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Abstract

Generalized individual desirability relations are defined relying on a)
effectivity functions (EFs) b) Galois lattices of EFs and c) opportunity
rankings as defined on EFs. It is argued that such desirability relations
enable an enlargement of the scope of game-theoretic approaches to the
analysis of power allocation far beyond the narrow domain of voting pro-
cedures

1 Introduction

This paper is devoted to a presentation of the full potential of effectivity func-
tions as a tool for game-theoretic modelling of individual power. Indeed, an
effectivity function (EF) describes - for each coalition S in N- the set of sub-
sets of the outcome set X within which S can ‘force’ the final outcome by
means of some coordinate action of its members. Hence, an EF is a remark-
ably detailed and flexible representation of the a priori decision power alloca-
tion among individual players and coalitions as induced by the relevant game
rules. However, since their introduction in the game-theoretic literature in
the early ’80s (see e.g. Moulin,Peleg(1982), Moulin(1983), Peleg(1984), Ab-
dou,Keiding(1991)) EFs have been largely ignored in ongoing debates concern-
ing measurement of ‘power’ in (voting) games and social situations. In our view,
this is most regrettable, and the present paper’s main aim is to provide some
arguments which suggest that EF-models should be more widely considered.
As a matter of fact, the standard game-theoretic analysis of individual power

rests upon (individual) desirability relations and power indices. While there is
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still a nonnegligible amount of controversy concerning the proper relationship
between power indices and individual desirability relations (e.g. should the for-
mer be monotonic w.r.t. the latter?), both notions — as usually defined— refer
to an underlying simple game (SG) which amounts to a list of ‘winning’ or ‘all-
powerful’ coalitions out of a player set N (see e.g. Felsenthal,Machover(1998)
for a recent and strongly opinionated critical review of power indices, and Tay-
lor,Zwicker (1999) for a general, extensive treatment of simple games). Of
course, simple games are an eminently tractable and elegant outcome-free con-
struct, but precisely for that reason the scope of a simple-game-theoretic anal-
ysis of individual (and coalitional) power is definitely too restricted to be fully
satisfactory. In our view, one basic limitation of the (standard) simple-game-
theoretic approach is its virtually exclusive concern with voting-like interactive
decision procedures (let’s call Voting Domain (VD) this implicit restriction).
Also, simple games are essentially confined to those voting schemes which are
neutral w.r.t. outcomes and do not endow players with any limited veto power
(let’s denote Neutral-No-Limited-Veto (NNLV) this feature of the simple-game-
theoretic approach).
Now, VD makes it uneasy for simple-game-theoretic models —except under

trivial cases i.e.when there exists a ‘dictator’— to deal with those bilateral ‘power’
relationships between players which are related to ‘bossiness’ i.e. the ability of
a player (the ‘boss’) to affect the outcome in a way which is significant for an-
other player without being affected himself. This is indeed no minor limitation,
since arguably in common parlance ‘power’ relationships refer —more often than
not— precisely to such ‘bossy’ relationships between players as opposed to —say—
‘influence-rankings’ of players in public decisions as represented by individual
desirability relations of simple games or by values of power indices. To put
it simply, and generally speaking, standard simple game-theoretic seem to be
confined to analyzing the comparative ‘has more power than’-relation among
players (and coalitions) as opposed to the more commonly used ‘has power
over’-relation.
As for NNLV, it implies that the simple-game-theoretic approach is in fact

confined to weighted majority and similar voting games since it is poorly adapted
to the task of describing and analyzing (individual and/or coalitional) ‘power’ in
general game forms whenever the latter allocate veto power among players and
coalitions in a non-trivial way i.e. not in an ‘all-or-none’ manner. In particular,
the simple-game theoretic approach is virtually silent about power allocation in
an environment with private goods (unless one is prepared to represent such an
environment by a unanimity simple game to the effect of licencing the highly
implausible conclusion that the agents enjoy equal decision power whatever their
respective initial (positive) endowments!).
Moreover, under VD and NNLV a coalition’s decision power is either full or

nil hence in particular only (two) inclusion-comparable sets are involved. As a
consequence, there is just one natural way to define individual and coalitional
desirability relations, namely in terms of set-inclusion (there are no proper ex-
tensions of set-inclusion to choose from, except for the trivial one i.e. universal
indifference). Of course, the latter circumstance may be regarded as a bonus,
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but it should be clear by now that it does not come for free since it results
precisely fron the heavy limitations which are embodied in VD and NNLV.
We claim that in fact EFs offer a convenient and promising escape route

from some of the foregoing strictures. In fact, an EF framework suggests many
approaches to the task of classifying and ranking individual (and coalitional)
power in interaction structures as modelled by means of general game forms.
First, it is well-known—but worth emphasizing— that EF-models allow a sat-

isfactory treatment of decision mechanisms in the Voting Domain which do not
satisfy NNLV. Also, it can be shown that the usual individual (and coalitional)
desirability relations carry over in natural ways to EFs and the larger class of
interaction structures they model. In particular, it can be easily shown that
in an EF-framework transitive individual desirability relations [and ‘normal’(in
Taylor-Zwicker’s sense) classes of coalitional desirability relations] obtain in a
quite straightforward manner. Moreover, by enabling a detailed representation
of interaction structures featuring limited veto power, EFs provide the right en-
vironment for a proper treatment of both ‘bossy’ and ‘nonbossy’ power relations
among players within the same theoretical setting. Indeed, ‘bossy’ i.e. asym-
metric power relations among players can now be defined in a most natural way
by positing that player i has power over player j if i can contribute or prevent
some ‘valuable opportunities’ for j but not viceversa. Furthermore, such an EF-
setting allows meaningful talk about ‘fairness’ of power allocations in standard
economic environments with private goods without having to rely on detailed
information about individual preferences (as opposed to, say, computation of
Shapley values of NTU-games of private good economies).
However, it transpires that several non-trivial extensions of set-inclusion are

available in this broader setting, hence specifying some particular opportunity
ranking is now required in order to provide precise meaning to the notion of
‘valuable opportunities’. Some available options will be discussed below: in
particular, it will be shown that opportunity preorders induce transitive indi-
vidual desirability relations.
Furthermore, one may observe that by definition EFs depend on the de-

scription of the outcome space, but —arguably— to an exceedingly large extent.
Indeed, the present author has recently suggested that Galois lattices of ef-
fectivity functions might provide an useful further classification of individual
and coalitional power (see Vannucci (1999): this is so because in a sense such
a classification only relies on ‘intrinsically’ significant aspects of the outcome
space. As it happens, Galois lattices of EFs —via the notion of individual and
coalitional rank functions —suggest another natural extensions of desirability re-
lations from simple games to any game form (or correspondence). Again, further
extended individual desirability relations obtain by composing EFs and oppor-
tunity rankings, and looking at their Galois lattices. Clearly enough, within an
EF-framework the supply of possibly significant individual desirability relations
is quite rich.
The present paper is largely devoted to a short presentation of the general-

izations of (individual) desirability relations mentioned above (and to discussion
of a few elementary properties of theirs, e.g. transitivity). To repeat, I submit
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that such generalized desirability relations fulfill an useful dual role by
i) bridging the gap between game-theoretic notions of individual decision

power and common parlance of (typically asymmetric) power relationships among
agents in general (non-voting) social settings,
while at the same time
ii) enabling a meaningful analysis of power allocation in environments with

private goods, thereby enlarging the scope for meaningful discussions of ‘fairness’
in power allocation to general social situations far beyond the restricted if classic
domain of voting procedures.

2 Effectivity functions and desirability relations

Let (N,X) be a pair of non-empty sets ( the sets of players and outcomes,
respectively; we also assume #N ≥ 2 and #X ≥ 2 in order to avoid trivialities).
A (monotonic) simple game on N is a set pair G = (N,W), W ⊆ P (N), such
that S ∈W and S ⊆ T entail T ∈W ( W is said to be non-trivial iff it is non-
empty) . The coalitions belonging to W are meant to represent the winning
or all-powerful ones. The individual desirability relation %Gof a simple game
G=(N,W) is defined as follows : for any i, j ∈ N,
i %G j iff for any S ⊆ N s.t. S∩{i, j} = ∅ : [S∪{j} ∈W only if S∪{i} ∈W ].
An effectivity function (EF) on (N,X) is a function E : P (N)→ P (P (X))

such that :
EF1) E(N) ⊇ P (X)\ {∅} ; EF2) E(∅) = ∅; EF3) X ∈ E(S) for any S,

∅ 6= S ⊆ N.
Moreover, E is a well-behaved EF if
EF4) ∅ /∈ E(S) for any S , ∅ ⊂ S ⊆ N is also satisfied.
An EF E on (N,X) is monotonic if for any S, T ⊆ N and any A,B ⊆ X
[A ∈ E(S) and S ⊆ T entail A ∈ E(T )] and
[A ∈ E(S) and A ⊆ B entail B ∈ E(S)] .
A monotonic EF E on (N,X) is regular if ∅ 6= A ∈ E(S) entails X\A /∈

E(N\S) for any S ⊆ N and B ⊆ X, and maximal if A /∈ E(S) entails (X\A) ∈
E(N\S) for any ∅ 6= S ⊆ N and ∅ 6= A ⊆ X. Moreover, an EF E on (N,X)
is superadditive if for any S, T ⊆ N and A,B ⊆ X, A ∈ E(S), B ∈ E(T ) and
S ∩ T = ∅ entail A ∩B ∈ E(S ∪ T ).
Finally, an EF E on (N,X) is simple if there exists an order filter W of

(P (N),⊇) (namely a non-empty set W ⊆ P (N) s.t. for any S ⊆ T ⊆ N if
S ∈W then T ∈W ) such that for any S ⊆ N, A ⊆ X, A ∈ E(S) if and only if
either A = X and S 6= ∅ or A 6= ∅ and S ∈ W . Indeed, simple EFs amount to
(non-trivial) simple games as endowed with a fixed outcome set.
Desirability relations provide the most widely studied formal counterpart

to the notion of individual and coalitional “influence” in decision-making. In
words, player (coalition) A is “at least as much desirable as” player (coalition)
B if for any coalition C which is disjoint from both A and B, the coalition of A
and C turns out to be at least as much “powerful” as the coalition of B and C
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(see e.g. Taylor,Zwicker(1999) for a thorough treatment of desirability relations
in simple games).
In the extant literature, desirability relations have been defined and studied

for simple games only. However, they can be easily extended to EFs in a fairly
straightforward way. Indeed, the individual desirability relation %Eof an EF E
on (N,X) may be defined as follows : for any i, j ∈ N
i %E j iff Ei(S) ⊇ Ej(S) for every S ⊆ N such that S ∩ {i, j} = ∅,
(where for any h ∈ N, Eh(.) denotes the h-reduced EF of E which is in turn

defined as follows:
Eh(S) = E(S∪{h}) for any S ⊆ N such that h /∈ S 6= ∅, and Eh(S) = E(S)

otherwise; it is easily checked that Eh is indeed an EF on (N,X) ; it should be
noticed that I write Ei for E{i}with a slight abuse of notation).
Clearly enough, desirability relations as defined above embody a dominance

principle whose significance relies on the natural presumption that —for any
coalition— having a larger image (w.r.t. set inclusion) under a certain EF is
better. As it happens, such a notion can be furtherly generalized through the
notion of an opportunity ranking. Here, an opportunity ranking (OR) on a basic
outcome set simply denotes a preordered set (P (X),<) such that < extends ⊇
(namely, < is reflexive, transitive, and A < B whenever A ⊇ B). Such a notion
adds a further twist to the notion of an EF-based desirability relation in that it
allows to express a notion of comparative relevance concerning outcome subsets
and the attached decision power.
Thus, let (P (X),&) be an OR on X; then for any S ⊆ N,A ⊆ X :
A ∈ (E◦ &)(S) if and only if there exists B ⊆ X such that B ∈ E(S) and

B ∼ A (where ∼ denotes the symmetric component of &).
It is easily checked that the following fact holds true:

Claim 1 Let E be an EF on (N,X) and (P (X),&) an OR. Then, (E◦ &) is a
(possibly non well-behaved) EF.
Proof. Observe that —by reflexivity of &— E ⊆ (E◦ &). Hence (E◦ &)

satisfies both EF1 and EF3. Moreover, A ∈ (E◦ &)(∅) entails that there exists
B ∼ A such that B ∈ E(∅), a contradiction since E(∅) = ∅ :thus, (E◦ &) also
satisfies EF2. To see that ∅ ∈ (E◦ &∗)(S) for some OR (P (X),&∗), just take
a non-trivial set-filtral OR ( i.e. A &∗ B iff [either A ⊇ B or B /∈ F where F
is any order filter of (P (X),⊇) such that F 6= P (X)] ). ¤
Then, one may rely on (P (X),&∗) in order to define a suitable OR (P (P (X)),&(&∗)

) (e.g. positA &(&∗) B iff max&∗ A &∗ max&∗ B). A further interesting option
consists in introducing an OR (P (P (X)),&) directly (i.e. without any reference
to an underlying OR (P (X),&∗) as mentioned above). In any case, given an OR
(P (P (X)),&) one may define a new (individual) desirability relation as follows:
for any i, j ∈ N
i <(E,&) j iff [for all S ⊆ N such that S ∩ {i, j} = ∅ : Ei(S) & Ej(S)].

Individual desirability relations of simple games are typically transitive. In-
deed, transitivity of an individual desirability relation should be regarded as a

5



remarkably nice property —if not the hallmark— of the former. It can be easily
shown that both <Eand <(E,&)as defined above are in fact transitive, namely

Proposition 2 Let E be an EF on (N,X),(P (P (X)),&) an OR, and <E
,<(E,&)as defined above. Then, (N,<E) and (N,<(E,&)) are preordered sets.

Proof. Let us consider (N,<(E,&)). Reflexivity follows trivially from the
definition. Concerning transitivity, take i, j, k ∈ N such that i <(E,&) j and
j <(E,&) k i.e. for any S, T ⊆ N with S ∩ {i, j} = ∅, T ∩ {j, k} = ∅, Ei(S) &
Ej(S) and Ej(T ) & Ek(T ). Now, take any U ⊆ N such that U∩{i, k} = ∅. Two
cases are to be distinguished: j /∈ U and j ∈ U. If j /∈ U then U ∩ {i, j, k} = ∅
hence Ej(U) & Ek(U) and Ei(U) & Ej(U). Therefore, Ei(U) & Ek(U), a
contradiction. If j ∈ U , consider U 0 = U\ {j}. Then, U 0 ∪ {k} ⊆ N\ {i, j} ,
whence
(∗)E(U 0 ∪ {k}∪ {i}) = Ei(U 0 ∪ {k}) & Ej(U 0 ∪ {k}) = E(U 0 ∪ {k}∪ {j}) =

Ek(U
0 ∪ {j}).

Since U 0 ∪ {i} ⊆ N\ {j, k} , it follows from (∗) that
Ei(U) = Ei(U

0 ∪ {j}) = E(U 0 ∪ {j} ∪ {i}) = E(U 0 ∪ {i)} ∪ {j}) =
= Ej(U 0∪{i}) & Ek(U 0∪{i}) = E(U 0∪{i}∪{k}) & Ek(U 0∪{j}) = Ek(U).

The same argument also applies to (N,<E) by taking &=⊇ (just recall that
—by definition— & denotes any preorder that includes ⊇). ¤

As mentioned in the Introduction above, EFs are arguably dependent on an
excessive amount of details concerning the chosen description of the outcome
space. This is indeed the main motivation leading to the introduction of another
construct, namely the Galois lattice(s) of an EF. To start with, it should be no-
ticed that : i) the set of all EFs on (N,X) is bijective to a set of binary relations
on (P (N), P (X)), hence any EF on (N,X) can be equivalently regarded as a
binary relation ; ii) therefore, the classic Birkhoff theorem on so called Galois
connections applies. It follows that the functions fE : P (P (N))→→ P (P (X)),
gE : P (P (X))→→ P (P (N)) as defined by the rules
fE(S) = {A ⊆ X : A ∈ E(S) for any S ∈ S} for any S ⊆P (N), and
gE(A) = {S ⊆ N : A ∈ E(S) for any A ∈ A}
enjoy the following list of properties:
a) the functions KE = gE ◦fE and K∗E = fE ◦gE are closure operators on

(P (N),⊇) and (P (X),⊇), respectively (we recall here that a (Moore) closure
operator on a preordered set (Y,≥) is a function K : Y → Y such that for any
y, z ∈ Y : K(y) ≥ y; y ≥ z entails K(y) ≥ K(z) ; K(y) ≥ K(K(y)) ).
b) the corresponding closure systems - i.e. sets of closed sets - C(KE) =

{S ⊆ P (N) : S = KE(S)}, C(K∗E) = {A ⊆ P (X) : A = K∗E(A)} are (dually
isomorphic) complete lattices under the join and meet operations defined as
follows:

for any {Si}i∈I ⊆ C(KE), {Ai}i∈I ⊆ C(K∗E),
∨i∈ISi = KE(∪i∈ISi), ∧i∈ISi = ∩i∈ISi, ∨∗i∈IAi = K

∗
E(∪i∈IAi), ∧∗i∈IAi =

∩i∈IAi
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(we recall that a lattice is a partially ordered set (L,≥) such that for any
pair {x, y} ⊆ L , both a greatest lower bound (glb) -or meet- ∧ {x, y}and a
lowest upper bound (lub) - or join - ∨ {x, y} exist; a lattice is complete if any
subset of L has both a glb and a lub ).
c) the lattices under b) are dense, i.e. have a unique atom and - if E is well-

behaved- co-dense, i.e. have a unique co-atom ( an atom of a lattice (L,≥) is
a ≥-minimal non-bottom element of L, and a co-atom is-dually- a ≥-maximal
non-top element of L).
The Galois lattice of an EF E is L(E) = (Iso [C(KE)×C(K∗E)] ,⊇) , where

Iso [C(KE)×C(K∗E)] denotes the set of canonically isomorphic pairs of the
closure systems of E,
and for any {(Si,Ai)i∈I} ⊆ Iso [C(KE)×C(K∗E)]W
i∈I (Si,Ai) = (KE(∪i∈ISi),∩i∈IAi),

V
i∈I(Si,Ai) = (∩i∈ISi,K∗E(∪i∈IAi)).

Clearly enough, the Galois lattice L(E) ( that is also sometimes called a
concept lattice) is lattice-isomorphic to the closure systems of E. Hence, L(E)
is complete, has a unique atom and, if E is well-behaved, a unique co-atom (see
Vannucci(1999) for more details).
We are mainly interested in those EFs that can represent the decision power

of coalitions under a certain decision mechanism, or game correspondence. A
game correspondence on (N,X) is a correspondence G : D →→ X where D ⊆Q
i∈N Si , and Si is the set of ”interactive behaviours” available to player i ∈ N.

A game form is a single-valued game correspondence.
Now, the notion of decision power admits at least two distinct interpreta-

tions, namely “guaranteeing power” and “counteracting power” that in turn
correspond to the ability to force maximin and minimax outcomes, respectively.
Thus, the allocation of “guaranteeing power” under game correspondence G
with domain D is represented by the α − EF of G - denoted by Eα(G)- as
defined by the following rule:

for any non-empty S ⊆ N ,

(Eα(G))(S) =


A ⊆ X: a tS ∈Qi∈S Si exists such that (t

S, sN\S) ∈ D and
G(tS, sN\S) ⊆ A

for any sN\S ∈Qi∈N\S Si,

.
Conversely, the allocation of “counteracting power” under game correspon-

dence G with domain D is represented by the β −EF of G, denoted by Eβ(G)
and defined as follows :
for any non-empty S ⊆ N

(Eβ(G))(S) =


A ⊆ X : for any sN\S ∈Qi∈N\S Si some t

S ∈Qi∈S Si
exists such that (tS, sN\S) ∈ D

and G(tS, sN\S) ⊆ A

.
It is easily checked that Eα(G) is regular, Eβ(G) is maximal, and both of

them are monotonic and - provided that G is non-empty valued- well-behaved .
Also, it is well-known that superadditivity and monotonicity of an EF E imply
that a game correspondence G exists such that E = Eα(G) : see Moulin(1983),
Peleg(1984), and Otten,Borm,Storcken,Tijs(1995)) . Indeed, monotonicity of
α−EFs and β−EFs of game correspondences is our main reason for confining
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the ensuing analysis to monotonic EFs (as mentioned previously). Furthermore,
the foregoing distinction between α−EFs and β−EFs brings us to the general
notion of a polarity operator for EFs, implicitly defined as follows (see e.g.
Abdou,Keiding(1991)): the polar E∗ of a monotonic EF E on (N,X) is an EF
on (N,X) such that :
i) E∗(∅) = ∅ and ii) for any non-empty S ⊆ N and A ⊆ X, A ∈ E∗(S) if

and only if X\A /∈ E(N\S).
(Notice that E = E∗ if and only if E is both regular and maximal ).
It should be remarked here that opportunity rankings allow a further ex-

tension of the foregoing constructs by considering the resulting composed EFs
E◦ < as defined above.

Remark 3 In view of the foregoing observations it must be the case that
L(E) = 1⊕B(L(E)) ⊕ 1 for some lattice B(L(E)) if E is well-behaved , and
L(E) = 1⊕B(L(E)) otherwise (where 1 denotes the degenerate 1-element lat-
tice, and ⊕ denotes the linear or ordinal sum operation: see e.g. Birkhoff(1967),
or Davey,Priestley(1990)). In any case, we shall refer to the lattice B(L(E)) as
the bulk of L(E) .

Thus, as mentioned above, Galois lattices of EFs - and their bulks- provide
us with an algebraic invariant that allows some significant new classifications of
game correspondences. ( Of course, a game correspondence G is entitled to -
at least- two Galois lattices, the α-Galois lattice and the β-Galois lattice, that
correspond to Eα(G) and Eβ(G) , respectively. We shall refer to the Galois
lattice of game correspondence G when Eα(G) = Eβ(G)). One parameter of
the Galois lattice L(E) is particularly relevant to the ranking of individual and
coalitional power under EF E, namely its length . We recall here the relevant
definition ( see again Birkhoff(1967), or Davey,Priestley(1990) ).

Definition 4 The length l(L) of a lattice L is the least upper bound of the set
of lengths of chains included in L (a chain is a totally ordered set; the length of
a chain of k + 1 elements is k).

A most useful notion of rank for coalitions ( and issues) can be introduced
relying on the length l(L(E)) of the Galois lattice of an EF E as defined above.

Definition 5 Let E be an EF on (N,X). The height hE(x) of x = (C,C
0) ∈

L(E) is the least upper bound of the set of lengths of chains in L(E) having x
as their maximum. The rank rE(S) of a coalition S ⊆ N is the height hE(x) of
the highest x = (C,C0) ∈ L(E) such that S ∈ C ( a dual definition obtains for
an issue A ⊆ X ).
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Relying on such a notion of rank, several further extended desirability rela-
tions may be introduced in a most natural way. Such relations seem to be par-
ticularly apt to scrutinize those aspects of decision power which are related to
positional considerations. In particular, let us define the basic Galois-latticial in-
dividual desirability relation of an EF, namely (N,<G(E)) where for any i, j ∈ N
i <G(E) j iff [for all S ⊆ N such that S ∩ {i, j} = ∅ : rEi(S) ≥ rEj (S)]
(of course an OR-augmented EF E0 = E◦ & may also be considered in that

conknection).

Remark 6 It is still to be clarified under which conditions Galois-rank based
desirability relations of an EF are transitive.

Thus, we have by now a quite long list of individual desirability relations
based upon EFs which may deployed in order to enlighten several facets of
individual decision-making power and influence in game situations. The follow-
ing section will provide some examples of interaction structures whereby some
EF-based individual desirability relations seem to offer useful tools for repre-
sentation and analysis.

3 Some examples

This section is devoted to a short presentation of a few relevant examples
whereby EFs and EF-related notions as defined above seem to exhibit a definite
comparative advantage. In particular, we consider : i) Constitutional Effectiv-
ity Functions; ii) Authority Relationships under Incomplete Contracting; and
iii) Economies with Private Goods.

3.1 Constitutional Effectivity Functions

Modern representative democracies rely on governance structures whose archi-
tectures may vary in many relevant respects. The most significant distinction
is perhaps the one between parliamentary and presidential systems. Indeed,
under parliamentary government forms executive-termination can be prompted
by a non-confidence vote on the part of the legislature. By contrast, under pres-
idential systems the executive is not subject to non-confidence votes and -as a
result- some degree of separation of powers between legislature and executive
typically obtains. More often than not, under presidential systems the head of
executive is directly appointed by means of general elections, while the opposite
is the case with parliamentary systems. However, direct election of the premier
in parliamentary systems has been recently enacted (or considered) in order to
enhance stability in multiparty environments (see e.g. Israel, Italy; such systems
are variously referred to as neo-parliamentary or mixed). It is our contention
that the foregoing government and their core-stability properties forms can be
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aptly represented and analyzed in terms of EFs (as opposed to simple games).
Let us then single out for discussion two somehow polarly opposite types of
government forms with a directly elected head of executive, namely a) the EF
of a presidential system with perfect separation of powers and b) the EF of a
parliamentary system with a directly elected premier and a fixed majority (see
also Vannucci(2000a, 2000b)).

Definition 7 (The EF of a presidential system with perfect separation of pow-
ers) Let 0∗ denote the elected president of the executive, and N = {1, .., n}
the set of parties- or voting blocs- of a legislature of size h. The parties have
weights- or number of seats- wi, i = 1, .., n. We also suppose that the weight
profile w = (wi)i∈N is strong ( i.e. for any S ⊆ N either

P
i∈S wi ≥ bh2 c+ 1

or
P
i∈N\S wi ≥ bh2 c + 1 ). Moreover, we assume a sharp distinction between

the respective ”jurisdictions” of the executive and legislature. Therefore, the
outcome space is X = Y × Z , where Y denotes the ”jurisdiction” of the ex-
ecutive, and Z the ”jurisdiction” of the legislature. Then, the EF EPS(w) of
a presidential system with perfect separation of powers and weight profile w is
defined by the following rule: for any S ⊆ N ∪{0∗}, A ⊆ X, A ∈ (EPS(w))(S)
if and only if one of the conditions i)-iv) listed below is satisfied :
i) A 6= ∅, 0∗ ∈ S and Pi∈S wi ≥ bh2 c+ 1 ;
ii) A ⊇ {y} × Z for some y ∈ Y , and 0∗ ∈ S ;
iii) A ⊇ Y × {z} for some z ∈ Z, and P

i∈S wi ≥ bh2 c+ 1 ;
iv) A = X and S 6= ∅.

Definition 8 (The EF of a parliamentary system with a directly elected premier
and a fixed majority) Let 0∗ denote the elected premier, N = {1, .., n} the set
of parties -or voting blocs- of a legislature of size h (whose allocation of seats
is represented by a n-dimensional strong weight profile w as under the previous
definition), M = M(w) ⊆ N a (possibly minimal) majority coalition, X the
outcome set, and x∗ ∈ X a “deadlock” outcome that corresponds to legislature-
termination, i.e. new elections. Then, the EF EPA(w,M) of a parliamentary
system with directly elected premier and fixed majority M = M(w) at weight
profile w is defined by the following rule: for any S ⊆ N ∪ {0∗}, A ⊆ X,
A ∈ (EPA(w,M))(S) if and only if one of the clauses i)-iii) described below is
satisfied :
i) A 6= ∅ and S ⊇M ∪ {0∗} ;
ii) x∗ ∈ X and S ∩ (M ∪ {0∗}) 6= ∅ ;
iii) A = X and S 6= ∅.
Observe that for any w, EPS(w) and EPA(w,M) share the same set of

winning i.e. all-powerful coalitions. Hence, a simple game-theoretic approach
is plainly unable to distinguish among the foregoing government forms. By
contrast, a few basic differences between EPS(.) and EPA(., .) concerning the
allocation of decision power are easily depicted relying on the EF-machinery and
related notions, as testified by validity of the following (see Vannucci(1999)):
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Claim 9 Let EPS(w) and EPA(w,M) be the presidential and parliamentary
EFs as defined above.Then,

i) B(L(EPS(w))) = 22 ;
ii) B(L(EPA(w,M))) = 3 ( where 3 denotes the three-sized chain).Thus, as

expected, EPS(w) exhibits a specialized pattern of power allocation, whereas
under EPA(w,M) power allocation is unspecialized (i.e. there are no equally
Galois-ranked coalitions with different decision power).

In my view, such an example on Constitutional EFs confirms that within
Voting Domains that do not satisfy the Neutral-No-Limited-Veto restriction EF-
models and related notions may indeed offer a quite distinctive contribution.

3.2 Incomplete Contracting and Authority Relationships

Incomplete contracting refers to situations whereby some relevant variables are
(typically) ex-post observable by the parties but nonverifiable in a court (for
whatever reason, including of course inability of the parties to foresee some rel-
evant contingencies and/or condition contractual claims on them). Incomplete
contracting is currently seen by and large as the main rationale underlying
the observed boundaries of the firms and the widespread existence of authority
relationships between employers and employees within firms. An authority re-
lationship can be regarded as the quintessential template of a “bossy” decision
mechanism, in that the Employer/Principal pays a constant wage to the Em-
ployee/Agent, and is endowed with the power or authority to assign tasks to the
latter (within a contractually defined range). To see that such an arrangement
may indeed count as a significant example of a “bossy” mechanism as defined
in the Introduction, just consider the case where the Employer is indifferent
between certain tasks while the Employee is not: under such circumstances,
the Employee is able to add (or detract) valuable opportunities (and ultimately
affect the well-being of the Employee) at no cost for herself. Moreover, a version
of this story which relies on opportunity rankings as opposed to preferences can
be offered in a quite straightforward way. This can be made more precise by
means of the following model.
Let e1, e2 denote the Employer and the Employee, respectively. As usual, we

take the Employee’s wage w to be bounded below by an exogenously determined
reservation wage w∗(indeed, we may posit without any significant loss of gen-
erality w = w∗) . Then, let T = {1, .., T} denote the (finite) set of tasks. Each
task t is characterized by a (finite) action set At =

©
at1, .., a

t
nt

ª
, a (finite) set of

possible task-specific-outcomes Y t =
©
yt1, .., y

t
mt

ª
, and a (finite) stochastic tech-

nology pt = (pt1 = (pt11, .., p
t
1mt
), .., ptnt = (ptntmt

, .., ptntmt
)) where ptij denotes

the probability of t-outcome ytj if e2 chooses action a
t
i, i = 1, .., nt, j = 1, ..,mt

(hence in particular —for any i, j— ptij ≥ 0 and
P
j p

t
ij = 1; moreover, there is an

obvious one-to-one correspondence between actions ati and probability distribu-
tions pti ). Thus, the —contractually specified— set of feasible task-assignments is
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a family Ω ⊆ P (T) of subsets of T. An EF E◦ can be attached in a most natural
way to such an interaction structure as follows. The player set is N = {e1, e2},
and the outcome set is X = Ω× F , where

F =
©
f ∈ [Qt∈TA

t]Ω : for any C ∈ Ω, #f(C) = #C and f(C) ∩At 6= ∅ iff t ∈ C ª .
Then, E◦(N) = P (X)\ {∅} , E◦({e1}) = {Y ⊆ X : Y ⊇ {ω} × F for some ω ∈ Ω} ,
E◦({e2}) = {Y ⊆ X : Y ⊇ Ω× {f} for some f ∈ F} , and E◦(∅) = ∅.
Clearly, e1 kE◦ e2 i.e. not e1 <E◦ e2 and not e2 <E◦ e1(by definition of E◦).

However, such an EF model is also consistent with the following admittedly
extreme scenario. Let us assume that all the tasks are technology-equivalent
i.e. for any s, t ∈ T, ps = pt (which entails #Y s = #Y t, and #As = #At), and
that actions are observable- a most characteristic if strong assumption of the
extant incomplete contracting literature— so that one may also assume without
much loss of generality #At = #As = 1. Next, consider an opportunity ranking
(P (X),&) such that for some S, S0 ⊆ Ω, F 0 ⊆ F : (S × F 0) & (S0 × F 0) and not
(S0 × F 0) & (S × F 0) while (S × F 0) ∼ (S × F 00) for any S ⊆ Ω, F 0, F 00 ⊆ F
(notice that under the foregoing assumptions once the Employer has chosen
the tasks the Employee can only perform the corresponding actions resulting in
equivalent probability distributions ).
Then, (E◦◦ &)({e1}) =

{Z ⊆ X : there exist Y ⊆ X, ω ∈ Ω such that Z ∼ Y ⊇ {ω} × F}
⊇ {Z ⊇ X : Z ∼ S × F, ∅ 6= S ⊆ Ω} = {Z ⊆ X : Z ∼ S × F 0 6= ∅, S ⊆ Ω, F 0 ⊆ F} =

(E◦◦ &)(N).
Hence, (E◦◦ &)({e1}) = (E◦◦ &)(N) ⊃
⊃ {Z ⊆ X : there exist Y ⊆ X, f ∈ F such that Z ∼ Y ⊇ Ω× {f}} =
= (E◦◦ &)({e2} .
It follows that [e1 <E◦◦& e2 ] and not [ e2 <E◦◦& e1].
Thus, we have been eventually able to single out a bilateral asymmetric

power relationship arising from desirability relations of OR-augmented EFs.
In my view, the somehow concocted nature of this example partly testifies
to the genuine difficulty to disentangle truly asymmetric, hierarchical power
relationships within bilateral interaction structures ( a point vividly made a
long time ago by philosopher G.W.F.Hegel in his famous Phænomenologie des
Geistes(1807)). On the other hand, such an example also confirms the remark-
able breadth and flexibility of EF models of decision power.

3.3 TheWalrasian Correspondence for Private-Good Economies

The notion of an effectivity function, and computation of its Galois lattice(s) are
easily extendable to solution concepts and correspondences. This is so because
whenever the “objects” to be “solved” include a description of non-verifiable
individual characteristics (e.g. preferences), the latter can be regarded as the
output of strategic behaviour. As a result, the solution concept under con-
sideration can be aptly interpreted as a revelation-game correspondence. In
particular, the Galois lattice of such a solution correspondence provides, once
again, a succinct description of the structure of coalitional power when the ac-
tual behaviour of players is well predicted by the given solution concept (hence,
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the coalitional power discussed here is of a conditional sort) . This subsection
is devoted to an application of those ideas to some domains of pure exchange
private-good economies. In particular, we shall focus on the Walrasian (equilib-
rium) correspondence.
To begin with, a few basic definitions are to be recalled. A pure exchange

private-good-economy is a tuple e = (N, (Xi)i∈N , (<i)i∈N , (ωi)i∈N ) where
for each agent i ∈ N , Xi = Rk+ is her consumption set whose dimension k
denotes the number of available private goods, <iis the total preference preorder
of i on the allocation space X =

Q
i∈N Xi, and ωi is her endowment. The

usual selfishness, monotonicity, continuity, and convexity restrictions on each
preference preorder <iare also assumed.
We denote by E(ω) the set of all n-agent pure exchange private-good economies

with endowment profile ω = (ωi)i∈N . A feasible allocation of an economy
e ∈ E(ω) is a profile of consumption programs x = (xi)i∈N ∈ X such thatP
i∈N xi ≤

P
i∈N ωi . The set of feasible allocations of an economy e ∈ E(ω)

will be denoted by F (ω). We are now ready to introduce the familiar Walrasian
solution correspondence for private-good economies.

Definition 10 ( Walrasian correspondence on E(ω) ) A Walrasian equilibrium
of an economy e ∈ E(ω) is a pair (p∗,x∗) ∈ Rk+ ×X such that p∗ 6= 0, x∗ ∈
F (ω) and x∗ <i y for any i ∈ N and any y ∈ F (ω) with p∗ · yi ≤ p∗ ·ωi . A
feasible allocation x ∈ F (ω) is a Walrasian allocation of the economy e ∈ E(ω)
if (p,x) is a Walrasian equilibrium of e for some non-null non-negative price
vector p . The set of Walrasian allocations of an economy e ∈ E(ω) is denoted
by w(e). The Walrasian correspondence W (.) is defined by the following rule :
W (e) = w(e) . (Of course, it is well-known from equilibrium existence theorems
that on the given standard domain of economies W (.) is non-empty-valued ).

The Walrasian correspondence is usually meant to capture somehow the
working of prices as coordination devices in a noncooperative environment.
Since the typical stories underlying Walrasian equilibria treat players as price-
takers, and the price system is taken to be one and the same for all of them,
power relationships are usually regarded as simply alien from the perspective
of Walrasian analysis. However, EF models and related desirability relations
enable —in a most natural way— a meaningful discussion of power relationships
even in such a standard general equilibrium setting with (only) private goods.
To see this, take an endowment profile ω∗ such that ω∗i À ω∗j for some i, j ∈ N
i.e. ω∗ih > ω∗jh for any good h, h = 1, .., k. Under such circumstances, one should
like to be able to say that agent i is ‘more powerful/influential’ than agent
j, quite independently of preferential characteristics. Apparently, desirability
relations should provide —again— the right language to express such notion (
while—to repeat— Shapley values of NTU games don’t, since they obviously do
rely on detailed information concerning the prevailing preference profile on allo-
cations). But what desirability relations should be considered? Under the most
natural interpretation, the simple game attached to a private-good economy is
a unanimity simple game, not a promising starting point given the present aim
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of being able to discriminate between the decision power available to different
players. Again, EF models come to the rescue providing a much more general
and flexible language which helps us to express the foregoing notion of differen-
tial ‘power’ between agents i and j as mentioned above. To begin with, recall
that the selfishness hypothesis, and the usual assumption of identical consump-
tion sets (i.e. Xi = Rk+, i = 1, .., n) allow us to focus on Rk+ . Now, consider the
α-EF (see definition above) EW of the Walrasian correspondence on E(ω∗). By
definition, for any coalition S ⊆ N of agents, EW (S) denotes the set of feasible
consumption programs at some Walrasian equilibrium price vector p = p(e) of
some economy e ∈ E(ω∗), given an endowment vector ω∗S =

P
i∈S ω

∗
i . It fol-

lows that —for any S ⊆ N such that S ∩ {i, j} = ∅— EWi (S) ⊃ EWj (S), whence
i ÂEW j ( i.e. i <EW j and not j <EW i ) as required.
Once again, EF-related (generalized) desirabilities provide a language which

allows us to import “power talk” into new and previously unreached realms.

4 Concluding Remarks

As mentioned in the Introduction, this paper has been mainly concerned with
the problem of devising a language enabling significant discussions of (individ-
ual) decision power in a suitably comprehensive array of interaction structures.
The main claim of the previous analysis is that effectivity functions (EFs) and
related notions do indeed provide a remarkably apt language for such a “power
talk” across different domains. In particular, the role of generalized EF-based
desirability relations has been emphasized, showing that:
i) (at least) some EF-based individual desirability relations are in fact tran-

sitive ( a nice typical property of their simple-game theoretic counterparts)
ii) various EF-based individual desirability relations effectively help us to

express in a consistently precise manner strongly held intuitions on the allocation
of decision power in several situations including government forms, authority
relations, and private-good-economies.

Acknowledgement: This paper was prepared as an invited contribution to
the NPO Conference on “Power and Fairness”, Bad Segerberg , September 4-6,
2000.
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