyclical, quasi-cyclical and chaotic
fluctuations without changes in exogenous variables and according to this, the model represents an

   z1

  z2

Figure 5: Some simple cases

(i) It is possible to go from R1 to R2 but not
from R2 to R1

(ii)  It is possible to go from R2 to R1 but not
from R1 to R2

(iii)  Each regime is a closed system: there is
no possibility of changing regime.

us

us

u

f(u)

R2R1

(i)  z1, z2  > us

us

us

u

f(u)

R2R1

(ii)  z1, z2  < us

us

us

u

f(u)

R2R1

(iii)   z2  > us > z1
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economy that undergoes business cycles. It was shown order to obtain periodic and nonperiodic
fluctuations in the model, it is important that the direction of the variables in the two regimes must
point to opposite directions.

It is important to remark that I confirmed in this model the analysis of the stability properties
in economic models with regime switching of Honkapohja and Ito (1983). In this paper the authors
have demonstrated that stability conditions for each subsystem (in my case, the equations
representing the adjustment process in each regime) are neither necessary nor sufficient for overall
stability. In fact, it was shown that for parameter values verifying z1 > us > z2 ��Ê1, Ê2∉(z2, z1), each
subsystem has a stable steady state, but the model with two regimes has a cyclical behavior.

The use of symbolic dynamics techniques into the model has contributed to obtain a
successful representation of the various types of regime dynamics. I have reviewed the qualitative
properties of the model describing the very rich variety of possible evolutions in terms of sequences
of regimes and in some particular cases it was shown how can we represent these evolutions by
directed graphs and by shifts of finite type. It was shown that reversibility is a fundamental property
to generate cycles. In terms of the directed graph representation of the two regime dynamics,
reversibility is reflected by the presence of two arrows: one from R1 to R2 and one from R2 to R1. But
is important to note that complex fluctuations cannot be generated only with reversible regimes
(although it is a necessary condition). Another ingredient must also be present: a piece of regime R1

(or R2) must be mapped into the same regime. That is, at least one regime, let say R1, can be
decomposable into two non-trivial pieces E1 and N1 with where E1 is mapped by f into R2 and N1 is
mapped by f into R1.  In symbols, we can state this condition in the following way:

Ri = Ei ∪ Ni ; Ei ≠ ∅  and Ni ≠ ∅   with  f(Ei) ⊆ Rj and f(Ni) ⊆ Rj.           ( A )

Summarizing, reversibility is a necessary and sufficient condition for periodic regime fluctuations
and irregular fluctuations occurs when both regimes are reversible and at least one of them verifies
condition ( A ).

Using Shannon entropy, we have founded out that the model is able to produce a rich variety
of dynamic behavior with different complexity depending on parameter values. In fact, in case (d)
we obtain the maximal entropy h = log2 2 = 1 in a two regimes model and in cases (a) and 2 we
have zero entropy (i.e., no simple dynamics). These are the extreme values, but the model can
generate regime dynamics with entropy h, for all 0 ≤ h ≤ 1. Then using this measure we are able not
only to discriminate between simple or complex dynamics; we can talk about more or less
complexity depending on the parameter values.
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