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Abstract

It is shown that Perfect Secret Sharing Schemes are Simple Weak Ef-
fectivity Functions. Namely, for any finite set K of keys and any finite
set NV of participants the set of all Perfect Secret Sharing Schemes hav-
ing 0-normalized security level #K — 1 is characterized as the set of all
Simple Weak Effectivity Functions on (N,K): perfection in secret shar-
ing turns out to have simplicity as its nice game-theoretic counterpart. It
also follows that Perfect Secret Sharing Schemes do admit universal imple-
mentation procedures using 1-threshold schemes as elementary ‘building
blocks’.

JEL Classification Numbers 025,026

1 Introduction

In real-life situations, efficiency considerations may variously dictate either dis-
closure or protection of privately held information. The information revelation
problem i.e. elicitation of private information by means of suitable incentive
schemes has always been a central theme in the literature on mechanism design,
at least since the beginnings of the modern game-theoretic approach back in
the early *70s. In an information revelation problem (e.g. in auctions or voting)
individual agents and/or coalitions of agents must be induced to share some
of their ‘secret’, privately held information with the service provider i.e. the
agency responsible for computing and possibly enforcing the decision mecha-
nism’s outcomes.

By contrast, the reverse situation —where the service provider assigns to
agents and/or coalitions some private information (e.g. a private key, or parts
of it) which is meant to be kept as a secret by its legitimate holders— raises a



few interesting issues which are best addressed within the theoretical framework
of distributed cryptography. However, it transpires that the management and
transmission of secret/confidential information is also of considerable signifi-
cance from a game-theoretic perspective, and of growing practical importance
due to the ever increasing role of electronic information processing in social and
economic interactions. Here, the basic problem is of course ensuring that access
rights are not abused i.e. that the entitled agents are able to protect their secret
against possible insiders’ or outsiders’ attacks. Thus, the issue is protection —as
opposed to revelation—of private information. A particularly interesting version
of this problem obtains when the secret itself is to be shared among a coalition
of agents.

A secret sharing scheme (55S) is a rule for apportioning some secret in-
formation among participants in such a way that certain ‘legal’ sets of agents
which comprise the access structure of the scheme— and only them— have joint
access to the relevant data (the ‘secret’). An SSS is perfect whenever any ‘il-
legal’ coalition of agents —no matter how many shares are legally accessible to
its members—cannot do any better than a coalition of outsiders, i.e. —typically—
randomly guessing the secret among the (publicly known) set of admissible data
or keys. The reciprocal of the probability of deception —that is the probability of
successful random guessing— provides then a well-defined measure of the security
level of the scheme.

It has been known since the late ’80s that perfect SSSs do exist for any pre-
scribed security level and any access structure (see e.g. Benaloh, Leichter(1990)):
in particular, several examples which admit a natural implementation via mod-
ular arithmetic and combinatorial geometric structures have been designed and
studied (see e.g. Simmons(1992), Stinson(1995), Menezes,van Oorschott, Vanstone
(1997), Beutelspacher,Rosenbaum(1998)). However, a few questions remain
that— to the best of my knowledge— have not been explicitly addressed in the
extant cryptographic literature, namely:

e How can the class of all possible perfect SSSs at any security level be
described? Is it amenable to any ‘convenient’ characterization?

e Is it possible to implement all access structures at any fixed security level
using some perfect SSS as a unique elementary ‘building’ block or different (sets
of) ‘building blocks’ are required in order to implement distinct access structures
and/or to achieve distinct security levels?

It turns out that the foregoing issues can be readily addressed and solved
by expressing them in a suitable coalitional game-theoretic format. This is most
conveniently done relying on weak effectivity functions (WEFs). A WEF is
a map that attaches to each coalition S the set of all outcome-subsets into
which S is able to ‘force’ the final outcome.Thus, a WEF can also be charac-
terized as an outcome-subsets-parameterized family of simple games i.e. sets
of (locally) ‘winning’ coalitions. A WEF is simple if such a family of simple



games reduces to a unique set of (almost) globally ‘winning’ coalitions. It will
be shown in the present note that—for any finite set K of keys and any finite
set N of agents— the set of all perfect SSSs does indeed correspond precisely
to the set of all simple WEFs on (N, K). Now, it can be shown that any sim-
ple WEF is representable as the intersection of a finite set of weighted simple
WEFs. Since any weighted simple EF admits a ‘perfect’ implementation (either
modular-arithmetical or combinatorial geometric), it follows that —in principle—
repeated application of the latter can be used as the basic component of a uni-
versal implementation procedure for perfect SSSs of arbitrary access structure
and security level.

2 The model

To begin with, a few basic definitions concerning key establishment protocols
must be introduced. Let N be a finite set of agents or participants, K a finite set
of possible secret keys to be shared. A secret sharing scheme (SSS) for (N, K)
is a tuple S =(S, a, 7, h) consisting of a share space S ( typically a non-empty
finite set ‘with structure’, e.g. a finite projective space—see the definition below—
or more generally an object of a suitably chosen concrete category), a sharing
rule a : K x N — 8 (with canonical extension a* : K x P(N) — Upcy ST
as defined by the following rule: for any 7' C N, o*(k,T) = (a(k,i) : i € T)),
a pooling function m : UTCNST — P(S) such that 7((x;)ics) € w((2})seT)
whenever (z;)ies € S, (2})ier € ST, S C T and z; = 2} for any i € S,
and a (semi-neutral) recovering function h : P(S) — P(K) such that for any
ki, ks € K, K1,Ko C K, A/BC S,and T C N: A C B entails h(B) C h(A4),
k € h(m(a*(k,T))), {k} = h(m(a*(k,N))), K1 = h(r(a*(k1,T)) and Ko =
h(m(a*(ke, T)) entail #K7 = # K, and h(()) = K (this last requirement reflects
the typical assumption that the key set K be public knowledge).

Remark 1 It should be noticed here that the ‘fine-grained’ definition of an SSS
proposed above is not standard. Indeed, SS5Ss are variously presented in the
cryptographic literature, to an extent that makes it difficult to single out a stan-
dard definition. The most common usage consists in identifying SSSs with their
sharing rules as defined above, while leaving implicit the pooling and recovering
functions. I find, however, that the more detailed —if perhaps clumsier— defini-
tion offered here has some distinct advantages. Moreover, the results presented
below might be appropriately reformulated according to the ‘coarser’ definition.

The access structure of an SSS S =(S,«a,m,h) for (N, K) is the biparti-
tion (L(S), L°(S)) of P(N) into legal and illegal coalitions ( or authorized and
unauthorized subsets), respectively, where the set of legal coalitions is given by
L(S) ={S C N :for any k € K, h(m(a*(k,S))) = {k}}. Notice that—by defini-
tion of the recovering function h— the set L(S) of legal coalitions of an access
structure amounts to an order filter of (P(N), D), i.e.a subset of P(N) such
that for any S, T C N ,if T' D S and S € L(S) then T' € L(S) (and conversely



any order filter of (P(N), D) uniquely identifies a possible access structure with
N as set of participants).

An SSS S for (N, K) is said to be a (rational) threshold SSS if there exist
teRiy,andw: N - Ry (t e Qp and w: N — Q4) such that L(S) =
{SC N:Y,cqw(i) >t}: the corresponding access structure is also said to be
a threshold access structure. The (normalized) security level of a S = (S, «, 7, h)
is given by the (rational) number pg' — 1, where

m € Zy : there exist S € L¢(S), K’ C K,k € K’ such that

be K' = h(w(a(k,5))), and m = (#K')~*

denotes the probability of deception, i.e. the maximum probability of access
to the secret on the part of an illegal coalition (under equiprobability of key-
choice on the part of the key-dealing agency).

An (equally distributed) SSS S =(S, o, 7, h) for (N, K) is said to be perfect
(at (normalized) security level q € Q) if

i) h(m(a*(k,S))) = h(n(a*(k,T))) for any S,T € L°(S),k € K, and

i) [#h(m(a*(k,9)))] ™" =q+1 for all S € L%(S).

Hence, a perfect SSS is equally protected against outsiders’ and insiders
possible attacks.

The following construct will also be used in the sequel.

’

Let {S; = (Sj,a;,7j, hj) : j € J} be a finite family of perfect SSSs for (N, K).

Then, the product SSS @,c;S; = (87,07, 77 k') of {S; : j € J} is defined as
follows:

ST =~ [I;c, S, for any j € J;

a’ : K x N — 87 is defined by the rule o’(k,i) = [1;csa;(k;,4), and
similarly

7 Upen(S7)T — P(87) is defined as ((S7)7) = HjEij((SJT)), while

h' : P(87) — P(K) is defined by the following rule

{k} if for any j € J:

|

RI(Y) = hj({s; € S : there exists ((s})jes) €Y s.t. s7 = s;}) = {k}, and

K otherwise

Moreover, the security level of &) e S;is defined as max {pgjl rjed } -1

Let us now turn to the relevant coalitional game-theoretic notions. A weak
effectivity function (WEF) on player set N and outcome set X is a function
E: P(N) — P(P(X)) such that : (WEF 1) E(0) = 0; (WEF 2) X € E(S) for
any S C N,S # (; (WEF 3) E(N) 2 E(S) for any S C N; (WEF 4) () ¢ E(S)
for any S C N.

Remark 2 Clearly enough, WEFs amount to a slight generalization of effectiv-
ity functions (EFs) (see e.g. Abdou,Keiding(1991)). Indeed, an EF on (N,X)
is a WEF such that E(N) = P(X)\ {0}.

Moreover, a WEF E on (N, X) is monotonic if for any S, T C N, A, B
X:[A € E(S) and S C T entail A € E(T)] and [A € E(S) and A C
entail B € E(S)], and simple if there exist an order filter W of (P(

3
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h #W # P(N), A* € P(X)\ {0}, and an order filter )} of (P(X),D) with
YO{AC X :AD A*} such that for any S C N,A C X : A € E(S) if and only
if either [S € W and A € Y] or [S # 0 and A D A*]: in that case we also write
E=EW, Y, A*). A simple WEF E(W, Y, A*) is (rational) threshold simple if
W is a (rational) linear threshold order filter i.e. there exist a (rational) scalar
weight-function w: N — Ry (w: N — Q) and a (rational) scalar threshold or
quota ¢ € Ry (¢ € Q) such that S € W if and only if ), g w(i) > ¢ :the pair
(g, w) is also said to be a representation of E(W,Y, A*). Furthermore, a simple
WEF E is said to be (1,n) —threshold if it admits a representation (1, w) where
w is a {0, 1}-valued weight function.

Finally, the next definition establishes the basic link between SSSs and WEFs
as required for the ensuing analysis.

Let S =(S,a,m, h) be an SSS for (N, K); then, for any k € K the charac-
teristic WEF Ef of S at k is defined by the following rule: for any non-empty
SCN, EZS)={ACK:ADh(r(a*(k,9)))},and EF(0) = 0. Consistency of
the foregoing terminology is in fact established through the following

Claim 3 Let S = (S,a,m h) be an SSS for (N,K). Then {E,? 1k e K} s a
family of monotonic WEFs on (N, K).

Proof. By definition of Ef and h, K € E$(S) for any S € P(N) \ {0}
and any k € K, while () € EP(S) entails-again by definition of EY and h-
h(m(a*(k,S))) = 0, a contradiction in view of the fact that ) # h(7(a*(k, N))) C
h(m(a*(k,S))). Also —by definition of h, 7, o*— for any S C N

h(m(a*(k,N))) C h(n(a*(k,S))), whence

ES(N)={ACD:ADnh(r(a*(k,N)))} 2{AC D: ADh(n(a*(k,S)))} =
ER(S).

Thus, for any k € K, E,? is indeed a WEF on (N, K). Moreover, monotonic-
ity of E,? also follows immediately from the definition. m

We are now ready to introduce our representation result

Proposition 4 Let S be an SSS for (N,K).Then, S is a perfect SSS if and
only if —for any k € K— EY is a simple WEF on (N, K). In particular, S is
perfect at security level g if and only if EY = ES(L(S),{ACK:ke A}, K*)
with k € K* and #K* =q+ 1.

Proof. Let S = (S, , 7, h) be an SSS for (N, K) and (L(S), L°(S)) its access
structure.
Now, suppose S is perfect at security level q. Then, for any k there exists
K*CK, K*>k,#K" = q+ 1 such that for any S C N
itk 5) = { {IS S |
Hence, by definition of E¥, for any non-empty S C N



E,?(S)_{ {ACK:ke A} if Se L(S) }

{ACK:ADK*} if S e L%(S)

Since clearly ) ¢ EF(S) 2 ES(T) 5> K for any S € L(S),T € L%(S), it
follows that E,f‘ is indeed a simple WEF on (N, K). In particular, for any
ke K

ES =EJ(L(S),{ACK :ke A},K*).

Conversely, let {Ef ke K } be a family of simple WEFs on (N, K). Then,
for any k € K there exist an order filter W, of (P(N), D) with § # Wy, # P(N),
an order filter Y, of (P(K), D), and a nonempty set K, k € K; C K such that
for any non-empty S,T C N, S ¢ Wi, T € W, :

ER(T) =Y 2 {AC K : AD Ki} = EJ(S).

It follows that —by definition of Ef—for any S ¢ W, :

{ACK:ADh(r(a*(k,S))} =EZ(S)={ACK:ADK}}

whence h(m(a*(k,S))) = K}

(indeed, suppose not; then, either h(mw(a*(k,S)) || Kj or w.lo.g. h(m(a*(k,S))) D
K} :inboth cases K; e {ACK: AD K }\{AC K : ADh(r(a*(k,S5)))}).

Hence S is perfect with security level ¢’ = (#K}) — 1 as required. m

Apart from providing a convenient game-theoretic characterization of all
perfect SSS at any security level, the foregoing Proposition also entails that
there exist ‘universal” procedures which can ‘uniformly’ implement perfect SSS
of arbitrary access structure using a unique most elementary threshold SSS as
a ‘building block’. In order to substantiate that claim we shall refer to a
prominent special class of implementations of perfect SSSs, namely (projective)
combinatorial geometric schemes.

Remark 5 Since threshold schemes are sufficient to generate perfect SSSs of
any access structure and security level, one might also use the well -known
Shamir’s perfect threshold SSS which relies instead on modular addition as op-
posed to combinatorial projective structures (see e.g. Stinson(1995)). Indeed,
Shamir threshold scheme —the very first example of a perfect SSS — is ar-
guably as intuitively appealing and elegant as typical geometric threshold perfect
schemes are, and is informationally efficient or ‘ideal’ (i.e. its information rate—
the rate of the size of the key space to the size of the biggest individual share
space— is 1, which is provably the optimum rate for perfect schemes). However,
the basic Shamir scheme is known to be manipulable in the following sense: a
cheater may transmit false information concerning his share and use knowledge
of the correspondingly incorrect key in order to recover by himself the true key
by using his true share. By contrast standard combinatorial geometric threshold
schemes are typically nonmanipulable in that sense. Given the game-theoretic
emphasis of the present note, I take that circumstance—over and above the un-
deniable simplicity and elegance of such geometric schemes— to be an almost
compelling reason to choose combinatorial projective threshold schemes as the
basic reference schemes in what follows.

Unfortunately enough, a presentation of geometric threshold schemes re-
quires a quite massive amounts of new definitions: they are provided below for



the sake of completeness.

An incidence structure is a tuple G =(P,B,3J) where P, B are disjoint sets
(the sets of points and blocks —or lines—, respectively) and $ C (P UB)? is a
reflexive and symmetric binary relation, the incidence relation on PUB. An
incidence structure G = (P, B,3) is a projective space if the following properties
hold:

(P1) (Line azxiom): for any P,@Q € P, if P # @, then there exists L € B
—also denoted by (PQ)— such that S 2 {(P,L),(Q,L)},and for any L' € B,
32 {(P.L),(Q.L),(P.L').(Q, L)} entails L= L.

(P2) (Points-on-a-line axiom): for any L € B there exist P, @, R € P, such
that # {P,Q,R} =3 and 3 2 {(P,L),(Q,L),(R,L)}

(P3) (Veblen-Young No-parallelism axiom): for any P,Q, R, S € P such that
#{P,Q.R,S} =4, it (PQ)N (RS) # 0 then (PR) N (QS) # 0

Furthermore, a projective space is said to be nondegenerate if the following
condition is also satisfied

(P4) (Nondegeneracy axiom): #B > 2.

Now, let P = (P,B,3) be a projective space. A linear subset of P is a set
P’C P such that (RS) C P’ for any R, S € P’,and the linear subspace generated
by any set Q C P is

(Q) =N{U CP:Uis a linear subset of P such that Q C U}.

Moreover, the (linear) subspace of a projective space P generated by a lin-
ear subset P’C P is a —possibly degenerate— projective space P'= (P, Bp,, Sp-)
where Bp = {L € B:P € P’ for any P s.t. (P,L) € 3}, and 3’ = SN(P'UBp)2.
An independent set of points of a projective space P = (P, B,3J) is a set of points
Q C P such that for any Q' € Q, and any P € Q\ Q', P ¢ (Q’). An inde-
pendent set Q of points of a projective space P = (P,B,3) is a basis of P
if (Q) =P. It can be shown that all the bases of a projective space have the
same cardinality (see e.g. Batten(1997), Beutelspacher, Rosenbaum(1998)). A
projective space P has dimension d —also written dimP =d- if the (common)
cardinality of its bases is d + 1. A hyperplane of a d-dimensional projective
space P is a (d — 1)-dimensional subspace of P. A set Q C P of points of a d-
dimensional projective space P = (P,B,Q) is in general position if #Q >d + 1
and any Q' C Q such that #Q’ = d + 1 is a basis of P.

It can be shown that ‘almost’ any d—dimensional projective space (d > 2) is
isomorphic to the (projective) space P(Vz) which results from taking as points
the 1-dimensional vector subspaces of a suitable d 4+ 1-dimensional (left) vec-
tor space Vx over a division ring R, as lines the 2-dimensional vector sub-
spaces of Vg, and positing 3 = [J{C, D} (recall that a division ring is a tuple
R = (R,+,-,0,1) such that i) (R, +,0) is a commutative group i.e. + is an as-
sociative, commutative binary operation on R with identity element 0, and such
that every element # € R has an inverse; ii)(R \ {0},-,1) is a (not necessarily
commutative) group i.e. - is an associative binary operation on R with identity
element 1, and such that every € R\ {0} has a bilateral inverse and iii) for any
z,y, z € R the right and left distributive identities [z - (y +2) = (z-y) + (v - 2)]
and [(y + 2) -2 = (y-x) + (2 - )] hold ). If a projective space P is indeed



isomorphic to P(Vg), then it is said to be coordinatized by R (see again Beu-
telspacher, Rosenbaum (1998)). If a projective space P is coordinatized by a
division ring R, then each point of P may be characterized by its homogeneous
coordinates i.e. equivalence classes of (vector) coordinates of points in Vz (with
equivalence relation ~ defined by the rule (ai,..,aq+1) = (b1, .., b4+1) iff there
exists « € R, a # 0 such that a; = ab;, i =1,..,d + 1).

It can be shown that if a d-dimensional projective space P is coordinatized
by a division ring R, then a most typical instance of a set of points in general
position is provided by the set C of points of a normal rational curve of P(Vg),
namely—by definition— by those points whose homogeneous coordinates are ei-
ther [(1,7,..,7%)]~ (with » € R) or [(0,0,..,0,1)]~. If the relevant division ring
is in particular a finite field F (i.e. R = F is finite hence commutative by the
classic Wedderburn’s theorem) then— for any nonnegative integer d- one may
consider the finite vector space F¢ so that P(F9) is a finite projective space (co-
ordinatized by F whose cardinality—recall- may be given by any positive power
of any prime number). Now, it should be recalled here that the sets of points
of any two lines in an arbitrary projective space are bijective. Hence, in a finite
projective space P(F?) all the lines comprise an equal number k& + 1 of points
where £k is the cardinality of F(notice that £+ 1 > 3 in accordance with axiom
(P2)): then, k is said to be the order of P(F%) which is also written P(F, k)
to make this fact explicit.

We are now ready to introduce the basic combinatorial geometric SSSs for
threshold access structures that we need for our next result.

Definition 6 (Basic perfect projective threshold SSS ) Let N be a non-empty
finite set of participants, W C P(N) a rational threshold order filter of (P(N), 2

) with weight function w and quotat = Z—%, and q any positive (rational) number.

Nezxt, consider {w(z) = % 11 € N} , compute the least common multiple M of

{mg,m1,..,myp} and take a finite projective space P = ]P’(.Tj* ,q*) where
t*=M*-t with M* =min{k-M : k€N and k- M >logyn}, and
¢* =min {p € N: p > q and there exist n,m € N such that n is prime and p = n™}.
Finally, take any point Q of P (i.e. Q € P(PP)), and any line L € B(P) such
that (Q,L) € S(P) i.e. Q € (L) where (L) ={P € P(P):(P,L) € S(P)}. Then
a basic combinatorial projective threshold SSS SFY(W,¢*) = (S,a,m, h) for
(N, (L)) (with access structure (W, P(N)\ W ) and normalized security level
q*) is defined as follows:
let H be a hyperplane of P such that Q € H and (L) ¢ H, and C a normal
rational curve of H (see the definition above) such that Q € C . Then, posit
S=C, takea: N — P(C\{Q}) to be an injective function such that # {a(i)} =
M* - k; for any i € N, and —for any S = {1,..,s} C N— define n(Y1,.,Ys) =
UiesY: . Finally, h : P(C) — P((L)) is defined by the rule h({P1,. P}) =
(L) U (L) N { Py L))
Remark 7 Notice that dim H = t*—1 hence #{ Py, .., P} = t* entails ({ Py, .., B}) =

H . It follows that for any Y C P(C) such that #Y = t* one has M(Y) =
(L)NH ={Q}. By contrast, if #Y < t* then (YYN(L) = 0, whence h(Y') = (L).



Notation 8 We shall denote by PGTS(N) the class of basic perfect projective
threshold SSSs with set of participants N as described above.

It is a quite remarkable fact that a very simple (1,n)—threshold version of
such perfect geometric SSSs defined above can in principle be used as the unique
‘building brick’ in order to implement perfect SSSs of any access structure at
any security level.

This claim is made precise by the following

Proposition 9 Let W C P(N) be any order filter of (P(N),2), and q € Q.
Then - for any finite set K- there exist k € Zy,and (isomorphic) S1,. Sy €
PGTS(N) such that S = ®ik:1 S; is a perfect SSS for (N, K) at security level
q and with access structure (W, P(N)\ W).

Proof. First, recall that order filters of (P(N), D) do essentially correspond
to simple games on N . But then, one should also recall that every simple game
can be regarded as the intersection of a finite number of threshold or weighted
simple games. The construction goes as follows: let {11,..,7x} C P(N)\ W be
the set of D-maximal coalitions which are not in W. Then, for any j = 1,..,k
posit

Wy = {SCN:S\T; £0}.

It is easily shown that W = ﬂj-;:l W;

(see e.g. Taylor, Zwicker(1999), Theorem 1.7.2 for more details).

Now, notice that —for each j— (W;, P(N) \ W;) can be regarded as the
access structure of a (1, #(IN \ T;))—threshold SSS. Hence, take a corresponding
SPE(W;,q) € PGTS(N) having access structure (W;, P(N) \ W;) as defined
above. It follows that — by definition— the resulting product SSS & icJ Sf G
has both security level ¢ and access structure (ﬂ?zl W;, P(N) \ ﬂ§:1 W;) as
required. m

It should be emphasized that the foregoing proposition provides a positive
answer to the question raised in the introduction concerning indeed the avail-
ability of universal ‘monogenic’ implementation procedures.

3 Concluding remarks

The main message of the present note is that coalitional game-theoretic notions
provide a remarkably natural framework for expressing a few basic ideas and
results concerning key distribution protocols and related issues in distributed
cryptography. In particular, Proposition 9 above shows that dimension-theoretic
considerations concerning coalitional game forms suggest ways to obtain perfect
SSSs of arbitrary access structure and security level starting from certain simpler
perfect SSSs of one single type. Moreover, a game-theoretic outlook might also
provide further interesting criteria for assessing perfect (and non perfect) SSSs.
This is however best left as a topic for further research.
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