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Abstract - The paper presents a version of the EMAIL Game, originally proposed by Rubinstein
(AER,1989), in which efficient coordination is shown to obtain even when the relevant
coordination game is not mutual knowledge. In the model investigated a mediator is introduced
in such a way that the two individuals are symmetrically informed on the game chosen by
nature, rather than asymmetrically as in Rubinstein. As long as the message failure probability is
sufficiently low, with the upper bound being a function of the game payoffs, conditional beliefs
on the opponent’s actions can allow players to coordinate on the more rewarding-risky choice.
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1. Introduction

In a remarkable paper Rubinstein (1989) proposed a game theoretic version of a

coordination problem, posed also in the Artificial Intelligence literature (Gray,1978)

where was made known as the “Coordinated Attack” (Halpern and Moses,1990). Besides

the interest in the matter per se, the problem attracted much attention because of its

puzzling result (Nash Equilibrium (NE) in the game theoretic version). More specifically,

in the Osborne and Rubinstein (1994) version of the model there is a unique and (ex-post)

possibly inefficient outcome independently of the amount of information on the game

that the two individuals might have. Alternatively, coordination may fail even when the

game to be played is almost common knowledge, which in Rubinstein corresponds to a

sufficiently high number of informative messages exchanged between the two individuals.

A distinguishing feature of the model is the initial informational asymmetry,

existing between the two parties, on the action that they should coordinate upon. More

specifically, in Rubinstein’s framework only one individual is initially informed by nature

on the game to be played; she, in turn, informs the opponent via electronic mail. In the

“Coordinated Attack“ problem this corresponds to the general, deciding the time of

attack, being in perfect communication with one half of the army; indeed, typically he is

viewed as being part of one of the two halves.

Since the communication protocol may not entail efficient use of the available

information, namely players at the unique NE would choose actions as if no information

on the game was exchanged, the possibility of alternative arrangements leading to more

appropriate use of such information might, and should, be considered by the individuals
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involved. In the paper we discuss a simple variation of the original model, where a

mediating figure (between nature and players) is introduced in such a way that the game

to be played could still be individually, but never mutually, known. The motivation

behind it is the following. If in Rubinstein almost common knowledge of the game is not

enough for efficient coordination to obtain, then the explanation for such failure should

not plausibly be looked for in this degree (depth) of interactive knowledge but rather

elsewhere. In particular, our general intuition was that a main role must be played by the

reliability of communication channels, since that is what supports the formation of

individuals’ beliefs concerning the opponent’s possible actions. As is widely known, in a

game with multiple equilibria beliefs on the opponent’s actions play a fundamental role

in selecting among them, even when the game is common knowledge. A fortiori, their

importance is reinforced in absence of common knowledge. The model studied in the

paper permits us a systematic investigation on the role of beliefs concerning actions (and

the technology supporting them), since beliefs on the game to be played do not even

allow it to be mutual knowledge. The main result of the work confirms our conjecture: if

the reliability (message success probability) of communication channels is sufficiently

high, with the critical threshold value being determined as a function of the game

payoffs, then efficient coordination may obtain1.

Among the schemes one could have thought of, in the paper we concentrate on the

following simple example. The two players in the game will delegate a third (party)

computer the task of being, separately, informed on the game chosen by nature2. We can

imagine that this change might take place as the informed player may deliberately

                                                
1 Within the original Rubinstein’s framework, by allowing the two computers message failure
probabilities to be different, Dimitri (2000) obtains an analogous result.
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choose to forgo her informational advantage to favour an alternative arrangement that

may provide both individuals with the possibility of more efficient coordination. Once

informed, the players’ machines will then be engaged in a one-to-one informational

exchange only with the third computer, not between themselves, according to the

Rubinstein’s procedure. In the Coordinated Attack this could translate into the general

being separated from the army altogether, initially sending the same message

independently and simultaneously to the two halves.

Hence the number of messages sent by each player’s machine, to the third one, is

compatible with any number of messages sent by the opponent’s computer to the

mediating figure. At all states of the world, this would entail lack of mutual knowledge

of the game and yet more efficient coordination may follow. Then, in the model the

number of messages privately observed will serve only as a correlation device for

players’ choices since, unlike what happens in Rubinstein, they can reveal no information

on the opponent’s knowledge of the game.

2. The Model

2.1 The Electronic Mail Game (EMG)

We recall here the EMG version of Osborne and Rubinstein (1994), where two

individuals (I and II) have to play one of the two coordination games depicted in Fig. 1

below.

                                                                                                                                                      
2 Should the third party be an individual we assume her preferences to be such that she has no
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A B

A M, M 1, -L

B -L, 1 0, 0

Ga ; probability 1-p

A B

A 0, 0 1, -L

B -L, 1 M, M

Gb ; probability p

L>M>1 ;   0<p<1/2

Fig. 1

Nature can either be in state a or b. In state a individuals play game Ga, with

probability 1-p, while in state b they play game Gb, with probability p. In Ga there is only

one NE; the pure strategy profile (A,A). In Gb instead there are three NE; the pure

strategy profiles (A,A), (B,B) and the purely mixed profile where both players choose A

with probability q=(M-1)/(L+M-1)<1/2. The equilibrium (B,B) is Pareto optimal while

(A,A) is risk dominant.

Once the game is chosen by nature only I will be informed of it. The two players

have computers on their desks to communicate; we indicate them as Ci, with i=I,II. The

communication protocol is as follows. If Ga obtains then no message is exchanged

between the two machines. If instead Gb obtains then CI automatically sends an email

message to CII with probability 1>ε>0 of not getting through. If the first message arrives

then CII automatically replies by sending a confirmation message with the same

probability 1>ε>0 of not getting through. If CI receives this message in turn sends a

                                                                                                                                                      
incentive to lie.
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confirmation (of a confirmation) message, still with 1>ε>0 error probability and so on.

Messages are independent of each other. With probability one communication eventually

stops; the only uncertainty concerns when it will. When this happens, players will

privately read on their computer screens the number of messages sent by their own

machines. Then the EMG is a Bayesian game in which the communication technology

specifies a common type-space T, the set of naturals T={0,1,2,...}, given by the possible

number of messages appearing on the screen at the end of the communication exchange.

If S={A,B} is the pure strategies space, in Ga and Gb (for both agents), then a strategy for

player i in the Bayesian game is a function δi:T→∆(S), where δi(t) indicates the probability

with which player i chooses A at type t, with i=I,II. The state space Ω will then be a subset

of Ω=T2, with the generic state ω∈Ω being defined by a pair of possible types (tI,tII), such

that either tI=tII or tI= tII+1.

To simplify notation, from now on a strategy in the game will be written as

δi=Σt∈T δi(t)I(ti=t)

where I(ti=t) is the standard indicator function. So, for example δi=I(ti=0) is the strategy

for player i specifying the choice of A at type (ti=0) and of B at all other types.

2.2 The Mediated Electronic Mail Game (MEMG)

By MEMG we mean an EMG modified in the following way. Introduce a third

computer CIII in the framework and let notation (Ci, Cj), with i≠j and i,j=I,II,III, stand for

the communication connection (channel) between Ci and Cj. In the pair, Ci will always
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indicate the computer starting the communication, namely the one sending the first

message between the two. Consider now the following communication protocol. If

nature chooses state a then CIII sends no message to Cj, with j=I,II. If nature chooses b then

CIII automatically sends, separately, one message to CI and one to CII. If Cj receives a

message then it automatically replies to CIII. If CIII receives a confirmation message from

Cj then automatically replies to it with a message and so on. All messages, as in

Rubinstein, have the same failure probability 1>ε>0.

In words, for the two (separate) connections (CIII, CI) and (CIII, CII) the informational

exchange is like in the EMG; the main difference is that in the MEMG player I has no

initial informational advantage with respect to II. Indeed, this is what delegation to a

third computer (party) of the task of (simultaneously) informing both of them entails

here. This being the case, it is easy to see that now Ω=T2, since any pair (tI,tII) would have

strictly positive probability to obtain3.

Agent I information partition is then as follows. For every t=0,1,2,..each information

set is a collection of pairs of the kind (t,n), where n=0,1,2,.. Similarly, still for all t=0,1,2,..,

player II would not distinguish between pairs of the kind (n,t). The two figures below

provide a graphical illustration of the two players’ information partitions, respectively, in

the EMG and MEMG. As Ψj stands for player j information partition, Ψj(t) represent her

information set when the type is t, with j=I,II; rows indicate information sets for player I

while columns for player II.

                                                
3 Notice that a complete description of the state would now be a triple of the kind (tI,tII,tIII) where ti

indicates the total number of messages sent by Ci, with i=I,II,III. Since often in the analysis the values
of tI  and tII would suffice to simplify notation, unless otherwise indicated, in most of the paper we
shall refer only to them.
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ΨI ; ΨII ΨII(0) ΨII(1) ΨII(2) ΨII(3) ΨII(4) .........

ΨI(0) (0,0) .........

ΨI(1) (1,0) (1,1) .........

ΨI(2) (2,1) (2,2) .........

ΨI(3) (3,2) (3,3) .........

ΨI(4) (4,3) (4,4) .........

......... ......... ......... ......... ......... ......... .........

Players’ Information Partitions in EMG

Fig 2.

ΨI ; ΨII ΨII(0) ΨII(1) ΨII(2) ΨII(3) ΨI(4) .........

ΨI(0) (0,0) (0,1) (0,2) (0,3) (0,4) .........

ΨI(1) (1,0) (1,1) (1,2) (1,3) (1,4) .........

ΨI(2) (2,0) (2,1) (2,2) (2,3) (2,4) .........

ΨI(3) (3,0) (3,1) (3,2) (3,3) (3,4) .........

ΨI(4) (4,0) (4,1) (4,2) (4,3) (4,4) .........

......... ......... ......... ......... ......... ......... .........

Players’ Information Partitions in MEMG

Fig 3.

2.3 The Main Result

For completeness, below we recall Rubinstein’s finding.
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Proposition 1 (Osborne and Rubinstein, 1994) In the EMG the pair of strategies, δI=δ*=δII

where δ*=Σt∈TI(tj=t), with j=I,II, is the unique Nash Equilibrium.

In the MEMG a multiplicity of equilibria is instead possible. In particular, the

following theorem presents the main result of the paper. More specifically, it formalises

the existence of an equilibrium where both players choose, at all types, actions as in the

efficient equilibrium of the EMG with common knowledge of the game played.

Theorem The pair of strategies, δI=δ**=δII, where δ**=I(tj=0), with j=I,II, is a Nash Equilibrium

of the MEMG if and only if P(tII=0|tI=t )=ε = P(tI=0|tII=t )<q, for all t≥1.  

Proof  (1) Consider player I’s behaviour at her possible types. i) Suppose tI=0; then, since

CIII sends separate messages to CI and CII its (marginal) probability is, as in Rubinstein’s

model, P(tI=0)=(1-p)+pε = (1-p)+pε2+pε(1-ε) where the three terms are the probabilities,

respectively, of the triples of types (0,0,0), (0,0,2) and (0,tII,tIII), with tII≥1 and either

tIII=tII+1 or tIII=tII+2, the union of which gives event tI=0. Hence if II plays δ**, namely

chooses A when observing tII=0 and B elsewhere, the (conditional to the type) expected

payoff of I when playing the (mixed strategy) (δI(0),1-δI(0))∈∆(S), where as we said δI(0) is

the probability of choosing A at type tI=0, is given by

EΠI(δI(0))= {(1-p)[δI(0)M-(1-δI(0))L]+pε2[δI(0)0-(1-δI(0))L]+pε(1-ε)[δI(0)+(1-

δI(0))M]}/P(tI=0)=

=δI(0)[(1-p)(M+L)+pε2L-pε(1-ε)(M-1)]/ P(tI=0)+g(ε)
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where g(ε) is a function independent of δI(0). Thus choosing A is optimal for I, namely

δI(0)=1, if and only if (1-p)(M+L)+pε2L>pε(1-ε)(M-1), which is always true as p<1/2 and

ε(1-ε)<1. ii) Assume now tI=t≥1. By a consideration analogous to that for tI=0, it is easy to

see that its marginal probability is P(tI=t)= pε(1-ε)2t-1+ pε(1-ε)2t = pε(1-ε)2t-1(2-ε). It then

follows that

EΠI(δI(t))=P(tII=0|tI=t)[δI(t)0-(1-δI(t))L]+ P(tII≥1|tI=t)[δI(t)+(1-δI(t))M]=

=δI(t)[P(tII=0|tI=t)L - P(tII≥ 1|tI=t)(M-1)]+h(ε)

where h(ε) is a function independent of δI(t). Hence, action B is optimal for I, i.e. δI(t)=0, if

and only if P(tII=0|tI=t)<q. But

P(tII=0|tI=t)=P(tII=0,tI=t)/P(tI=t)=P((t,0,t+1)∪ (t,0,t+2))/P(tI=t)

from which

P(tII=0|tI=t) = [pε2(1-ε)2t-1+ pε 2(1-ε)2t] / pε(1-ε)2t-1(2-ε) =ε

showing that δ** is best reply for I against player II choosing δ** if and only if ε<q.

(2) Since player’s II situation is perfectly symmetric, her reasoning will be exactly

the same at all types and the result follows.

The above theorem shows the possibility for the pair (δ**,δ**) to be a Nash

Equilibrium of the MEMG and so for both players to choose action B, the efficient

equilibrium when they play Gb, even if at no state the game is mutual knowledge. When

states are (t,0,tIII) or (0,t,tIII), with t=0,1,2,.and tIII≥2 (namely when at least one of the two

very initial messages is not successful), the game is Gb but at the equilibrium (δ**,δ**)

there is coordination failure (as in (0,0,2) players choose the pair of actions (A,A) while in
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the other states either the pair (B,A) or the pair (A,B)). It is then natural to ask whether

players would be ex-ante better off at the Rubinstein’s equilibrium of the EMG4 or at the

above equilibrium of the MEMG. The following proposition provides the answer.

Proposition 2 If the pair (δ**,δ**) is a Nash Equilibrium of the MEMG then it is ex-ante Pareto

superior to the Nash Equilibrium (δ*,δ*) in the EMG.

Proof. Let EΠi(δI, δII) be player’s i expected payoff (with i=I,II) when players choose,

respectively, δI and δII. Then, in the MEMG the equilibrium (δ**,δ**) provides player i (the

reasoning of both players is the same) with the following expected payoff.

EΠi(δ**,δ**) = (1-p)M + 0pε2 - Lpε(1-ε)+ 1pε(1-ε)+ Mp(1-ε)2

Since EΠi(δ*,δ*)=(1-p)M then EΠi(δ**,δ**)>EΠi(δ*,δ*) if and only if

pε(1-ε)(1-L)+ p(1-ε)2M>0

namely ε <M/(L+M-1) which when (δ**,δ**) is a Nash Equilibrium holds true.

Hence, as long as the failure message probability is less than q, players would be

better off by coordinating on action B whenever observing at least one message. With

respect to the EMG the introduction of a mediating figure, sending separate messages to

each player, renders each individual’s type uninformative with respect to the opponent’s

type. Though message failure probabilities are equal, it is now possible to obtain multiple

equilibria as long as communication channels are sufficiently reliable. Alternatively,

                                                
4 Clearly (δ*, δ*) would also be an equilibrium in the MEMG.
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unlike what happens in the original Rubinstein’s model, the probability value now

counts.

3 Conclusions

In the Mediated (version of the) Electronic Mail Game that we have investigated,

indirect informational exchange can enhance an equilibrium with more efficient

coordination if the message error probability ε is sufficiently low, with the upper bound

being determined by the purely mixed strategy Nash Equilibrium of one of the two

coordination games that individuals have to play. For each player, the conditional (to her

own type) probability on the opponent’s type clearly depends on ε. As, in equilibrium,

such probability represents a player’s belief on the opponent choosing a specific action,

then it is not surprising that the optimal choice could depend upon the value of ε. To

conclude, the example presented in the paper appears to suggest that when information

exchanged by the individuals on the game to be played is noisy, as long as the reliability

of communication channels appropriately supports personal beliefs on the choices

available to the other, individual knowledge of a game may suffice for efficient

coordination to obtain.
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