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Abstract

We focus on the space of finite coalitional games whose player set co-
incides with the vertex set of some exogenously given simple graph. We
adopt the usual approach consisting in the treatment of such games in
terms of the associated (projective) space of point games, one of whose
bases is the collection of all connected unanimity games. In association
with each element of such a basis we consider the corresponding spanned
subgraph and use this latter to define two hierarchical structures, for-
malized through a vector- valued set function quantifying weights. We
propose (and axiomatically characterize) two corresponding value func-
tions that are consistent with each of such hierachical structures when
the associated connected unanimity game is played. The values thus ob-
tained result to be generalizations of weighted Shapley values. By means
of a newly defined arc game, we also provide an alternative computation
procedure for the Myerson (1977) value.

Key words: coalitional game, simple graph, connected unanimity
game, spanned subgraph, weighted Shapley value, Mobius transform.

JEL classification number:

1 Intoduction

The aim of this article is to propose two generalizations of weighted Shapley
(1953a) values for coalitional games with incomplete communication. Roughly
speaking, coalitional games formalize situations where cooperation among indi-
viduals displays synergies quantified in terms of transferable utility, TU. Then
the value (or solution) problem concerns the definition of a rule for sharing
the fruits of such synergies between cooperating individuals. In this paper we
consider finite coalitional games where, in addition, some exogenously given con-
straints impede complete communication among the players. Such constraints
are modeled by defining a certain collection of unordered pairs of players which
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identify the only available one-to-one communication possibilities. Within the
treatment of coalitional games, constrained communication had been firstly
modeled by means of unordered partitions of the player set (as in Aumann
and Dréze (1974) and Owen (1977)). Subsequently, the definition of ordered
partitions, together with weight vectors, enabled to focus on communication
structures where the constraints seemed to be due to (or to translate into) some
sort of hierarchies within the player set (see Kalai and Samet (1988), and also
Nowak and Radzik (1995)). Myerson (1977) was the first to use (simple) graphs
for formalizing the existence of communication constraints, and solved the re-
sulting graph-restricted games through his well known value; this latter turned
out to be the standard Shapley (1953b) value of a so-called point game (see
Borm et al. (1992)), which is, in fact, the projection of the original game (i.e.,
a generically superadditive set-function on the power set of the player set) on
the collection of connected coalitions. Afterwards, communication constraints
have been mainly modeled by means of graphs', and two further value functions
have been proposed, that is the position (Borm et al. (1992)) and the Hamiache
(1999) values. Owen (1986) also considered the Banzhaf (1965) value for point
games.

It must be emphasized that a simple graph allows for different theoretical
approaches to the solution problem of the (generic) associated graph-restricted
game. In fact, each of the three values mentioned above definitely results in
some hierarchical structure over the player set (which depends, in turn, on
some peculiar interpretation of the information contained within the edge set
of the exogenously given graph). Nevertheless, sometimes even a vague idea
of such a resulting hierarchical structure is hard to be made (see Borm et al.
(1992), final remarks p. 319).

Many of the proofs (and reasonings in general) concerning value functions
for coalitional games rely on the following basic idea: any value is a mapping
from the space of all games on a given player set to the euclidean space whose
dimension equals the number of players, and if two mappings coincide on a
basis of the mapped space, then they coincide over the whole space. Moreover,
it is often useful to check how a given value behaves in association with the
generic element of a basis (see Hamiache (1999), p. 64). If the purpose of
any axiomatic characterization of a value is that of explaining its behavior (in
general, that is for the whole space of coalitional games), then probably its
precise (i.e., quantitatively defined) behavior for all the elements of a basis is very
informative. Thus, we proceed as follows: we first impose a certain payoff vector,
identifying a peculiar hierarchical structure, for each game that is an element
of a basis, and then determine the unique value function which is consistent
with each hierarchical structure when the associated game is played?. The

I Alternatively, a broad class of constraints (that may be seen as comprehending those due to
lack of communication capabilities) has been succesfully modeled by means of combinatorial
structures called conver geometries. See Bilbao (1998) and Bilbao, Jiménez and Lébron
(1998).

2 A vague similarity with our procedure can be found in Hamiache (1999), who also makes
use of two axioms (i.e., positivity and independence of irrelevant players) that can only be



hierarchical structure we impose in association with each element of a basis is
derived by focusing on the corresponding spanned subgraph. More precisely, we
make use of the information this latter contains by freely borrowing from social
network analysis (Wasserman and Faust (1994)). In particular, we treat blocks
(of the above mentioned spanned subgraph) as unions (or cohesive subgroups)
and use their connectivity features for measuring cohesion. In fact, we call
the values we propose block-connectivity-degree, BCd, and block-connectivity-
connectivity, BCe, values.

2 Formalization

Let N = {1,...,n} C N\ {oo} be a finite® player set. A coalitional game on
N consists of a characteristic set function v : 2V — R, satisfying v (#) = 0. A
graph-restricted coalitional game requires, in addition, some exogenously given
edge set E(N) C N := {S C N |#8S =2}, so that g(N) = {N; E(N)} is a
simple graph, that is an ordered* pair of a vertex set N and an edge set E (N),
respectively. The edge set formalizes all the information concerning communi-
cation constraints. In fact, “the graph g(N) [...] represents the communication
channels available: i € N can communicate directly with j € N if and only if
{i,7} € E(N). Of course, even if {i,j} ¢ E(N), it may still be possible for
i to communicate with j. This will, however, require the cooperation of some
intermediaries who can relay a message, i.e., players who define a path in g(N),
from i to j.” (Owen (1986), p. 210).

A subgraph is any pair {S C N; K C E(N)} C g(N). Given any graph
g(N), let E : 2N — 2E(N) be given by E (S) := {{i,7} € E(N) | {i,5} C S} for
all S C N, and define g (S) := {S; E (S)} to be the subgraph spanned by S. For
all singletons {i} € 2V, let E (i) := {{i,j} C N | j € N\i,{i,j} € E(N)}, and
dr (i) := #{E (i) N E(T)} for all T & N, since dy (i) = d (i) = #FE (i) is the
degree vertex ¢ € N displays in g (N); if d (i) = 0, then 7 is said to be an isolated
vertez, or, equivalently, a trivial (sub)graph. Furthermore, if dy (i) = 1, then
i € T is said to be pendant in g (T). For any pair of distinct players i,j € N,
an i — j path is a peculiar subgraph P;; = {Vp, ; Ep, } C g(N) of the form

sz.j = {i:io,il,...,Z'm,him:j}CN
EP,',_; = {{i07i1}7{i17i2}7""7{im—17im}} CE(N)

P;; is said to connect ¢ and j in g (N); in fact, any graph g(NNV) is defined to
be connected if for every pair ¢,7 € N of distinct vertices there is an ¢ — j path

defined in terms of all games that are elements of a basis of the space of point games.
3Many studies focus on infinite games whose player set U | #U = oo has a finite carrier
N CU | #N =n € N\ {oo}, where v(S) = v(SNN) for all S C U. Our treatment, which
concerns finite games only, does not lead to a relevant loss of generality. Furthermore, only
finite graphs have been so far applied to coalitional games with incomplete communication.
4We use semicolumns {... ;... } to denote ordered collection of subsets and/or of elements.
Furthermore, we denote by #A the cardinality of any set A.



P;; C g (N), otherwise the graph is disconnected. A mazimal connected subgraph
g(S) C g(N) (i.e., such that there does not exist any larger subgraph g (T'),
such that g (N) D g(T) 2 g(S), which is connected as well) is a component
of g(N). We denote by S/g := {g(T1),...,9(Tms)} the collection of all the
components of any spanned subgraph ¢(S) C g (N). We also need to consider
non-spanned subgraphs: for any edge subset K C F (N) let S/gx denote the
collection of all the components of the subgraph {S;(F (S)NK)} C g(S). If
g (S) is connected, while g (S\H) = {S\H; E (S\H)} is disconnected, then H
separates g (S); the maximal value h = #H < #S5 — 1 such that no set of h —1
vertices separates ¢ (S) (or makes it trivial) is the vertex connectivity, or simply
the connectivity, « (g (S)), of the subgraph spanned by .S; analogously, its edge
connectivity k°g (S) is the maximal value k = #K such that no edge subset
of k — 1 edges separates g (S) (i-e., such that {S;(E (S)\K)} is disconnected).
Thus

k(g(S)) :==min{#S — 1,#H | H C S separates g(S5)} VSCN

Clearly, every k-connected graph (i.e., such that k = k(g(S))) has at least k+1
vertices and the unique k-connected graph of order k + 1 is the complete graph
of order® k+1, that is {]W; ]W(Q)}, with #M = k+1. A cutvertex (a bridge) of
any subgraph g (S) C g (N) is a vertex ¢ € S (an edge {i,5} € E(S)) such that
its deletion increases the number of components, that is #5/g > # (S\7) /g (or
#S/9r(s) > #S/9(E(s)\{i,5}))- A subgraph g(B) C g(S) C g(N) is a block of
g(9) if either g(B) consists of a bridge together with its endvertices, or else it is a
mazimal 2-connected subgraph of g(S). Any two blocks have at most one vertex
in common. Every vertex belonging to two blocks is a cutvertx, and, conversely,
every cutvertex belongs to at least two blocks; furthermore, g(S) decomposes

into its blocks g(Bf),... ,g(B5,) in the following sense: E(S) = Lj E(BJS)
j=1

and E(B§) N E(B7) = () for all i,j € {1,... ,mg} such that i # j. In words,
the edge set of any (sub)graph can be partitioned into the edge sets of its blocks.

Let I'(N) := {g ={N; E(N)} | E(N) C N®} denote the set of all simple
graphs on N. For N is understood to be the whole player set throughout the
remainder of the paper, in order to simplify notations let g € T' (V) denote
the generic graph on N; thus we use parentheses g (S) only for spanned sub-
graphs, that is when S & N. Also let G (N) := {v: 2N - R | v () =0} denote
the vector space of all (unrestricted) coalitional games on N. Eventually, we
shall denote by Gr (N) := {(v,g) |[v € G(N),g € I'(N)} the space of all graph-
restricted coalitional games on N. A value ¢ : G(N),Gr (N) — R™ is a real,
vector-valued function which assigns to each player ¢ € N his prospect ¢, (v) or
¢; (v,g) from playing a given unrestricted or graph-restricted coalitional game.
For any T C N, let u?’ € G (N) identify the associated unanimity game, that is

T 1ifTcS
u (S)_{OifT\S;éV) VSN

5The order of a graph g (N) = {N; E (N)} is the cardinality n = #N of its vertex set; its
size is the cardinality #E (N) of its edge set.




Also let II(A) denote the set of all permutations of any set A. In general, we
shall consider games satisfying S C T' C N = v (S) < v(T); such games are
said to be (weakly) rmonotone increasing.

Given any game v : 2V — R, its Mobiiis tranform® av : — R is a one-
to-one and invertible mapping given by a® (1) := > g-p (71)#T7#Sv (S) for
all T C N, the recovering of v given a¥ being defined by the so-called Zeta
transform v (T) = 3 g pa”(S) for all T C N. Therefore, for all S C N we
can write v (S) = Y pcga’ (T)ul (S) (see Shapley (1953b), lemma 3), so to
observe that the collection {uT}(D TN constitutes a basis of G (N), with finite

dimension 2™ —1. Weber (1988) was the first to define probabilistic and random-
order values as, respectively, those given by ¢; (v) = . pF [v(T) — v (T\i)]
TCN,T>i
for all i € N,v € G(N), where {p%«} TN T5; 18 @ probability distribution for all
i € N, and those given by ¢, (v) = >, P(m)[v(PR" (i) Ui) — v (PR"(i))]
meII(N)
for all i € N,v € G(N), where {P(7)} cry) is & unique probability (i.e.,
constant across players) on the set II (V) of all orderings of the players, and
where, for any permutation {i(),... i} = {7 (1),... ,7(n)} = € II(N)
of the player set, the associated set PR™ (i) := {j € N\i | 7 (j) < 7 (i)} denotes
the collection of players that preceed ¢ according to .
For all i € N, the Shapley (1953b) value ¢°" : G(N) — R™ is given by
- n—#S) (#S—1)! - N a’(S)
gl (v) = Y, LEERES A [y (8) — v (S\i)] = Py i
C

2N

SCN
S3i S5i
= EHZ(N) #H;(N) [v(PR™ (i)Ui) —v (PR™ (i))], where #II1(N) = nl. Thus,

3" (u¥) = (#S)_1 if i € S, and 0 if i € N\, for each unanimity game u”,
S C N. For any m € II(N) and S C N, define 75 = {i(;) | i¢;) € S}. Then, for
any v € G (), the game 7v is defined by 7v (7S) = v (S) for all S C N; thus
v is simply obtained by relabeling the players. Furthermore, define the game
vg as vg (T) = v (T'NS) for all S,T C N. Now consider the following axioms
for value functions: e efficiency (E): 3 ;o ¢; (v) = v (N) for all v € G (N)

o linearity (L): ¢ (av + B2) = ag (v) + B¢ (2) for all a, 5 € R,v,2 € G(N)

o symmetry (S): ¢rq) (Tv) = ¢; (v) for all v € G(N), 7 € IL(N)

o dummy (D): if v(SUI) —v(S) =wv (i) for all S C N\i, then ¢, (v) = v (i)

e weighted balanced contributions (WBC): forallv € G (N),i,j € N, € R}

b; (V) — b (Vi) _ A
¢j (U) - ¢j (UN\i) /\j
It can be proved that qSSh is the unique value function satisfying £, L, D
and S (see Shapley (1953b) and also Grabisch and Roubens (1999), Theorem
1); alternatively, it can also be proved that d)Sh is univocally characterized by
means of E and WBC, and by imposing \; = 1 for all i € N (this was firstly
proved by Myerson (1980)).

6The ratio a® (T) /#T is the Harsany (1963) dividend any player 4 € T receives from
joining any coalition 7" C N.




3 The Myerson and position values

We already mentioned that the Myerson (1977) value is the Shapley value of
a so-called point game. This latter is a peculiar interpretation of the generic
graph-restricted game (v,g) € Gr (N) based upon the following approach: the
exogenously given graph g € T'(N) is used to determine the (unique) associ-
ated collection F, := {S C N | #S/g =1} C 2V of feasible (i.e., connected)
coalitions; then a new game v/g is obtained as follows: v/g coincides with v on
F,, while it is additive on S/g for each S € 2V\F,. Thus, v/g can be seen as
the projection of v on F,, and it has been firstly named the point game asso-
ciated with (v,g) in Borm et al. (1992). As we shall see, v/g plays a key role
for the treatment of graph-restricted games. Its definition relies upon the idea
that when we consider any two coalitions S,7° C N such that S,T € F, while
(SUT) ¢ Fg4, no communication (nor, a fortiori, cooperation) between S and
T can occur unless (i) there exists at least one path P;; C g such that i € S
and j € T, and (ii) all players h € Vp, \ (SUT) cooperate as well. Since the
worth of coalition S UT may be thought as the amount of TU that all players
j € SUT can produce by themselves through cooperation, then the communica-
tion constraints are brought into the picture by means of a set function which is
additive over maximal connected coalitions, that is v/g (SUT) = v (S)+ v (T).

It must be emphasized that given a graph g and once the set function v/g
is defined, this latter may be treated as any unrestricted game. In particular,
the associated Shapley value may be computed; in fact, this is exactly the way
the Myerson (1977) value ¥ : Gr (N) — R” is computed. Formally

My (0 o) v/g(PRT(§)Ud) —v/g(PRT() _ sn,

for all i € N, the game v/g : 2Y — R being defined as

v/g(S):= > w(T) VSCN (2)

g(T)eS/g

Thus, any of the axiomatizations so far proposed for the Shapley value” may be
applied to the generic point game v/g € G (N) and then used for characterizing
the Myerson value.

Given g € T'(N), let G, (V) denote the space of all the associated point
games. The problem of determining a base for the space G, (IV), given g, was first
attacked by Owen (1986, theorem 3), and, more recently, solved by Hamiache
(1999, lemma 2, p. 74) as follows

v/g(S)= Y a"/9(T)u"(S) VSCN,gel(N) (3)
Fy2TCS

" Concerning the original axiomatization of ¢My, we gratefully refer to Myerson (1977).



(—1)#T-#By(R)if T € F,
a’/9(T) = HHsy VT CN  (4)
0if T € 2N\ F,

where R* := {i € N |3j € R such that {i,5} € E(N)}. In other terms, using
the notation of the previous section, for all R C N we can write

R\R=Sie N\R[O£E@N|||JEG) |\E(R)
JER

Thus, for the computation of a*/9 (1") we must consider only those sub-coalitions
R C T which are (i) connected (i.e., R € Fy), and (ii) (collectively) directly
linked to all remaining vertices in T (i.e., T\R* = (). Furthermore, given
g, the collection {uT | T e fg} of connected unanimity games is a basis of
the space G, (V) of associated point games, since there exist real coefficients
{a“/g (T)}Te}‘g such that any point game v/g : 2V — R can be expressed as a

linear combination of connected unanimity games as in (3).

An alternative approach to the solution problem for graph restricted games,
leading to the position value ¢¥° : Gr (N) — R™, has been furnished by Borm
et al. (1992). They have defined a so-called arc game w? : 26V) — R, whose
player set is the edge set FE (N) of the given graph, as follows

w’ (K) = v/gx (V(K)) VK CE(N) (5)

V(K) : ={ieN|KNE({)#0}cN (6)

v/gr (S) = = Y. o) VSCN (7)
9(T)ES/ gk

This allows to define the following edge-position value 3F° : Gr(N) — R#EW)

Po w'(PR™({i,j}) U{i,j}) — w"(PR"({i,j}))
%g (v,g) WEH(ZE:(N)) #H(E(N)) (8)
for all edges {i,j} € E(N), where II(E(N)) and PR™({i,5}) C E(N)\{i,j}
denote, respectively, the set of all orderings of E(N) and the set of edges that
preeced {i,j} in 7 € II(E(N)). Thus, wgo (v,9) = qﬁ?l-’fj}(E(N),w“). Then the
position value is obtained by equally sharing edges’ payoffs between associated
endvertices, that is

llpfo ) if d(7) >0
(bfo (v,9) = (i YeE() 2 7ig (v,g) it d(i) (9)

It should be noted that, given (v, g) € Gr (N), the definition of w" implies that,
for the computation of ¢*°, an entire family {v/§ | § C g} of point games (and
not only the unique v/g) is taken into account. Unfortunately, there does not



exist any general axiomatic characterization of ¢*° (see Borm et al. (1992),

p- 319). In particular, the payoffs {QSPO (uT, g)} defined by the
g€EL(N),TeF,

position value when (i) a connected unanimity game is played, and (ii) the graph
g € T'(N) is generic, do not satisfy any specific axiomatization. Nevertheless,
one can say which players i € N get a strictly positive payoff QSZP © (uT, g) >0
in such a situation. In fact, for any g € I'(N) and any u? | T € F,, we have

1 . .
My (T _ WIfZET
b (u9) { 0ifi € N\T (10)
oy 1T _ | >0ifiePyCglhkeT
P (u ,g)—{ 0 otherwise (11)

In words, unanimous cooperation within 7" may produce a unit of TU; of
course, given necessity of unanimity, each player clearly has a veto power. By
focusing on such a basic idea, the former value (i.e., qSMy, as well as ¢)S " for
unrestricted games) equally shares the unit of TU among all the #T involved
players; thus we might say that it attaches only a binary information to the
edge set E (T) of the spanned subgraph ¢ (T), that is T € F, or T ¢ F, (and

in this latter case u!'/g = Y_RCN|REF, a*' /9 (R)uf). On the other hand, the

latter value (i.e., ¢*°) is perhaps utopian, in that it assigns a strictly positive
payoff to some players, even though their non-cooperation would not prevent
the unitary TU production. This is because, for any graph g € I' (V) such that
g(T) ¢ N/g (and even if g (T) C g was a complete subgraph), there always
exists some edge subset K C E (N) satisfying

vV (K) #V (K) [gx > 1 {i,jy € Cy
’ #V(K)/gKu{z,]}:l ’ iand/orj¢T9h7k

(#E (N) — #K — 1)1#K]
#E (N)!

In words, as long as we assume the uniform distribution over II (E (N)), any
edge {i,7} € E(N) belonging to any path connecting any two players h, k € T
has a positive probability of being, in a random order 7 of E (N), exactly the
one which makes {T; PR™ ({i,7}) U{4,7}} C g a connected subgraph.

For any g € I' (N), a further value ¢"® : Gy (N) — R™, which, if was to be
expressed as a probabilistic or random-order one, is proved® to apply only to
the space G, (V) of associated point games, has also been recently proposed by
Hamiache (1999). For reasons of space, we now briefly put on record only four
out of the five axioms that characterize it. This is because such four axioms are
also satisfied by the new values we are to define.

= YL (v,9) > = ¢ (v,9) >0

ij

8See Hamiache (1999), Theorem 2 (p. 71), and its proof (pp. 75-77).



e component efficiency (CE): 3 ;g ¢; (v,g9) = v (S) for all (v,g) € Gr (N)
and g (S) € N/g

o linearity (L): ¢ (aw + Pw,g) = ad (v,g) + Bé (w,g) for all o, 8 € R and
v,w € G (N), for fixed g € T' (N)

o independence of irrelevant players (IIP): for all (uT,g) € Gr(N) and

T . .

e e A

o positivity (P): ¢; (uT,g) > 0foralli € T and (uT,g) €Gr(N)andT € F,

It should be noted that while the Myerson value also satisfies axiom IIP, the
position value does not. Nevertheless, ™V also satisfies the much stronger

condition (10), so that when the generic connected unanimity game u” is

played, the #T-dimensional payoff vector (qﬁyy (uT7 g)) (or, equivalently,
€T

pMY (uf, g (T))) does not depend on the peculiar features displayed by the
spanned subgraph ¢ (7). On the contrary, for any connected unanimity game

uT that may be played, the vector (qﬁf ° (uT, g)) -~ not only does depend on
g (T'), but also on the features displayed by the Wifole graph g. Eventually, the
Hamiache value defines a payoff vector which does depend solely on g (T') (and
not on the whole g); nevertheless, it seems? to associate particularly high payoffs
to those players ¢ € T' which are cutvertices within g (7). In fact, when playing
any connected unanimity game u”, those players i € T'C N who are cutvertices
within ¢ (T") do not have more bargaining (i.e., veto) power than non-cutvertices
j € T. Thus, if we want to use g (T") for defining a hierachical structure over
T according to which players i € T are unequally rewarded when playing u7,
then cutvertices should not automatically occupy the higher positions of such a
hierachical structure.

4 A new value for point games

In association with connected unanimity games, the Myerson and position values
display the two different features shown above because in the former case only
spanned subgraphs are considered, while in the latter case one is allowed to
consider any subgraph, that is possibly non-spanned by any coalition S € 2V.
We now propose a peculiar arc game @ (# w") over 27 (V) which, in our opinion,
may be seen as the analogue of the point game among individuals, since it
considers spanned subgraphs only. Given (v, g) € Gr (N), let

@° (K) := max {v/gx (S) | E(S) C K} VK C E(N) (12)

Comparing (5) and (12) we see that @w” (S) < w”(S) for all S C N, and for
any graph-restricted game (v,g) € Gr (V). We may appreciate the difference
between the two arc games by considering the generic connected unanimity game

9See Table A.I in Hamiache (1999), p. 72.



ul' | T € F,. In fact, we have

r 1if E(T) C K
= { 0if E(T)\K # 0

N[ s i {5} € E(T)
%a}( (N),w ) - {O;fng,)j}EE(N)\E(T)

One possible interpretation is that g (S) C g not only identifies all the avail-
able communication channels among players ¢ € .S, but a more complex social
network, according to which there exists a unique set of one-to-one cooperative
behaviors (or attitudes) through which all individuals ¢ € S can globally coop-
erate. Therefore, K ; E (S) identifies a situation where some pairs of players
{i,7} € E(S)\K voluntarily do not cooperate with each other (thus preventing
any unanimous agreement within S).
We might define a value function 35\ : Gr (N) — R” as follows

~ 1
¢’i(vag)::§ Z fls{m} N), ")

{1,7}€E®)

R _deli)
= 3 (uT,g) = { a1l (13)

0ifi e N\T

Thus, when u” is played, % rewards players ¢ € T' according to a hierarchiacal
structure defined by the degrees (dr (i));cp such players display within the
spanned subgraph ¢ (7). In other words, the basic idea (that is going to be
developed and enriched) is that, when the connected unanimity game u’ is
played, the fact that unanimous cooperation within 7" may produce a unit of
TU is firstly known by a (uniformly randomly chosen) single player ¢ € T (or,
equivalently, by a proper subset T CTof players), and that such an information
gets subsequently diffused, through edges and while negotiating, one player with
another at a time, til all edges have been vehicles of information. By putting
¢)T (v,9) :== ZzeTr,zS (v,g) for all T C N, one gets that for any pair Ty, 75
satisfying Ty NTe = Pand Ty UTo, =T

#E(T1) > #E(Ty) = o, (u,9) > g, (uT,9)

for all g € T'(N). Therefore, as well as the Myerson value, not only &5\ ignores
the different features displayed by the two edge subsets F (T1) and E (Ts), but
also, and most importantly, it ignores the features displayed by the edge sub-
set E(T)\ (E (T1) U E (T3)), and this latter, in our opinion, formally translates
how negotiation between T7 and T5 does occur. Please note that it may well
be Ty ¢ Fy 5 Tp. In order to axiomatically model negotiation between sub-
coalitions of T' € F, when u” is played, let B (g ( ={g(BY),....9(BL,)}
denote the (unordered) collection of all blocks of the spanned subgraph g (7).
Within social network analysis blocks are typically recognized to be cohesive
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subgroups (Wasserman and Faust (1994)). In section 2 we explained that
B(E(T)) := {E(BT),... ,E(BL,)} constitutes an unordered partition of
E(T), and the unions Owen (1977) refers to may be considered to be a partic-
ular kind of cohesive subgroups. Therefore, let TI' (E (N)) C II(E (N)) denote
the collection of permutations of the whole edge set E (N) that are admissible
with respect to B (F (T)), that is

Vi, i}, {h k), {z y) € E(T)

S R
:>{$7y} € (Bg)vlngmT

so that, for all {i,j} € E(T)

S B () Ufid)) 0 (PR ((5))
#I17 (E (N))

mell” (E(N))

I

= Byarr(sovy |8 (PRT (3,3} U{i,3}) — @' (PR” ({i,3})] =

:{ (%) (etery) i (i) € B(BL) 1< m<my
0if {i,j} ¢ E(T)

would constitute an arbitrary way of applying!'? the Owen value for games with
coalition structure to the game 117“"’, with player set E (N) and coalition struc-
ture B (E (T)), where Ep [z] denotes the expectation of random variable = with
respect to a given probability distribution P, and U (HT (E(N ))) denotes the
uniform distribution over II7 (E (N)). As known, the Owen (1977) value has
been derived under the assumption that unions (here E (BT),... E (BL ))
bargain with each other as units (here when the connected unanimity game u
is played). Together with the idea that blocks’ edge sets represent cohesive sub-
groups, we also propose to use connectivity as a measure of cohesion. Thus, in
our context, it is no longer true that all coalitions behave as units in the same
way: those with higher connectivities (and smaller sizes) will be assumed to be
the more cohesive (and thus more powerful in bargaining).

Let & (g (B;Z)) ,1 < m < myp denote the vertex connectivity of subgraph
g (BZ;L) A minimally k-connected graph g (S) = {S;E(S)} is such that, for
any edge {i,j} € E(S5), the following holds

k(9(9)) =r({S; E(S)}) =k > r({S; (E(S)\{57})})

10A fully general application of the Owen value for games with coalition structure to graph-
restricted games, by means of @V, is made in Rossi (2000b).
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Thus, in a minimally k-connected graph each and every edge is strictly necessary
for the given connectivity level. For s = #S and k < s —1, let T'. (s; k) denote
the set of minimally k-connected graphs of order s. Given two blocks

9(Bn,) 9 (Bm,) | (g (Bm,)) =k = k(g (Bm,))

we want to define a rule stating wheteher E (Bg;l) or else B (B,%z) has more
bargaining power than the other (that is, which one is more cohesive than the
other) when playing (E (N) jﬁ“T). One way of achieving this is by defining
some sort of distance between g (B,,) and Iy (#B,; k), so that the larger such
a distance, the weaker cohesion. In fact, we interpret such a distance (we are
to formalize) as a measure of the inefficiency that characterizes the collection of
(non-cooperative) negotiations that occur within the generic coalition.
Unfortunately, for £ > 4 the structure of k-connected graphs is not well
understood yet, and general results concerning T, (s; k) are hard to be found.
A special role, within this branch of extremal graph theory, is played by the
so-called k-core of a graph, that is "the largest subgraph with minimum degree
at least k7 (Pittel, Spencer and Wormald (1996)). More precisely, given g (S)
and denoting its k-core by g% (S) C ¢ (S), we have
k * . . *
S) = S*)Cg(S)|ds (i) >k,ieS
g (8) = max_ {9(S%) C g(8) | ds- (i) > ki€ 57}
In fact, if g (S) € Ty (s;k), then # {i € S | ds (i) = k} > EZL22 (Bollobas
(1978), theorem 4.8, p. 25). Thus, given k,, = k (g (Bg;)) 1 <m < mg, let

(km — 1) (#Br,) +2
2k — 1 1

A (BL) = <# {i e BT | dgr (i) >k} —

We add 1 because we do not want to deal with indeterminacies, i.e., in case
we actually had some block g (B%) S (#Bgrl;km)7 for some T" € F, and
m € {1,... ,mp}, which is minimally k,,-connected.

We want to define an edge value function ¥ : Gr (N) — R#F(N) such
that, when the generic connected unanimity game u” is played, the bargaining
power of coalition E (B;‘fl) C E(N) (of edges; or, equivalently, that of coalition

BI C N of individuals) is given by %ﬁ, so that the following holds

B B K B},
VEpr) (11 9) = {i’j};(% i (ug) = (MT)) %%)))
and
> (ug)
(e, CEENABLY]
> e (wTyg)  [A(BE)] [k (9(BL.))]

{h,k}eE(BL,)

mo

12



for all graphs g € I'(N) and for any pair my,ma € {1,... ,mr}. In terms of
the usual value functions, defining payoffs for individuals (and not for edges),
we shall define a bolck-connectivity-degree value ¢%: G (N) — R"™ satistying

( "u;'z;‘“)) (K(s((ﬂ&)))
24 (B INGES
ifieT

)
P! (uT,Q) = mef{l,.. ,mr} 5} JAA(lfTTn)n "
E(B;IW)QEU)#@ m=1 m
0 if iN\T

for any connected unanimity game (uT, g) € Gr (V). Note that for any vertex-
player ¢ € T which is not a cutvertex in g (T') we have

#{me{l,... mp} | E(BL)NE®G)#0}=1

If we focus (for the time being) only on some given connected unanimity game
u”’, conditions (14) and (15) can be easily obtained by means of an #E (T)-

dimensional vector AT € R#F(T) of weights AT = ()\?, o ,/\i E(T)), where the

(unordered) edge subset F (T') of the spanned subgraph ¢ (7") is here denoted
by E(T) =

0Lty {4,] PRI £ S co5 44, g
{ J}l { j}#E(Bl) { j}l-l- & ymn) { J}#E(T)

m=1

and the (unordered) edge set of block (g (BL)) is here denoted by

1<m<mr

FE Bg; = i,j m— 1t 7/7;7 m

k=1

and by setting Ay := (m(g((ﬁé)))) <#E(IB£)) for all edges {i,j}, € E (BL), and
for all blocks (g (B;‘g))l <m<m, - The weight vector AT is then used!! to define
a probability { Pr (7)} cg()) over the collection of all orderings of the whole
edge set. In fact, any ordering m € II (E (N)) of the whole edge set induces
a unique ordering 71y € II(E (T')) of the edge subset E (T'), where the first
(second,...) edge in Ty is the (generic) edge {i,j}, € E (T) appearing first
T)

(second,...) within the unique maximal chain in 2%(

0=AgC - CAppry=E(T)| Ap € 25D #A, =k k=0,1,... . #E(T)

defined by 7 € II(INV). We use the following notation: {i,j},) € £ (T') denotes
the edge which occupies the h-th position in 7 g(y; thus {4, j}(h) #1{i,j},. For

' This approach develops from the contribution of Kalai and Samet (1988).
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any mg(r) = {{i7j}(1) e {i,j}(#E(T))} we associate a probability Pr (1) to
all orderings m € II (E (N)) that induce (or are consistent with) such an ordering
gy € LL(E(T)) given by

#E(T) T ho o
[T A/ 22 N
h=1 =1

(#E (N)) g p(N)—E(T)

where, for any two integers x,r such that x > r, we denote by

PT(ﬂ') =

(), =x(@—-1)(x—2)---(x —r+1)

the so-called falling factorial. In fact, there clearly exist #I1(E (T)) = #E (T)!
different orderings of E (T'), but for any given ordering 7 g(r) € II(E (T')) within
E(T) there only exist #E (N)!/#E (T)! = (#E (N)) 45(n)—grr) orderings of
the whole edge set that are comsistent with (or induce) mg(r). Please note
that, given the definition of the arc game @w" (i.e., in association with any
connected unanimity game u”’, for any edge {i,57} € E(N)\E (T) and for any
edge subset K C E (N)\ {i,j}, we always get @* (K U {i,j})—a* (K)=0),
when the generic connected unanimity game u” is played, the position of edges
{i,j} € E(N)\E (T) within any ordering 7 € II (E (N)) of the whole edge set
is irrelevant.

Lemma 1 For any connected unanimity game u? | T € F,, condition (14) is
satisfied by the edge value function

B (u",9) = Br, |8 (PR ({i,3}) U{i,5}) — @ (PR ({i,3}))]

Proof. Given (16), it is easily checked that

T

Ep, [0 (PR™ ({i,3},) Ui, 3},) — @ (PR” ({1,3},))] =

= Z Pr(n) =

ﬂ'EH(E(N))|{i,j},,’:{i,j}<#”<,,,)) is last (swings) in ()

_ AL
= T X
/\k
ke{L,... #E(T)}

- /\f> (#HE(T) = DN F#E (N)) g p(n)—E(T)

(ke{l,... FE(T
X

M) (#E(T) = 1)l (#E(N
<k6{1,...,#E(T)}\h k:> (# ( ) ) (# ( ))#E(N)—#E(T)
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w(9(B
A(BLI
= D, v ()= %
{i.}eE(BY) Z_jl “AET
for all m € {1,... ,mr} as wanted. m

Lemma 2 Foranyg € '(N) and T CSCN |T,Se€F,

uT /g (qy _p#s—#r_ | LifT =25
ORI SR ) Fo
RCS
RST
#R/g=1
S\R* =0

Proof. There always exists a unique minimal (with respect to cardinality)
R C S such that S\R* = 0,#R/g =1 and T C R; that is

ﬁ::gi};ﬁl{TcRCS\#R/gzl,S\R*:@}

In fact, let S := {i € S\T | ds (i) = 1} denote the collection of vertices i € S\T'

that are pendant. Also let H := {h e S\S |0 +£E ()N ( U E(])) } denote
jes

the collection of vertices that are adjacent to at least one pendant vertex i € S.

Let d(i1) < -+ < d(im) be the (increasing) degree sequence, in g (S), of all

vertices i; € M := S\ (H uTu 5) Then the desired subset R clearly is the
ending point of the following deletion process

B Ry y if # (éhfl\ih) Jg>1
o = ~ ~
Rh—l\ih if # (Rh—l\ih) /g =1
Ry : = S\§ (note that there is no d (ig) )
Therefore, we obtain

a9 (8) = ((_1)#5‘#§) < » (—1)—#R> =0forall R#0 m

RCS\R
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Lemma 3 For any graph g € T (N) there exists a unique value ¢BCd satisfying
(15) for all point games in G, (N), which may be obtained by means of WY in
terms of random-order values as follows

1
Pl g =5 Y wlC

{4,5}€E(3)
VB (v,9) = Epess [@° (PR™ ({i,5}) U {i,j}) — @" (PR™ ({i,5}))]

v/g
U/g abs )
P Z Z abs (a¥/9(T))

TeF, Te

Pr(n)  Vrell(E(N))

where P/9 ; Gp (N) — AFEWN=1 maps graph-restricted coalitional games (i.e.,
pairs (v,g) € G(N) xT'(N)) into probability distributions {P“/g (ﬂ.)}TrEH(E(N))"
furthermore, for any real © € R, define abs (x) =z if £ >0, = —z if © < 0.

Proof. Since (i) {uT}TE}_ constitutes a basis of G, (IV) for all g € T (N),
and (i) p?“? is univocally defined for each element of such a basis according to
(15), this latter is unique on G, (N). Thus, we simply need to show that pBCd
actually satisfies condition (15) for each connected unanimity game u’. In fact,
pu'/e () = Pr(m) for all m € TI(E (N)) by means of lemma 2. Furthermore,

L Gt
by means of lemma 1, we get ) =" =

{1,/}EE()
w(g9(By )
_ 1 A(BL) < > _
T2 2. wa(BL) | \#E(BL))
i.iye{EGNE(BL)} Z A(BT))) (Bm)

me{l,...,mr}

() [ A
5 ( A(BL) ) (z#E(gg
me{l,...,mp} 75 ﬂg(ll%ll
E(BT)OE(Z);é@ m=1 m

m

)> as wanted. It remains to check whether

{P” 9 ( )}7T en(v) constitutes a probability distribution for all pairs (v, g). This

is definitely the case, because P9 is a convex comblnatlon of probabilities

. abs(a’ (T abs(a’ (T
{Pripcy (e, 0< pIRCE ) <land S abs (e (T = = 1), and thus a
CN TCN TCN

probability as well. ThlS completes the proof. m

Remark: given g € I'(N), the value #PCY defined by (15) identifies a
unique n-dimensional payoff vector for all v € G (N) if, and only if, the pair
(v,g) is interpreted as v/g. Otherwise, that is if v (S) remains undefined for
all S € 2N\F,, then there exists an entire family {¢* | ¢* : Gr (N) — R} of
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(probabilistic and/or random-order) value functions such that each ¢* (v, g) sat-

isfies (15) for all (uT,g) € Gr (N) when T € F,. In other words, any game

Vg 2N — R satisfying vy = v : Fy — R might be used. Thus, the value QSBCd

defined by (15) is unique on the space G4 (N) of point games associated with g,
for all g € T (N); but it is not unique over the space Gr (N) of graph-restricted
games associated with g € T'(N), since these latter are pairs (v,g), that can be
turned into games (i.e., set functions on 2N ) only if somehow interpreted.

The block-connectivity-degree value for point games may be derived directly;
that is, without using the arc game @”. Given any g € I" (IV) and the associated
set F, C 2NV of feasible coalitions, for each T' € F, we define weights w? € R"
such that w! > 0if i € T and w! = 0 if i ¢ T. Furthermore, we impose that

?; (uT, g) =wl/ (Z jeN w;f) for all i € N and for any connected unanimity

game ul. As previously explained, w! is to be interpreted as the probability
that, when u” is played, i € T is last for 7. Thus, here again, we may use the

family {wT} TeF, of weights to obtain a probability (given by a linear combi-
[

nation) over the collection II (N) of all permutations of the player set N. For
T € Fyand any 7 € II(N), let t = #7T and mp = {i(l),... 72'(,5)} denote the

t J
H w’g;j/ Z "“’Z;w
=1 h=1

J

order of the t players in T induced by 7. Let P+ (7) := — be the

probability over T (V) associated with the playing of unanimity game u”, with
T € Fy.

Theorem 4 For any (v,g) € Gr (N), the unique random-order value for the
associated point game v/g which is consistent with (15) is given by

679 (v,9) = Epyra [v/g (PR (i) Ui) = v/g (PR (i)

for alli € N, where

abs (a”/g (T))
P9 () = P (m vr e IL(N
05 EE e eenen
_ dgy, (1) K (9(Br)) .
K Y <2#E<Bg>>< A (B ) enN
E(BL)NE()#0

Proof. First please note, here again, that

Ep, . [u"/g(PR™ () Ui) —u” /g (PR" (i)] =

- > P () = (@) () (=1
wEII(N)|i=i(y is last for wp < Z w£> (n)n_t (t _ 1)'
heT
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(st (<2
2#E(BL,) A(BL)

= 2 L (e(BL))

m=1,... ,m
E(B})NE(i)7#0 =, ABL)

Now consider the probability P over II (N) associated with the generic una-
nimity game u? | T € F,

P (m)y = oo (au% (S)) P,s (1) = P,r (1)  Vm € TI(N)
s TEZ}_H abs (a”/g (T))

Therefore ¢ (v,g) = E s [v/g (PR™ (i) Ui) — v/g (PR™ ()] for all i € N,

since they coincide on each element of the basis {u Here again, please

T
}Te}‘g'
note that {F,r (7)},cny clearly is a probability distribution on II(N) for
all T C N; furthermore, {Pfj/ g (7‘(’)} ™) is a convex combination of such
mell(N
probabilities, ad thus a probability as well. This completes the proof. m
It must be emphasized that ¢pB¢¢ (v, g) coincides with the unrestricted Shap-
ley value QSS h (v) whenever the exogenously given graph is the complete one,
that is when g = {N ;NG } This is definitely a positive feature d)B cd displays,
which also characterizes both ¢™¥ and ¢#® (and also the block-connectivity-
connectivity value ¢2%¢ we are to develop in section 6).

5 The Myerson value through "

Roughly speaking, the construction of the arc game @w" enables to get a link
between point games (where, as we explained, only spanned subgraphs are con-
sidered) and arc games in general (that is, where E (V) is treated as the player
set). Thus, since the Myerson value is the Shapley value of the point game, we
may get a computational method for obtaining ¢)M Y by means of @w?. In doing
s0, we need to determine, once again, an # E(N)-dimensional vector of weights
for each connected unanimity game. But, in addition, we now need to deter-
mine also a (non-symmetric, that is # %) rule for distributing edges’ payoffs
over associated endvertices.

According to the notation used so far, let ™Y : Gp (N) — R#EMD) denote
the Myerson edge-value function we are to define. For any connected unanimity

game u’, consider the weights

wij(uT) = w;l; = d'l’(i)d'l’(.j)

[ elddeG) 5f g5 5y e B(T)
0if {i,j} ¢ E(T)
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Z ZdT =#T

€T

= Y wh= ) <dT1(i)+dT1(J)>

{i.7}eE(T) {i.7}eE(T)

for all'> T C N. Furthermore, for any order m € IT1(E (N)) of the whole edge
set, let Ty = {{z j}(l) i {e j} (B T))} denote the induced ordering of

E (T). Then we associate a probab1l1ty PT () to such an order (and thus to all
7 € II(N) that induce the same 7y € II(E (T))) given by

#E(T) . J -

-H1 Wi/ hzl“’
P = = — 17
A e e 0 P — (17)

We can now define the Myerson edge-value function associated with the generic
connected unanimity game u” to be given by %\j/{y (uT, g) =

= Ep, [@ (PR™ ({i,j}) U{i,g}) — @ (PR ({i,3})] =

B (L) (dT()+dT( )>
#T (i)dr(j)
Lemma 5 For any connected unanimity game u”, and for any graph g € T (N)
1

dr(j) My (T
=0 (u.g) = el (u” )
#T {i,j}ze:E(i) dr(d) +dr(i) ¥

Proof. ﬁ%d)%y (uT',g) =

{i,5}€E(3)
= > S 1) M. (L) (M) _
{3, }€{EG)NE(T)} dr(G)+dr () \#T dr(0)dr (5)
= 27 > Tl(i) = # as wanted m

T d
{15 e{B(HNE(T)}

Now consider a generic game (i.e., which is not a connected unanimity game);
we need to use, here again, the Mobiiis transform. More precisely, for any
connected unanimity game u”, and for any player ¢ € N which is an endvertex

. .. . T /. . dr ¥i
of a generic edge E (T') > {i,j} € E(i) C E(N), let 8; (i,7) := 4_)_11, GETRE)

Theorem 6 For any graph-restricted coalitional game (v, g) € Gr (N)

¢ (v,9) = > 07 (1,5) v (v,9)

{i.7}eE®)

121n fact, it may well be T ¢ Fg. This result is a direct consequence of the well known
handshaking lemma, which is basic in Graph Theory. See Bollobds (1979), p. 4.
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where

vl abs( v/g ) T, .
05 (i,3) = E 0; (i.4)
Ui, 2 (“”/ i)

MY (0,6) = Epuyy [87 (PR™ ({i,1}) U {i,4}) — @ (PR™ ({3, j}))

abs “/g )
P9 (n P vr e (N
TE; > abs (@7 (1)) T () eI (N)
& reF,

Proof. As usual, consider the generic element u” of the basis {us} SeF.-
g

We have already shown that pu' = Pr; thus z/JMy ( T g) is definitely as above

(i.e., in particular, wMy ( 7g) =0forall {i,j} € {E (i) \E (T)}. Furthermore,
07 (Z,j) #ﬁ% so that ) Z ) 0;) (Z7j) 1/1” (’U,g) and ¢)7],V[y (’U,g) coin-
{i,3}E€E(@)

cide for each element of a basis of the space Gy (V) of point games, and thus
they coincide for each point game v/g, as was to be shown. ®

The above result is useful for understanding the interpretation of the edge
set which is made (i.e., implicitly) by the Myerson value. More precisely, when
any connected unanimity game u? | T € F, is played (and if, according to o'
and/or v/g, all existing arcs {i,j} € E (T') are needed for achieving unanimous
agreement within 77), the approach leading to #MY implies that (1) edges one
whose endvertices is pendant within g (T') have higher probabilities of being last
in a random order of E (T'), and (2) edges payoffs are shared (between associated
endvertices) so that pendant vertices get higher fractions. (2) is definitely hard
to justify; (1) may be accepted if we assume, as previously explained, that
synergies of cooperation are initially unknown to all players apart from one,
(uniformly) randomly chosen, who starts diffusing (while possibly bargaining)
such an information to its adjacent vertices.

6 An alternative hierarchical structure

Let us focus once again on the generic spanned subgraph g (T'), with T' € F,
and let ¢ (BlT) RN (B,Tm,) denote the collection of its blocks and #71 =t as
before. We now explore the possibility of defining an alternative hierarchical

structure (or weight vector) Rf 3 AT = (/\T) according to which, when
i€T
uT is played, each player i € T gets a payoff given by )\ /> jeT A; , while

each player h € N\T gets a payoff equal to zero. The hlerarchlcal structure
defined by {wT}T cF (as in theorem 4) is based upon the assumption that,
g

when u” is played, the collection of vertex-players i € Bl belonging to the
generic m-th block do not perform an overall agreement on how to share the
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1 mr 1
available amount <%> / < > %) of TU. In fact, the underlying
m:l

m m

assumption is that any player i € BL gets rewarded in a way which is propor-
tional to the degree dpr (i) he dlsplays within ¢ (B,E) simply because (i) all
players are assumed to be equally good in one-to-one negotiations, and (ii) the
larger the degree, the larger the number of such negotiations the correspond-
ing player is assumed to make. On the opposite, we may well assume that
the exogenously given graph g € T'(N) (as well as the peculiar game which is
played) is known to all players, so that when u” is played all players i € BL,
for m = 1,... ,mr, know which players occupy more (or less) central posi-
tions within g B;l) According to such an assumption, we may impose that all
players ¢« € B, C T, for m = 1,... ,my, agree on sharing the total amount
s mo s

(%) / <m2—ll %) of TU available to them so that any player
i € Bl gets a share which is proportional to & (g (B;l)) /K (g (B;l\z)), where
k(g (S)) denotes the connectivity of any (spanned) subgraph g (S). In fact, by
definition, there is no cutvertex within any block g (B,:',;), since K (g (Bg;)) >2
for all m = 1,... ,mr, so that such a sharing rule never displays indetermina-
cies. Consider a value function ¢?“¢: Gr (N) — R” such that

x(9(Bm))

S G013 DI AR N Wil RN
' > k(g (BRL)/k(g(BL\I)) Z (g(BL))
jeBYL A(B)
for all players i € BL € T'and m = 1,... ,mr, and for all connected unanimity

games ul | T € F4. We omit the proof of the following theorem since the details
are the same as those of the proofs of theorems 4 and 6.

Theorem 7 The unique random-order value for point games consistent with
(18) is given by

¢ (v,9) = Epora [v/g (PRT (i) Ui) —v/g (PR™ (i))]

for alli € N and (v,g) € Gr (N), where

t t

o 1G> AL
P () = 3 abs (/9 (T)) =
T%TQMme (),

for all m € II(N) that are consistent with (or induce) any given ordering
{i(l), .. ,i(t)} =mr € II(T), with T € Fg4, and where

9 (Bu\i)) <“ﬂ (g (BZL)))

(
(9 (BR)) /5 (9 (BEN)) A(BR)

me{l "’mT} ]EB

{EGNE(B))}#0

m
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7 ¢P% and ¢ in terms of probabilistic values
for point games'?

We have expressed both d)BCd and d)BCC solely as random-order values, that

is through, repectively, the two probability distributions (P:,)/ g (7‘(’)) o) and
e

(Pf\) /9 (7r)) over the collection of permutations of the whole player set.
w€eII(N)
Furthermore, since these latter are both constant across players, theorems 12

and 13 in Weber (1988) apply here as well. In particular, it is clear that

T )= 3| Y Pl oy @) | [o/g(8) —v/g(S\D] (19)
SCN well(N)
531 \PR"(i)=S\i

Furthermore, as we shall see, both qSB “d and d)B ¢ constitute generalizations
of weighted Shapley values for point games. Weighted Shapley values were first
proposed by Shapley (1953a). Subsequently, such a family of value functions
has been characterized by Kalai and Samet (1988), by means of a so-called
partnership axiom, and by Hart and Mas-Colell (1989), by means of the poten-
tial function. More recently, Calvo and Santos (2000) have also proposed and
characterized the related family of weighted weak semivalues. Given a game
v € G(N), the definition of any associated weighted Shapley value requires
first the introduction of an n-dimensional weight vector R" > w = (wi);cpy-
In section 2 we have reported that the standard Shapley value qSS h (v) can be
expressed as

Sh o a® (5) .
¢’i (’U) - 5;\] #S Vie N
S3i

Let ¢~—°" (v) be the weighted Shapley value of game v associated with the
weight vector w; then

w—Sh L [a” (S)]w; .
(ZSZ- (’U) = SZJ:V Z—u}j Vi e N
531 JES

so that

- ifie S
¢y " (u¥) =< Jes™ VSCN
0ifi e N\S

for all unanimity games u°,S C T. It is easily understood that any weight
vector w € R™ formalizes the existence of some hierarchy within the player set.

13 This section and the following one develop from the companion paper Rossi (2000a)
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Most importantly, such a hierarchy is unique; that is to say, it is maintained
unchanged for all unanimity games. On the opposite, in the previous sections
we have proposed the idea that any connected unanimity game have an asso-
ciate peculiar and graph-induced hierarchical structure, and, given g € T'(N),
both qu “d and qu C¢ reward the players in a way which is consistent with
all such hierarchical structures associated with connected unanimity games.
This is the reason why we argue that the two values here proposed constitute
generalizations of weighted Shapley values for point games , where the unique
non-weighted Shapley value for point games is, of course, the Myerson value. In

particular, by defining
ZPAD k(a(B2))\ p .

o 6{1Z } <2#%(B;*,'L)> < (A((B;*,})))> ifieS

P — m yeee S

¢ {EGNE(BS) }#0
0ifie N\S
r(9(Bn))/x(9(Bn\i)) f(9(B)) Y i
Sl e \ T suEsaEy | TaED ) HiES
' {EGNE(BS) 20 N "

0ifi e N\S

for all S € F,, it is straightforwardly verified that

a"/9(8 wf
¢Z‘B0d (v,g) — Z (9)|w;

=
BCe > a’/9(S)|AP vVie N, (v.9) € Gr (N) 20
(Zsi (v,g) - Z Y
Sefy JjES !
551

Furthermore, these two last expressions allow us to put both qu “d and QSB cd

under the probabilistic form. In fact, for any game v € G(N) (recall that
Gy (N) C G(N) for all g € I'(N)) and for all S C N such that .S > ¢, we have
(see, for example, Grabisch (1997), proof of Theorem 1, p. 174)

v(S)—v(S\i)=a" (i) + Y a*({ij})+ Y a’(iUT)+
JeS\L i%“i\zl

ot Y @ (iuT)+ Y a¥(iUT)+a"(S) (21)
TCS\i TCS\i
#T<H#S—2 HT=#5—2
Thus, by combining (19), (20) and (21), we might temptatively approach the
problem of expressing the block-connectivity-degree and the block-connectivity-
connectivity values restricted to point games as probabilistic values in the fol-
lowing way. Assume, for simplifying notations, that N € F,. Furthermore, 7,
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typically being a set system (i.e., in 2V) for all g € I' (), we adopt the fol-
lowing notational conventions that are standard in Combinatorics (see Bollobds

(1989)). For any integer k such that 0 < k < n, let F\¥) := {S € F, | #£5 = k}
denote the k-th level set of F,. Furthermore, for any set S € F,, integer
k satisfying #N = n > k > #8, let F\V(S) := (T € F, | #T =k, T D S}.
Eventually, for any 7' € 73 (S) and integer h such that #S < h < k, let
8g’“> (T) := {R € }—g(h) (S)|RC T}. Then, simply by substituting, we obtain

av/y (S)] w?
d)BCd ('U ) [ —
! ssg; > Wi
o>t

- Z S [v/g(S) —v/g(S\i)] — Z a9 (T) | =

SeF, “j TGS
EEY ES i
TEF,

= Z (/g (S) —v/g (S\i)] x

Ser,
S3i
n CUT k
k—#S h
DD S s B G
F=HESTER (5) jer 7 \h=#S

077 (v.9) = Y [w/g(S) —v/g(S\i)] x

n B /\T k
» Z Z (_1)k #S zT H #%’”
J

Furthermore, simply by setting w? or, equivalently, A; (#S) for all players
i € N and for all coalitions N D S 5 4, we have that one way the Myerson value
may be expressed as a probabilistic value is the following

A (wg) = 3 [/g(S) ~v/g(S\)] X
SeFq
S>i
n k
Y o ] e @) | @)
k=#S T€.7-‘§"') () # h=#S
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Note that if g is the complete graph so that F, = 2%, then v/g (S) = v (S) for

n k
al SCNyand > Y (DML ¢l (1)) =
k=#S reF(F) (s) h=4S

n

k
= > > (UG I (hE) = o EESLL As known,
k=#S NOTDS =#S
#T=k
within the broad class of probabilistic values, the Shapley value definitely plays
a special role, since by satisfying symmetry it implies pf = p#*° for all play-
ers and coalitions ¢ € S C N. That is to say, the probability each individual
attributes to the event of joining any coalition S C N must depend solely
on the cardinality #S. And since the Myerson value is the Shapley value
of v/g (and therefore satisfies symmetry with respect to v/g), it must also
be consistent with such a condition. In fact, (1) can clearly be written as

oMY (v,9) = 2 [v/g9(S) —v/g(S\i)] w Nevertheless, expression
SCN

(2
S>¢
(22) implies something different, in that p; = 0 for all S ¢ F,; more precisely, we
can see that coalitions S € F, are grouped in classes according to the number of
connected larger coalitions, of any given cardinality, they are contained within,
that is on the basis of the n—#S integers given by #}'g(k) (S),fork=#S,...,n
(recall we are assuming #N/g = 1); let some integer « be the total number of
such classes; also let integers z1,...,x,; denote the numbers of coalitions be-
longing to each class. Then (22) implies that the model for choosing a random
connected coalition S is the following: first, a class j € {1,... ,x} is chosen ran-
domly (i.e., with probability 1/z each); second, within such a (random) class a
coalition is chosen randomly (i.e., with probability 1/x; each).
For all players i € N, let p; (BCc),p;(BCd) : {SCN|S3i} — R be
defined as follows

T k
sBeag= Y Y (D”ﬁsﬁ [T #85” (1)

k= #STE}-SE’\J( ) jer J h=#S

T k
FBon= Y Y (e s | 11 #0
J

PSS TER (5) jer 7 \M=#S

for all S € F, | S 34, while p; (BCc) =p; (BCd) =0for alli € S ¢ F,. Thus,
by noting that each weight term w? — appears only within those p] (BCd)

J

jeSs
such that F;, 5.5 D T, we obtain
wf 45 #R 1T L
Sotwen- 3 | S| | S coP T wol
Ser, SeF, \ J RCS h=#R
S3i S5i \J€S REF,
R>1
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: s : s
We must emphasize that nor {p; (BCd)}SeJ-‘g,Sai’ neither {p; (BCC)}Se]-‘g,Ssi
have to constitute probability distributions. Nevertheless, there definitely exists

S
some (possibly stochastic) quantitative interdependence between ——— and (for

> Wi
jes
icSOR>i) [] #0g (S),aswellasbetweenﬁand (forieT DS 21)
h=#R jer J

E
I1 #Q(gh) (T'), and the same applies to {)\f} . This is because both
h=#S3 SeFy,S2i
w, A and the various #8%1) (S), #Q(gh) (T') are determined on the basis of the
peculiar connectivity features of the graph under concern'.

We shall now determine under which conditions it may be possible to express
qu Od and qu ¢ in terms of probabilistic values. Extending the treatment of

Calvo and Santos 2000, we can say that a solution ¢ admits a w-potential (for
— S n2"hy ; ; . 2" —1
w= ((w )ies) brSeN eR ) if there exists a function Py, : G (N) — R

T

such that

$:(0) = Y wi [Py (v(85)) = Pu (vai (5))]
SCN
St
for all i € N and v € G(N). Given (20), it is clear that we must have
Puw (v(S)) = Puw (vas) = %Sﬂ, where w? := >jes w{. Thus the above men-
tioned possibility exists if, and only if, ), £SCN w—ls =1

8 Axiomatic characterization

It is straightforward to check that the restriction of both ¢)B “d and QSB e to
point games satisfy CE, L, ITP and P described in section 3. Thus such axioms
clearly are not sufficient for obtaining uniquess. In (20) the restrictions of both
i “d and qSB Cd 4o point games are expressed in terms of the (unique) associated
potential function (see Hart and Mas-Colell (1989)). Accordingly, the simplest
way of characterizing such values for point games is by means of a single axiom.
In particular, please consider the following axioms
e degree weighted balanced contributions (DWBC):

av/g oI T
6i (v5,9(9) = b; (vs,9(S) = Y (T) [w) —]]

T
TCS > Wi
TEF, heT
JET>1

forall S C N,i,j € S,v € G(N),geT(N)

1711 order to determine such a possibly stochastic relationship, interesting results could be
found in Pittel, Spencer and Wormal (1996)
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for

o connectivity weighted balanced contributions (CWBC):

a®/9 (T) [/\? — ,\ﬂ

$i (vs,9(S)) — b, (vs,9(S) = 3

T
TCS 2 An
TeF, her
jeT>E

all S C N,i,je S,oeG(N),geT'(N)
It is then immediately verified that

Theorem 8 The restriction of qSB “d 15 point games is the unique value function

on

the space of such games satisfying DWBC.

Theorem 9 The restriction of d)BCC to point games is the unique value function
on the space of such games satisfying CWBC.
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