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We study the behaviour of the average aggregate growth rate of an economy, driven by only
small idiosyncratic total factor productivity shocks and where investment behaviour at the
single plant level follows an (S,s) policy. We assume that in the case of investment
(disinvestment) there are positive (negative) localised spill-over effects because of factor
demand linkages. We show that if these spill-over effects are strong, the economy converges
naturally towards a “critical” state where there exists a positive, highly volatile aggregate
investment rate which depends on the size of the microeconomic non-convexities. We find so

apositive, highly volatile growth rate of aggregate output.
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“..the development of the organism, whether social or physical, involves an increasing
subdivision of functions between its separate parts on the one hand, and on the other a more
intimate connection between them. Each part gets to be less and less self-sufficient, to depend for
its wellbeing more and more on other parts, so that any disorder in any part of a highly-

developed organism will affect other parts also.”

A. Marshall*

1. Introduction

It has been pointed out in the recent economic literature” that investment at the single plant level
is mostly intermittent and discrete. Studying a 17-year sample of plants belonging to the U.S.
manufacturing sector, Doms and Dunne (1994) evidence that plants concentrated about 50 % of their
cumulative investment over the sample in the three years surrounding the year with the largest
investment. Theoretical explanations for this lumpiness are increasing returns in the investment
technology. They are due to sunk costs of reorganisation or indivisibilities. Given this optimal policy at
the single plant level, we have to determine the aggregate behaviour of the economy.

Caballero and Engdl (1998) study the aggregate behaviour of an economy where discrete and
intermittent capital adjustment is optimal using the hazard function approach®. According to the level of
capital imbalance, each firm has a probability of adjusting their capital stock, which is afunction of the
actua level of capital imbalance and is called hazard function. The economy is fully characterised by
the probability distribution of adjustment of the single firms. In the stationary state the authors study the
response of the economy in the case of aggregate shocks and show that this response is non-linear.
Caballero and Engel consider these firms as independent, that is, if a firm adjusts its capital stock, this
will not have any effect on other firms".

In this paper we consider the case where the discrete and intermittent policy for the adjustment

of the capital stock leads to spill-over effects: we will assume that in the case of adjustment of the

LA. Marshall “Principles of Economics*, London Macmillan, Book IV, Chapter VI, 1.

2 See for example Caballero (2000).

% See also Caballero and Engel (1993).

* Caballero and Engel (1991) study aggregate dynamics of independent firms using (S,s) policy in the case of



capital stock, “neighbouring” firms will be hit by a demand shock. These dynamic spill-over effects are
because of factor demand linkages, like those pointed out in Cooper and Haltiwanger (1992). A discrete
increase in the capital stock leadsto an increase in the demand of those firms supplying this capital. The
firm transfers in this way, a least to some extent, a demand shock to randomly matched neighbouring
firms, which supply this capital. The extent to which a shock is transferred to neighbouring firms
depends on the strength or degree of demand spill-over effects. The strength of these spill-over effects
depends on the degree of specialisation of each firm. It has been pointed out by Alfred Marshall®, that as
the economy grows, the speciaisation of each firm increases and so aso the interdependence between
the single firms increases. Because of these demand spill-over effects, we obtain an endogenous
diffusion of the exogenous shocks. This latter is so a sort of endogenous multiplier of the exogenous
shocks. The extent of this endogenous multiplier depends on the degree or strength of the spill-over
effects. We find that even though the economy is driven only by small idiosyncratic technology shocks,
the investment behaviour of the firms is correlated. We show that the strength of this correlation
depends on the strength of the spill-over effects. In highly developed countries there is a natura
tendency of the strength of these spill-over effects to become very high because of the increasing
specidisation of each part of the system and because of the resulting increasing interdependence
between its single parts. We will show that, in the case of strong spill-over effects, the correlation of
investment activity among the single firms is high, leading to a highly volatile postive, aggregate
investment rate, even though the economy is driven only by small idiosyncratic total factor productivity
shocks.

Our am is to study the growth rate of aggregate output of an economy driven by small
idiosyncratic total factor productivity shocks, where investment behaviour at the single plant level is
discrete and intermittent and where firms interact dynamically through spill-over effects, because of
factor demand linkages. We will see that the extent to which the growth rate of aggregate output is
affected by this dynamic interaction depends on the strength of the spill-over effects. If the strength of
the spill-over effects is high, then the investment behaviour of the single firms will be highly correlated
and the aggregate investment rate will be positive and highly volatile. Thus, the growth rate of aggregate
output will depend not only on the exogenoudly given growth rate of total factor productivity, but aso
on the aggregate investment rate. Since this latter is highly volatile, this will lead to large fluctuations in
aggregate output. We will see that the aggregate investment rate depends in this case on the size of the
microeconomic non-convexities. In particular, we have that greater indivisibilities lead to a higher long
run investment rate but also to a higher short run volatility of the same. Holding the exogenous long run

growth rate of total factor productivity constant, we show that the economy will exhibit a higher long

idiosyncratic and also aggregate shocks.
® See footnote 2.



run growth rate of aggregate output with larger short run fluctuations® in the same. Thus, starting form
amicroeconomic framework, we obtain, in a structural way, an aggregate output with a unit root.

We are going to use sdlf-organized criticality techniques. Self-organized criticality, which has
been introduced by Bak et. a. (1987, 1988), studies the dynamics of large interacting ensembles which
are governed by threshold dynamics at the microeconomic level’. The standard example is the sandpile
model. In this modd, in each point in time, a sand granule is added at a random site, and the avalanche
dynamics, that is the number of sites toppling given an exogenous shock, of the sand pile is studied.
These models converge naturally towards a critical state, where the system does not exhibit a
characterigtic event size and where a small sand granule can be propagated throughout the whole
system. Even through the aggregate dynamics are complex, the aggregate behaviour of the system is
describable by simple power laws®. In this paper we will extent the mean-field approach proposed by
Vespignani and Zapperi (1997, 1998).

The paper is organised as follows. Section 2 discusses the microeconomic problem of a
representative firm. The aim of this section is to develop a framework where the (S;s) policy is optimal,
given an exogenous stochastic environment. In Section 3 we describe the aggregate dynamics of
interacting firms using the (S,s) policy. Further, we calculate measures of investment avalanches, that is
the number of firms adjusting their capital stock, in the case of a small idiosyncratic technology shock,
in the stationary state. In Section 4 we consider the effect of the interaction between firms on the long
run aggregate growth rate of the economy and on the variance of this growth rate. Section 5 concludes.

2. 1. The problem of the representative firm®

In this section we study the problem of the representative firm. As pointed out in the
introduction, the representative firm applies an (S,s) rule for the adjustment of the capital stock. We are
going to develop a framework where this policy is optima given the stochastic environment the
representative firms is facing. We will assume that there are sunk costs of investment and disinvestment.

That is, in the case of investment (disinvestment) the firm has to pay a sunk cost which is independent of

® Bak et. al. (1993) and Scheinkman and Woodford (1994) evidenced first that in order to obtain aggregate
fluctuations in the case of an economy driven by small idiosyncratic shock we need strong localized interaction
between the single firms and microeconomic non-convexities. The two elements taken for each own do not
generate large fluctuations. See also Horvath (1998), (2000) and Cooper, Haltiwanger and Power (1999).

" See for example Jensen (1998) for a good introduction.

8 A first application to economics is given in Bak et. al. (1993) where the authors study in a model of inventory
dynamics, the emergence of aggregate fluctuations in an economy driven by small idiosyncratic shocks. See
also Nirei (2000) for an extention of Bak et. al. (1993).



the amount of investment (disinvestment). We will assume that this cost is proportional to the optimal
frictionless capital.
Each firm faces an intertempora problem of profit maximisation. We assume that the

representative firm produces according to the following production function
F(K,L)= AK®

where K indicates actual level of capital, b < 1 indicates the capital share and A = €” indicates the total
factor productivity and demand strength. We will assume that a is a random variable, following a
stochastic process which will be specified further on. Profits, in each period of time, of the

representative firm are given by
P =AK" - rK

Static first order condition is given by P, =0 and so the optimal frictionless capital™® is given by

1
/b \_7b
K* = gTEF . We can rewrite the profit function as a function of capital imbalance s = K/K* and as

afunction of the optimal frictionless capital:
r
P(S,K*):B(sb-bs)K*. 1)

Profits are homogeneous of degree one in the optimal frictionless capitad K* , and are concave in s. If
there is a positive demand or total factor productivity shock, then the level of optimal frictionless capita

K* increases as well while the capital imbalance s decreases. We can write optimal frictionless capital

1
asfollows K*(t) = Aex = K*(0)eW, where x = 1. p @ adwherex s aconsiant. We assume

unitary changes in the random variable x. x changes either because of a change in total factor
productivity or because of a change in the demand strength through endogenous demand spill-over
effects. In particular, we will see in Section 2.2. an 3.1. that in the stationary state, X increases

(decreases) by unity with a certain probability and it remains constant with a certain probability. This

® This section follows Caballero (2000)
19 The frictions here are referred to the costs of adjustment. As pointed out above, in the absence of adjustment
costs the dynamic optimisation problem reduces to a repetition of static problems.



stochastic process is representable, in the limit where the number of steps goes to infinity in a finite
time, by an arithmetic Brownian motion (see Appendix 1). Thus, A follows a geometric Brownian

motion*":

dA = mAdt +s Adv @

where dv = e*+/dt and e* is normally distributed with mean O and unitary variance.
As pointed out above, we assume that in the case of investment or disinvestment the

representative firm faces a sunk cost of the form

jciif 1,>0
*) = 1 *
col,, K*)=1(I, * O)K +c}if <0

where 1(.) is an indicator function, C? is the sunk cost a firm faces in the case of investment, whileC;

is the sunk cogt in the case of disinvestment. The representative firm maximises the expected present

value of profits

Max
P i
Eoi g "P(s,K*)dt- 11, >0)K*c - 11, <O)K*c;g (39)
To
st.  dA=mAdt+sAdv (3b)
and dK =Idt (30)

where we assume for simplicity that capital does not depreciate™. We can rewrite (3) in a recursive way

through the value function V:

V(SI!K:) = P(st,Kt*)dt +(1- rdt)E[V*(s et K;dt)]

" Here we make use of 1to’s Lemma which will be explained further on. In particular we have that x follows an
absolute Brownian motion of the form dx = nfdt + sdv and through standard steps we obtain that A = €'
follows the geometric Brownian motion (2) where m= nf + % s See for example Dixit (1993) for a simple
exposition of stochastic dynamic programming.

12 We implicitly assume here that firms have to pay sunk costs only if they investment in “new” capital. In
other words we assume that repairs or reintegration of already installed capital is done in a continuous and
infinitesimal way.



V*(st , Kt*) - MAX{V(St , K:)’ MAX, [V(st +h, Kt*) - c(ht , Kt*)]}

subject to constraints (3b), (3c).
Since the profit and cost functions are homogeneous of degree one in K* we have that also the
value function V is homogeneous of degree one in K*. Thus, the problem is representable in the space of

imbalances s. First order conditions for this problem are

Vs(c)=0 Vs(L)=0 Vs(U)=0 4)

where V, = ﬂ . Expressions (4) are smooth pasting conditions and

s
V(L K*)=V(c,K*)- ciK* (53)
V(U,K*)=V(c,K*)- c;K* (5b)

are value matching conditions, and determine ,together with (4), the value of ¢, L and U (see Figure 1).

Figure 1

Optimal policy is inaction as long as the capital imbalance s is between the lower bound L and the

upper bound U. Once s islower than L, it is optimal to invest in order to obtains = ¢, and onces > U

K+I
to disinvest such that s = ¢. The optima amount of investment will be I, where K* =c and

K
—— < L, while the amount of disinvestment will be |, where

K . .
K * K =cC andF>U.Not|cethat,|n

general, c is different from 1, that is, the dynamic optimal target is different from the static one. If ¢; =

C; then we have symmetric adjustment, that is, the optimal amount of investment is the same as the

optimal amount of disinvestment, while if the two costs are different we have asymmetric adjustment.
Now we are going to characterise the behaviour of the value function within the barriers of

control. For this we are going to apply Ito’'s Lemma. We can rewrite the problem of the firm using (1)



and through standard steps one can reduce the problem of the representative firm within the barriers of

control asfollows

rv(K,A) = P(K,A)+d—1tE[dV(K,A)] (6)

st. dA = mAdt +sAdv
dK = Idt

dV(K,A) is unknown, so we can caculate it taking a Taylor expansion; we have that

W VLTV 2 TV e, TV
dv(K, A) = ak K A dAT S (dK)® + X7 (dA)? + TATK (dA)(dK)+...

Since we are interested in values for which dt tends towards zero, all values multiplied by (dt)’, wherey

> 1 are negligible. Further have that | = 0 by assumption. Calculating the single terms we have that

dv(K, A) = :]IV—A(nAste* AJE)%}LX

s?(e*)’ A%dt, where we used the fact that

dv =e*+/dt.Since E[e*] = 0 and E[(e*)?] = 1 by definition, we can rewrite (6) as follows

_ W o 1TV
rV(K,A) =P(K,A) + AT

SN 7)

This last expression is a second order partia differential equation which solution, together with the
boundaries condition (4) and (5) solves the problem of the representative firm. Next we are going to

study the stochastic environment of the representative firm.

2.2. Notes on the optimality of (S,s) rules

The stochastic environment each firm is facing is partly exogenous and partly endogenous. The
former is given by the exogenous driving force of the economy, represented by small idiosyncratic
technology shocks. The latter is given by endogenous spill-over dynamics, represented by factor demand
linkages between the single firms. Expectations at the firm level lead to a certain microeconomic policy
rule. Aggregating this policy rule over al firms we obtain a macrobehaviour of the economy, and this
should be consistent with the expectations at the single firm level. In other words, we need consistency

between expectations at the microeconomic level and the resulting aggregate dynamics at the



macroeconomic level. That is, we are looking for a fixed point. We are going to develop briefly this
argument.

In the next Section we are going to study the aggregate dynamics resulting form the localised
interaction between the single firms. We are going to describe these dynamics using the concept of
avalanches. An investment (disinvestment) avalanche indicates the number of firms investing
(disinvesting), given that an exogenous positive (negative) shock hit a single firm. In the Stationary state
we can caculate the average size of an investment avalanche, that is the average number of firms
adjusting in the case of an exogenous technology shock and we can calculate the stationary average
fraction of firmsin the critical investment (disinvestments) state, that is the state where it needs just one
more positive (negative) shock such that it is optimal to invest (disinvest) capital. Since avalanches are
unpredictable for the single firm, each firm will calculate the probability that it receives a positive
(negative) demand shock from a “neighbouring” firm, which increase (decreases) its capital stock. In
particular, we are going to assume that an investing (disinvesting) firm increases (decreases), because of
factor demand linkages, the demand of Z*) firms™. Further, we assume that these Z*© firms receiving

an endogenous demand shock are chosen a random. We cal r . the stationary average density

(fraction) of firmsin the critical investment state, that is, the average fraction of firms, in the stationary
state, which are in a state where it needs just one more positive shock, either exogenous total factor
productivity or endogenous demand shock, such that this firm becomes active, and invests a discrete

amount of capital™. Thus, in the stationary state, the probability of receiving a positive demand shock
2 3
because of factor demand linkages will be h(1—1)r Z" +h(1-I )(rC+Z+) +h(1-1 )(rC+Z+) + ...

The first term is the probability that a neighbouring firm is in the critical investment state and that this
firm receives a positive productivity shock; the second term is the probability that one of the neighbour
of one of our neighbours and the neighbour itself are in the critical investment state and that the former
one receives a positive productivity shock and so on. Further, we assume that with probability h(1 —1')

each firm receives a positive, exogenous, total factor productivity shock, so the probability of receiving

1
apositive shock, either productivity shock or demand shock, is h(1- | )ﬁ . In the same way we

Cy
can calculate the probability of receiving a negative shock. Following the arguments outlined above we

have that the probability of receiving a negative shock, either total factor productivity or demand shock,

1
is | hﬁ’ where r . is the stationary average density of firms in the critical disinvestments

Cy

state. As the number of steps within a given time interval goes to infinity this stochastic process is

3 We will specify in the next Section the value of Z*0).
14 We will define this state more precisely in the next section.



representable by a Brownian motion (see Appendix 1). This fact, together with the arguments outlined in
section 2.1 is sufficient for the optimality of the (S,s) policy.

As pointed out at the beginning of this section, we need consistency between the optimal
microeconomic policy rule and the resulting macroeconomic behaviour. Given the expectations about
receiving a demand shock from a neighbouring firm, and the probability of receiving a technology
shock, we have an optimal (S,s) policy with a certain bandwidth. We will see that this bandwidth is
crucia in determining the stationary behaviour of the model, and in particular in determining the
stationary average density of firms in the critical investment (disinvestment) state. The bandwidth
influences the stationary average densities and influences the probability of receiving a demand shock
from neighbouring firms. So we have to find a fixed point, where the probabilities of receiving demand
shocks from neighbouring firms generates bandwidths and stationary average densities of firms in the
critical investment and disinvestments state which in turn are consistent with the initial probabilities of
receiving demand shocks from randomly matched neighbouring firms.

In the next Section we are going to study the aggregate dynamics of this economy. We will
calculate stationary average densities of firms in active and critical investment and disinvestment state,

the average investment and disinvestment avalanche size and its average change .

3.1. Aggregate Dynamics

In this Section we are going to outline the aggregate dynamics resulting from the interaction of
firms which apply an (S,s) policy as shown in Section 2. The interaction between single firms is given
by spill-over effects through factor demand linkages. We assume that if a firm adjusts its capital stock,
it increases demand, at least to some extent, of Z*© randomly matched neighbouring firms. That is, we
consider amean-field interaction between the firms.

Since x changes in a discrete way, we have that the state variable s = K/K* changes in a
discrete way. In particular we have that s assumes values belonging to a discrete state space W, where

this state space is given by al values of s, for each possible vaue of x. In particular, we have that

K *(t) = K*(0)e!), where the dynamics of x(t) are described as follows



i
ix(t)+1 with probability h(1- | );

|

x(t+1)={x(t)- 1 with probability h
'|' C
i | . 1

i x(t)  with probability 1- h(1- | )1_ ol 7

For each value of x we have avalue of K* and so avaue of s. Capital imbalance level for firm
i, Si, assumes one of the values of the discrete state space W, that iss; T W, for i = {1, ..., n}. We label
the dements of the dtate space as follows. W= {a, c, sc, sc.- 1, ..., 0, ..., s - 1, scy, Cs, &}, &
indicates the active investment state, that is the state where the firms invests the optima amount | and
switches to state 0. c. is the critical investment state, that is, the state just before the active state. sc. is
the subcritical investment state and so on. The same applies for the disinvestment states. All states but
a.( are stable states in the sense that inaction is an optimal policy for the firm.

n

The economy is represented by s* = {s i}i=1’ where n is the number of firms in our economy.

The cardindlity of the state space depends on g* and ¢, the number of steps necessary to reach the
barriers of control starting from the optimal level, which in turn depends on the size of the sunk costs
and indivisibilities. In particular, g* and g are non-decreasing functions of the size of the sunk costs or
indivisibilities. We can calculate the number of positive (negative) shocks necessary to reach the trigger

point L’ (U") (see Figure 3), once we are at the target point c. We have that the following has to be

sttisfied: L'e® =c (U'eg' :C). Thus, rearranging terms we have that g+=log§e%%
® o e
g9 TI% o
w

= {a_ ,c ,0,scC,, c+a+} (see Figure 3).

For example, if ¢ = 3 and g = 2 then the state space will be

Figure 3

> g" and g are by definition of L* and U* integers.
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We can express the optimal investment (disinvestment) in terms of g* (g). We have that by

I el 0o . " +
definition of investment (disinvestment) P =c- L' %F =c-U B Using the condition L'e® =c

(U 'e? = C) we have that % = L'(e‘f - 1) gae% =U '(1- e’ )g Once a firm is hit by a shock,

either technology shock or demand shock, we have that it changes state. If a firm is for example in the
critical investment state, and if it receives a negative shock, then it switches to the subcritical investment
state, while if it receives a positive shock, then it switches to the active investment state. In this latter
case the firm adjusts fully its capital stock and in this way increases demand, at least to some extent, of
Z" randomly matched neighbouring sites because of factor demand linkages.

We assume that in the case of investment (disinvestment), firm increases (decreases), at least to
some extent, the demand of Z*© = g"® randomly matched neighbouring firms because of factor demand
linkages. Thus, the number of neighbouring firms which receive a positive (negative) demand shock
depends on the size of the adjustment. This because we normalise the size of the endogenous demand
shocks to be equa to the size of the exogenous total factor productivity shocks. As the amount of
adjustment increases, while holding the size of the demand shock constant, the number of firms from
whom the firm acquires capital has to increase. Further, we will introduce the degree or strength of
spill-over effects introducing a variable indicating the probability that some of the g randomly
matched neighbouring firms do not receive a demand shock, i.e. that some of the demand shocks will be
dissipated because of insufficient factor demand linkages. Neighbours receiving a positive demand
shock switch state toward state a,. If one of the neighbours receiving a positive demand shock is in the

critical invessment state, it switches to the active investment state, and invests an amount of
K*L'(e‘f - 1), and increases so demand, at least to some extent, of g° randomly matched

neighbouring firms, and so on. As long as there are firms in an active investment (disinvestment) state,
this process goes on. Once there are no firms in the active investment or disinvestment state, the
economy fallsin an absorbing state™.

We are going to study the evolution of the configuration of the system and the associated
investment dynamics. We are going to cluster firms according to their state, and study the time evolution
of these clusters. In particular, we are going to define a clusters for each possible state, indicating the
average density of firms being actually in that state.

We start with a local description of the dynamics. We assume that in each point of time with
probability h(1 — ') (hl') each firm receives a positive (negative) total factor productivity shock

respectively. Since we are interested in the time evolution of our cluster, we are going to specify

11



transition probabilities for the single states. Once solved the model, we recover aggregate dynamics for
h equal to zero®.
In order to study the evolution of the system we have to specify the transition probability of the

economy to switch from state s*’ to state s*, which we write as W(s*|s*"). We assume that the

2
transition probability is symmetric and homogeneous and such that W(s*|s*") = O\N(S i*‘s )
i=1

V\/(S i*|s*') is the single site transition probability, which satisfies the normalisation property

é V\/(S I|s ) = 1. The probability that the system isin state s* at timet is given by P(s*, t). We can

write the master equation which describes the evolution of the probability distribution as follows

%p(s*,t)=aw(s*|s*-)p(s*-,t)- (s 1) A W(s s )

Following Vespignani, Zapperi (1998) we take a single site mean-field approximation'®. We denote

Mol e Pl T F o the average density® of firms, in each state. Using an indicator

function we can write these densities as

r(t) = {é:}](s - k)P(s "t

where ](sJ - k) =1if s; = Kk . The transition probabilities can be written as follows
a ](s " k)C~) w(si*|s ) = w(sf = kls )
S |

Using the master equation and the definitions above, together with the normalisation condition for the

transition probabilities we can write the evolution of the average density of firmsin state k as follows

16 Aswe will see, these models have infinitely many absorbing states, that is a state where the system in trapped
in without possibility of escape. See Dickman, Vespignani and Zapperi (1998).

17 See Vespignani and Zapperi (1997), (1998) for details.

'8 Mean field theory is concerned with the study of the time evolution of clusters.

¥ |n our caseit is the average fraction of firmsin a given state.

12



%rk :{é:‘}w(ks*')CT) Mo - Ty (8)

where the evolution equation has been truncated using a dynamical mean field approximation at the

single firm level®, that is P(S ) = C) P(S ) = C) r..

The dynamics of the system are so completely specified once transition rates at the single firm
level are determined.

Given that afirmisin the critical disinvestment state, and given that no neighbouring firmisin
the active disinvestment state, the single site transition probability to shift to the active disinvestment
state is given by

vv(a_ c,S W ! a_)rc_ o) re.=lhrg (1' ra_)z-

iTs \n

where Z = g is the number of neighbouring firms. As pointed out previoudy, in the case of investment
(disinvestment), the adjusting firm increases (decreases) demand of potentidly Z© = g'© randomly
matched neighbouring firms because of factor demand linkages. There are so potentidly g sites
involved in the dynamic relaxation process of investment (disinvestment). The degree of spill-over
effects between firms is represented by the probability that a firm receives a demand shock once one of

its neighbouring firms is in an active state. Given that investment-disinvestment occurs, the shock will
be transferred to each neighbouring firm with probability %(1 e)whereg =g¢* and Z = Z* in the case

of investment and g = g and Z = Z" in the case of disinvestment and where €' is the probability that a
neighbouring firm does not receive a negative shock because of insufficient spill-over effects among
firms, i.e. insufficient factor demand strength. Thus, given that a firm is in the critical disinvestment

state and given that one neighbouring firm is active, the single site transition probability is given by

vv(a_ |c_ S/'=a st a_):(l- I h)%(l- e’

The probability that a shock will not be transferred depends on the strength of the factor demand
linkages between firms. In the limit where € ® 1 we have that, given that afirm isin an active state, no

neighbouring firm will receive a demand shock because the factor demand linkages are negligible. In

13



this limit each firm is self-sufficient. On the other side, in the limit of € ® 0 we have perfect spill-over
effects, that is, each of the randomly matched neighbouring firms receive a demand shock of the same
size of an exogenous one. Thisis equivalent to say that these neighbouring firms receive the exogenous
shocks accumulated at the adjusting firm. In this limit, each firm is fully specidised, and the single
firms are interconnected through strong localised input-output relations. Given the multiplicity of active

neighbouring sites we have that

a

{5 NN

}W(a' csimasy! a‘)rc_ra O fop =(g - &)@ 1hr,r, (1- rat)z-1 9)

jrils

wherewe set ge = € 1 [0,g], which is the average dissipation of shocks due to insufficient spill-over

effects. Substituting these expressions in (8) and neglecting higher order termsin | hand r , we get

the following law of motion of the average density of firmsin the active disinvestment state

%ra_ =-r, +thlir, +(g' - e')rc_ra_ (10a)

The derivation of the evolution of the average dendity of firms in the active investment date is

symmetric and is so given by the following

)l

ﬁrm =-r,, +h(1-1)r +(g*- e*)r r (10b)

G a

Using the same reasoning as above we can derive the law of motions for the average density of firmsin
the critical investment and disinvestment states. The average density of firms in the critical investment
state decreases if the firms being actudly in the critical investment state are hit by an exogenous
technology shock or if they receive an endogenous demand shock due to interaction through factor
demand spill-over effects. On the other side this density increases if firms which are actualy in the
subcritical investment state receive an exogenous or an endogenous positive shock, and so switch to the

critical investment state. The evolution of the average density critical investing firmsis as follows

—r :-[h+(g' - e')ra_ +(g*- e*)rm]r& +[h(1- I )+(g*- e*)rm]ra (11a)

0 See Vespignani and Zapperi (1998) for details.
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where I . isthe average density of sitesin the subcritical investment state. In the same way, we have

that the time evolution of the average density of firms in the critical disinvestment state is described by

the following law of motion

%rc_ :-[h+(g' - e')ra_ +(g*- e*)rm]rc_ +[h| +(g' - e')ra_]rsc_ (11b)

For the cluster of firms being actualy in the subcritical investment (disinvestment) state we
have to take into account also the event that firm which are with a higher (lower) capital imbalance
could receive a negative (positive) shock, and so switch to the subcritical investment (disinvestment)
state increasing its cluster. Thus, the time evolution of the average density of firms being actualy in the

subcritical investment state is given by the following law of motion:

)l

= :-[h+(g' e )r, +(g- e*)rm]ra +[h(1- 1)+(g" - e*)rm]r%_ﬁ

+[hl +(g' - e')ra_]r& (12a)

In the same way we have that the time evolution of the average density of firms being actualy in the

subcritical disinvestment state is described by the following law of motion

)l

A S R A B (IR

+[hl +(g' - e')ra_]rc__1 (12b)

In order to simplify notation we definea= h(1- | )+(g+- e*)ra+ and b = hl +(g' - e')ra_ , being

the probability, for the single firm, of receiving a positive and negative shock, either exogenous tota
factor productivity or endogenous demand shock, respectively. Following the arguments outlined above,
we have that the time evolution of the average density of firms being actually in a generic state m, where

¢. > m> Qisgiven by the following law of motion

(133)
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The time evolution of the average density of firms being actually in a generic state m*, where 0 > m* >

c. isgiven by the following law of motion

%rw:-(a+b)rnf+brm*_1+arm*+1 (13b)
The time evolution of the average density of firms which are actualy in state O, that is they have an

optimal level of capital, is given by the following law of motion:
Rl (a+b)r +ar_ +br +r_ + 13
ﬂt 0o~ "~ a r0 a'r-l r1 ra+ ra_ ( C)

where we have to take into account also the fact that firms in the active investment and disinvestment
state switch immediately to state O.

The dynamical system (10) — (13) describes so completely the time evolution of the average
dengties. In the mathematical description above we implicitly assume an infinite time separation
between the two different dynamics (Vespignani and Zapperi (1998)): the exogenous driving force,
given by the exogenous total factor productivity shocks, and the endogenous demand spill-over
dynamics, given by factor demand linkages. In particular, we assume that no further exogenous total
factor productivity shock occurs as long as endogenous dynamics through demand linkages go on, or in
other words, that investment and/or disinvestment avalanches do not overlap, or at least that the event of
avalanche overlapping is of measure zero. Thisis not a strong assumption as long as we assume that the
exogenous driving force h is very small and that the number of firms living in the economy (n) is very
large.

In the following we are going to solve the model in the stationary state, that is the state where
the average dendities of firms being in a particular state remains constant. Further, we restrict our
analysis to the case where the probability of a decrease in the total factor productivity is small compared
to the probability of an increase. That is, we assume that there is a positive drift in the exogenous
driving force of the economy, i.e.| £ %.

For the system to exhibit stationary average densities the following conservation law must be
satisfied

(1- a)h(l- Mo - Ta )n: (e*rm -er, )n (14)

16



where a = 2| . The left-hand-side of (14) represents the net - influx of small idiosyncratic total factor
productivity shocks, where we have taken into account the fact that firms which are in the active
investment and disinvestment state do not receive any exogenous shock. The right-hand-side represents
the dissipation of shocks because of insufficient spill-over effects. Condition (14) states that every non
compensated shock must be dissipated in order to maintain stationarity of the average densities. Further,
from (14) we have that the stationary average density of firms in the active investment state is higher
than the stationary average density of firms in the active disinvestment state, since we have that in the
stationary state there must be a higher dissipation of positive shocks than negative ones.

In order to calculate the stationary average densities of firms being in each state we have to
calculate the stationary state relationship between the stationary average density of firms in the active
investment and disinvestment state. The stationary average densities are related in arecursive way aswe

will seein the proof of Proposition 1. We are now going to state our first result:

Proposition 1:
The relation between the stationary average density of firms in the active investment and

disinvestment state, for g*, g 2 2, is given by the following

é u u
r, él- gé—)g u=&—-=+ -1dir, (15)
& 30 g :

Proof :
See Appendix I1.

Equation (14) together with (15) define the stationary average density of active investing and
disinvesting firms. We can state our second Proposition, which solves the system for the stationary
average dendity of firmsin the active investment and disinvestment state in the limit of perfect spill-over
effects:

17



Proposition 2
Suppose there exists a Q which defines the stationary state refationship r, =Qr, . In state

wheree' @ ® 0andh® 0, we have that Q is given by the following
a) ifl <%then" g,g " wehavethat Q® 0
b) ifl =%then" ¢, g" wehavethat either Q® g'/gorQ® 0

Proof:
See Appendix I11. H

Proposition 2 states that as long as there is a strictly positive drift in the exogenous driving

r
force, in the limit of €? ® 0 and h® 0, we have that Q = r—a tends towards zero. Notice that if we
a,

tune the exogenous driving force down to zero, the system will fall, sooner or later, in one of its
absorbing states (Dickman, Vespignani and Zapperi (1998)), in which the average density of firms in
the active investment and disinvestment state is equal to zero™. Thus, in this limit, where both stationary
average densities are equal to zero, the average density of firms in the active disinvestment state tends
towards zero faster then the average density of firmsin the active investment state. The intuition for this
result is that the endogenous propagation of positive shocks is much stronger than the endogenous
propagation of negative shocks. On the other side, if the probability of receiving a positive exogenous
shock is the same as the probability of receiving a negative one, then we have, in the limit of €0 ® 0
and h® O, two equilibria: in the first the average density of firmsin the active disinvestment state and
the average dendity of firms in the active investment state are equa to zero, while in the second one we
have that Q ® g’/ g. In this latter case the behaviour of the stationary average density of firmsin the
active disinvestment state is proportiona to the stationary average density of firms in the active
investment state. In this latter case, the endogenous propagation of positive shocks is proportiona to the

endogenous propagation of negative shocks.

We have in this model one order parameter 1, and three control parameters: €, hand a. his

the exogenous driving rate, which in our case, together with a, determine the exogenous path of
technological progress, and € represents the degree of complementarity among the single firms,

indicating the degree or strength of factor demand linkages among (neighbouring) firms.

2L Thiswill be shown in more detail later on.
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The configuration of the system depends on the past dynamics, in particular on past avalanches.
Past avalanches predetermine current and future avalanches in the sense that they change the density of
firmsin critical and lower states. This implies that the system has a memory effect. This memory effect
depends on the magnitude of the exogenous driving forces: higher h decreases the memory of the system.
The transmission of shocks occurs through firms in the critical state. As we will see in the next section,
their density determines the possibility of avalanches and so the propagation of shocks throughout the
system. The stationary average density of firms in the critical investment state determines the degree of
correlation between firms. If this dengity is low then the correlation of investment between firmsis low
and the endogenous propagation mechanism is weak. A law of large numbers applies and the aggregate
investment rate converges towards zero. The economy is in this case in a subcritical state. We will see
that in the case of perfect spill-over effects, the stationary average density of firms the critica
investment state self-organizes towards a critical vaue. The investment behaviour will be so highly
correlated among firms. In this case investment fluctuations do not cancel out and the aggregate
investment rate fluctuates around a constant, positive value. The economy is so in a critical state, where
small idiosyncratic total factor productivity shocks can drive large investment fluctuations.

In the following Section we are going to study the Stationary state behaviour of the model, in
particular how perturbations of the system evolve over time and space. For this purpose we are going to
introduce measures of average sizes of investment and disinvestment avalanches and of the volatility of
these avalanches. After this we are going to study the effect of the investment behaviour on the long run

growth rate and the short run fluctuations of aggregate outpuit.

3.2. Average Avaanche size and Volatility of Avalanches

We are going to introduce in this Section measures of avalanches dynamics in the stationary
state. Since we are interested in the effects of the investment activity on the long run growth and on the
volatility around this average rate we have to calculate the first two moments of the distribution of
avalanches. In other words, we are looking for the average number of firms adjusting their capital stock
in the case of an exogenous shock, and the average change of this average number.

The average avalanche size in the dtationary state has been introduced in Vespignani and
Zapperi (1998). They define ¢, (Dx, Dt) as the response function of the system and ¢, as the total

susceptibility, which is given by the integral over space and time of the response function. Vespignani
and Zapperi (1998) show that in the stationary state
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ce:Iimlra (16)
he®o qh

and that the relation between average avalanche size <s> and the zero field susceptibility c,. is

(s) = . Here the driving rate (h) of the system is tuned down to zero. This tuning down to zero

corresponds to an infinite time separation between two different time scales: the timing of the exogenous
technology shocks and the timing of the endogenous propagation the shocks through demand linkages.
Taking the limit h ® 0 corresponds so to an aggregation procedure, i.e. the switching from a loca
analysisto an aggregate point of view. The average avalanche size indicates the average density of firms
investing or disinvesting after a small idiosyncratic technology shock has hit the system. It is a
stationary state average reaction function, indicating the number of firmsinvesting or disinvesting in the
case of an exogenous technology shock. It aso indicates the magnitude of propagation of the shock in

the system through factor demand linkages. In our case we have two different zero field susceptibilities

according to the type of shock: (S)" =c_" and (S)” =c_ are the zero field susceptibility and

average avalanche size of investment and disinvestment respectively.
In order to study the volatility of the avalanche size we define the generdized variability

function f . (Dx, Dt) and the total variability of the system f ., which is the integral in time and space

of the generalised variability function. We can state our third result.

Proposition 3:
In the stationary state we have that the following relation between second moment of the

distribution of avalanches and total variability of the system holds

(17) () =[f | =|limf,, (17a)
and further, we have that
2
) r

i =0 am

Proof:
See Appendix V.l
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Taking the limit h ® 0 corresponds aso in this case to an aggregation of the single firms. <SZ> isan

index of the variability of the number of firms adjusting in the case of an exogenous technology shock.
It indicates the average change in the average number of firms adjusting in the case of an exogenous

total factor productivity shock.

In the next two Propositions we state results about the average number of firms adjusting their
capital stock in the case of an exogenous total factor productivity shock, and the average change in this
average number. In particular, we have to distinguish between two different cases. @) there is a positive
drift in the exogenous driving force of the economy, i.e. | < %2 and b) there is no drift in this exogenous

driving force, i.e.| =%

Proposition 4:
Consider the case where | < Y. The first and the second moment of the distribution of

investment and disinvestment avalanches is given by the following expressions:

<S>+=+1_—af. (18a)
e -eQ
. (1-a)Q
() " e e0 (18b)
()" = 2@%(3,)2 (1- a)(1+Q)- & Lgngﬂlcz"\ (189
gy ta L. la e Y- e fimL ol
(&) =25 oolimeQ e Q,)ngl a)(1+Q)- e Lg@ngﬂth (18d)

Further, we have that, in the limit of perfect spill-over effects, ¥ ® 0 and h ® 0 the economy
converges towards a critical state: the average number of firm investing in the case of a positive
exogenous shock diverges towards infinity, while the average number of firms disinvesting capital in
the case of a negative shock converges towards zero; further, the second moment of the distribution of
investment avalanches diverges towards infinity, while the second moment of the distribution of

disinvestment avalanches converges towards a finite value if g = 2 and towards zero if g > 2.
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Proof:

A sketch of the proof will be given in Appendix V. Bl

These results show that as long as the spill-over effects are less than perfect, there exists a finite
average avalanche size of firms investing and disinvesting. Even though there are infinite many firmsin
the economy, only a finite average number of them will invest. Further, since a characteristic scale
exists, alaw of large numbers applies. Thus, as we will see more formally in the next section, we have
that as long as the spill-over effects are less than perfect, the investment rate will be negligible since the
number of firms adjusting are negligible compared to the number of firms working in the economy, and
fluctuations average out in the process of aggregation since alaw of large number applies.

On the other side in the case of perfect spill-over effects and in the case of a positive drift in the
exogenous driving force, the economy converges towards a critical state where no finite first and second
moment of the distribution of investment avalanches exists. Thus, the average number of firms investing
in the case of an exogenous shock in no longer negligible compared to the total number of firms existing
in the economy even though we assume that there are infinite many firms. There will be a finite
aggregate investment rate as long as the first moment diverges toward infinity at the same rate as the
number of firms does. Further, no characteristic scale exists and so fluctuations do not average out.
Thus we will observe large fluctuations in the aggregate investment rate. This state is a critical state,
since the zero field susceptibility diverges and small idiosyncratic shocks can have long ranged effects.
In Appendix VI we show that in the case of perfect spill-over effects the economy converges naturaly
towards this critical state. In other words this state is asymptotically stable. In Appendix VI we show
also that, in the critical state, the distribution of the stationary average densitiesis given by

r.=0 ro.=— .. ro=—7 1, =0 .. r, =0 (19

As we can see from (19) the stationary average density of firms in the critical investment state is 1/g’.
Thus, with probability 1/g” an exogenous total factor productivity shock starts an investment avalanche.
Further, since in the case of investment, the firm increases demand of g" randomly matched
neighbouring firms, and each of these firm is in a critical investment state with probability 1/g*, on
average, the shock will be propagated further on, leading to a long-ranged investment avalanche.

Investment behaviour will be so highly correlated among the single firms.

We have seen in Proposition 2 that if there is no drift in the exogenous driving force, i.e. | =%,

then there are two possible equilibria: Q = 0 and Q = g*/g. Consider first the case where Q = 0. We can
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see from conservation law (14) that the stationary average density of firms in the active investment and
disinvestment state is equal to zero. Thus, in this casewe havethat r, =r, =0.
9

Consider now the equilibrium where Q" %232 %4® Q' %% ¥, %® Q = g

. By definition,

+

we have that " = e’ g— In our following Proposition we state that this equilibrium is not a critical

State.

Proposition 5

Consider the case where the probability of receiving a positive exogenous shock is the same

+

as receiving a negative one, i.e. | = % and further where Q" %232 %4® Q' %23 ¥, %® Q = g—

(Proposition 2b). This equilibrium is not a critical state. In particular, a finite first moment of the

distribution of avalanches exists.

Proof:
See Appendix VII.

As long as there is no drift in the exogenous driving force of the economy, we have that the
average number of firms investing or disinvesting in the case of an exogenous total factor productivity
shock is given by a finite value. In other words, the zero field susceptibility does not diverge towards
infinity. Thus, as the number of firms existing in the economy diverges towards infinity, the investment-
disinvestment activity has a negligible aggregate effect. This shows that a critical state exists only if
there is a positive drift? in the exogenous driving force. In the next Section we are going to study the
average aggregate growth rate and aggregate fluctuations in this economy assuming that there is a

positive drift in the exogenous driving force, i.e. | <.

22 symmetrically, there exists also a critical state if there is a negative drift in the exogenous driving force
(Andergassen (2000b))
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4.1. Average Aggregate Growth Rate

In this Section we are going to study the behaviour of the average aggregate growth rate,
focusing on the long run growth rate and the variance of the growth rate of our economy if there is a
positive drift in the exogenous driving force of the economy, i.e.| <%

There are two different dynamics: the exogenous growth of the total factor productivity and an
endogenous multiplier through factor demand spill-over effects. This latter one is an endogenous
multiplier of the exogenous shocks. Intuitively, as long as the number of firms adjusting is small
compared to the number of firms in the economy, the effect of the endogenous propagation mechanism
on the aggregate growth rate should be negligible, while in the case of large investment avalanches we
have a non-negligible effect. That is, as long as we are in the subcritical state (€ > 0) the average
aggregate growth rate should be unaffected by the avalanche dynamics of investment. In the critica
state (€ ® 0) we have that the average size of the investment avalanches is non-negligible compared to
the total humber of firms exigting in the economy, even though we consider the case where there are
infinite many firms in the economy, i.e. N ® ¥. In this latter case the investment activity will have a
non-negligible aggregate effect.

The aggregate growth rate of the economy is given by the average growth rate of the single

firms in the economy. As we have seen in section 2.1 each firm produces according to the production
function Y = A (Kt' )b . We have that with probability (1—1)h (I h) total factor productivity increases

(decreases) while with probability 1 — h the total factor productivity remains constant. This processis at

the limit representable by a geometric Brownian motion®
dA' = cAdt +s'Aldv/ (20)
wheredv | = € *+/dt , where € * are independently identically normally distributed across firms and

time with mean zero and unitary variance. Taking total differential of the production function we have

that

(21)

“Notice that A is defined as A = €. In Appendix | we show that a the stochastic environment each firm is
facing is representable by a an absolute Brownian motion of the form da= nidt + sdv. Using Ito’'s Lemma we
have that A follows a geometric Brownian motion like (20) where ¢ = ni + ¥ s2,
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Averaging over al firmsin our economy we obtain

gOY 1204 15K -
i=1 YtI n i=1 I n i=1 }<tI

Next we are going to discuss in turn the single components of (22) for large values of n.

Since eti * are identically independently normally distributed across firms and time we have that

14 dA

for large n, Eé‘ —— = cdt . The dynamic capital accumulation constraint for each firm is given by

i=1
. . | .
dK; = 1,dt. We know that the amount of investment and disinvestment is rCh L'(eg - 1) if
: | . :

s, =L"and K = '(1- e’ ) if s, =U" respectively. The average aggregate change in capital can
: 18 dK| 148 dK| 1

be written as follows —a =—a — =

nZ K nig K s,

%én. [l(St' = L')(e‘f - 1)L'- l(st' = O')(eg' - 1)U ']S—lidt. This last term is a random variable. The
i=1

t

o 14 dY 1
average aggregate growth rate of output™ g, = —a — —; Will beso
ng dt Y,
1g i . , _ 11
g,=c+b ﬁa [l(st = L')(eg - 1)L'- l(st = O')(eg - 1)U ]s_i (23)
i=1 t

We have calculated in the previous section the first two moments of the distribution of the avalanche
size, and so we are able to calculate the expected value, i.e. the long run value defined as E[gy] , and
the variance of the average aggregate growth rate defined as

€a g dy 16U é18 dy 10
Var —E&—Qq ——= U- Ea —L — 1 . We can state so the following proposition about
(gy) na1 Y dio g éeﬁf?l v did g prop

the long run growth rate of aggregate output and its short run variance.

% Since we assume that the exogenous shocks hit each firm with the same probability and further that
interaction occurs in a random way, we have that each firm will produce, in the long run, an equal share of
total output.
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Proposition 6:

Consider an economy with infinite many firms, i.e. n ® ¥. The long run growth rate and the
short run variance of this economy depends on the strength of spill-over effects. In particular, we can
distinguish two cases:

a) ne® ¥
E[gy] =cC

Var (gy) =0
b) ne® 1

E[gy] =c+b 1;1 (e‘f - 1)

Var(gy) = bZZ,l%(e‘f - 1)

o oy

Proof:
See Appendix VIII. 1

Proposition 6 implies that the limiting behaviour of the long run growth rate and it short run
fluctuations depend on the limit of ne. In case @) that isin the case of less than perfect spill-over effects,
i.e. e >0, there are still insufficient factor demand linkages. As we have seen in Section 3.2. there
exists a finite average investment and disinvestment avalanche size and aso a finite second moment of
the distribution of investment and disinvestment avalanches. Thus, as the number of firms in the
economy increases, the investment rate will be negligible. Further, since a characteristic scale exists, a
law of large numbers applies and so there will be no aggregate fluctuations. The aggregate growth rate
depends so only on the exogenously given average growth path of total factor productivity, while there
will be no short run volatility of the aggregate outpui.

In the case of ne® 1, which is the case of perfect spill-over effects, we have that the long run
growth rate of aggregate output and its short run fluctuations depends also on the optimal size of
investment. Through factor demand linkages we have an endogenous propagation mechanism which, in
the case of perfect spill-over effects, and in particular if ne® 1, affectsin a non-negligible way the long
run average aggregate growth rate of output and its short run volatility. In this limit the size of the
average investment avalanches increases at the same rate as the number of firms does. Thus, there exists

a finite long run aggregate investment rate which leads to a higher long run growth rate of aggregate
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output. Further, this aggregate investment rate will be highly volatile, leading to large fluctuations in the
aggregate output.

4.2. Discussion

In Section 4.1 we have calculated the long run growth rate and the variance of the average
aggregate growth rate of output of this economy. We have seen that if the rate of convergence towards
perfect spill-over effectsis 1/n, then small idiosyncratic tota factor productivity shocks lead to a highly
voldtile, positive aggregate investment rate which increases the long run growth rate of aggregate output
and further lead to large short run fluctuations in the same. The intuition for this particular limit is the
following. As the number of firms existing in the economy increases aso the degree of specidisation of
each firm or plant increases, and so aso the degree of interdependence between the single firms or
plants increases. Thus, in growing economies, where the specialisation of each firm/plant is increasing
and so also the number of firmg/plants is increasing the strength of the spill-over effects is increasing,

i.e. e¥%38,® 0, because of the increasing interdependence of each part of the system. In other words,

we have that e = 1/n, that is the strength of the spill-over effects depends on the number of firms
existing in the economy. In highly developed countries there will be perfect spill-over effects. These
countries will so grow along acritica state.

In the case of perfect spill-over effects, i.e. result b of Proposition 6, we have that the long run
growth rate of aggregate output of the economy and its short run fluctuations are a function of the size
of the optimal investment and so also a function of the size of sunk costs of investment and of the
importance of indivisibilities. We are able to make some comparative statics, changing the size of g
while holding the average growth rate of total factor productivity ¢ constant. From Proposition 6 b), we
have that higher g* yields a higher long run growth rate and also a higher short run variance. Thus,
given the exogenous growth path of total factor productivity, the long run growth rate and its short run
variance are non-decreasing functions of sunk costs of investment. Higher sunk costs lead to a larger
aggregate investment rate but aso to a higher volatility of the same. In particular we can distinguish two
different effects as g* increases: @) an increase in g implies by definition that, given that we are in the
target point, it needs more positive shocks in order to reach the trigger point. At the same time, in the
case of investment, the shocks will be transferred to more firms. As aresult, the endogenous diffusion of
the shocks decreases by a power law with coefficient — 1. b) as g* increases, the amount of capital
invested by each firm increases in an exponentia way. We can summarise these results as follows:

given a certain exogenous growth of total factor productivity, and in the case of perfect spill-over
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effects, higher sunk costs of investment or disinvestment lead to a higher long run growth rate of the
economy and a higher variance of the average aggregate growth rate. In other words, the economy
grows at a higher rate but in the short run there are larger fluctuations. The model predicts a trade off
between a higher long run growth rate but larger short run fluctuations, or lower long run growth rate
but also smaller short run fluctuations. This trade off is not a positive one in the sense that an increase
in the sunk costs does not necessarily increase the average aggregate growth rate of the economy. In the
comparative statics outlined above, we assumed that the exogenous average total factor productivity
growth rate was fixed, while an increase in the sunk costs could decrease the average aggregate path of

technology growth®.

From Proposition 6 we can see that there exists a simple power law between the long run

growth rate of the economy and the its short run volatility. The model predicts the following power law:

1

Iog(‘ E[gy] -C D = > Iog[Var (gy)] (24)

(24) states a simple relationship between the logarithm of the long run growth rate of the economy, net
of the average growth of tota factor productivity, and the logarithm of the variance of the growth rate.
This relation is somehow biased by the fact that labour is a fixed factor®. Proposition 4 together with
Proposition 5 imply, in the case of perfect spill-over effects, large aggregate fluctuations are obtained
only if there is a positive drift in the exogenous driving force of the economy, i.e. if there is a positive
exogenous growth rate due to a positive technological progress. Further, through large aggregate
fluctuations in investment the economy will grow at a higher rate. On the other side, in the case of
perfect spill-over effects but if there is no drift in the exogenous driving force, i.e. in the absence of
technological progress, there will not be large fluctuations in aggregate investment. In this case the
growth rate of the economy will be zero.

The model predicts also that the variance of the aggregate investment rate is higher than the
variance of the growth rate of aggregate output. In other words, the model predicts that aggregate
investment is more volatile than aggregate output. In particular, we have that Var (g) = b? Var(I/K).
This result is somehow biased by the fact that we assumed labour to be fixed. On the other side, if
labour was fully flexible, the variance of the growth rate of output would be the same as the variance of

investment since every fluctuation in capital would lead to fluctuations in the employment level. Thus,

% See Gilles Staint-Paul (1997) for an example related to sunk costsin the labour turnover and the rate of
innovation.
% |n Andergassen (2000b) we assume that |abour, as well as capital, are quasi fixed factors.
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assuming that also labour is quasi-fixed, we have that this relationship depends on the relative

importance of the adjustment costs™.

5. Conclusions

We studied a model where firms adjust their capital stock in an intermittent and discrete way.
We argued that in the case of adjustment the firm increases demand of randomly matched neighbouring
firms. These spill-over effects are because of factor demand linkages. So we have an endogenous
propagation mechanism and a multiplier of small idiosyncratic exogenous shocks. The investment
behaviour will so be correlated among the single firms. We saw that in the case of perfect spill-over
effects this correlation is so high, leading to a highly volatile, positive, aggregate investment rate even
though the economy is driven by only small idiosyncratic total factor productivity shocks. We argued
that this is the case of highly developed countries, where each firm is highly speciaised and so the single
firms are highly interconnected. The aggregate investment rate has in this case a non-negligible effect on
the long run growth rate of the economy and it leads to large short run fluctuations in the same. We saw
that if there is a positive drift in the exogenous driving force of the economy, i.e. | < %% and given an
exogenous average growth path of total factor productivity, greater discontinuities lead to a higher long
run growth rate of aggregate output but also greater short run volatility of the same, while smaller
discontinuities lead to a smaller long run growth rate of aggregate output but also to a smaller short run
volatility of the same. Higher long run growth is reached through larger fluctuations in the investment
rate. From this does not follow the policy advise to increase sunk cost of capital turn-over since we have
not taken into account the effects of a change in the sunk costs on the average growth path of total
factor productivity. Intuitively an increase in the discontinuities could aso decrease the average growth
path of total factor productivity. The effect of an increase in the discontinuities on the long run growth
rateis so a priori ambiguous, while the short run volatility increases unambiguously.

We have seen that the model predicts a simple relationship between the logarithm of the long
run growth rate, net of the average growth rate of total factor productivity, and the logarithm of the
variance of the growth rate of the economy. Further, the model predicts that the variance of the
investment rate is much higher than the variance of the growth rate of aggregate output. These two

results are somehow biased by the assumption that labour was a fixed factor®.

%" See the previous footnote.
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Appendix |

In this section we study the stochastic environment of the representative firm. The aim is to
show that at the limit it is representable by a Brownian motion. This fact, together with the problem of
the firm outlined in the previous section gives the optimality of the (S,s) policy. We follow Dixit (1993)
and enlarge his analysis taking into account that with a positive probability a firm receives no shock at
all in each period of time. The stochastic environment can be described as follows.

We assume that in each period of time a firm can either be hit by a positive, negative or no
shock at al. The shock can either be an exogenous total factor productivity shock or an endogenous
demand shock.

We start describing the distribution of the changes in x. The probability of receiving a positive
shock, that is Dx > 0 is given by h, the probability of receiving a negative shock, that is Dx < 0 is given
by I, and so the probability of receiving no shock, that isDx = 0, isgivenby g =1 - h- |. We consider a
time interval Dt. This problem is similar to the problem of the position of a particle which is immersed
inaliquid and can move with probability h to the right, with probability | to the left and with probability
g remains in the same position. The probability of change in the relative position or cumulative change

after agiven timeinterval Dt, starting from position X, is described in the following figure (Figure Al).

Figure Al
4+—r
Xo Dx
Dt
I a h
Y
|2 2lq 2h h?
2hl+q

%8 See footnote 29.
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We can calculate the average change in position of a particle given an arbitrary initial position.
If x indicates the position of the particle, than the average change in position is given by E[ DX] = hDx
+1(- DX) = (h-1) Dx. In order to calculate the variance we have to calculate the second moment that is

E[(DX)Z] which is equal to h(DX)2 +1(- DX)2= (h+1) (DX)2 The variance of the change in x will

be in this case VAR[DX| = E[(Dx)’]- E[Dx]*= (h + 1)(Dx)?- (h - IYDx = [(1 - q)q + 4n1] (DX)?. In

S . . .
order to simplify notation we cal 1 - q=q and set Dx = ﬁ\/ﬁ . Using this notation we have that
S 2
(Dx)?= >—-Dt. A time interval of length t has n = t/(DX) steps, so we can calculate the mean of the
q

Dx
cumulative change in x after n stepswhichisn(h-1) Dx =t(h- 1) o and the variance after n steps

will be n[(1 - g)q + 4hl] (Dx)* = t(qq + 4hl) (%Xt) Define now h = —gq + m\/_\/_— and | =

1 T
_qu' @\/__

> Dt +. Using these definitions we have that h + | = (', as required. Further we have that
e [}

m/q . . - Dx
h-1=——/Dt . Evauating this last expression at the limit Dt ® 0, we have that t(h - I) o =tm
S

The cumulative average change in position after n steps is tm Now lets calculate the variance of the

cumulative change in position after n steps. Using the above definitions we can write the variance as

nt
foIIowsneq q +gq Pt 'Dt+ L(Dx) Sinceq=1- g we can simplify this expression and write the

qu Dtgs—E Evaluating this
o q Dt

nt 01 2 &
variance as tgq —q' Dt—E(Dx) , which is equa to tgq’

expression at the limit Dt ® 0 we have that the variance of the change in position is equal to ts?.
The cumulative process for Dt ® 0, that is at the limit in which the number of steps goes to

infinity for afixed time interval of length t, has the characteristics of a Brownian motion of the form

dx = ndt +s \/q'dv, (Al
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et

where dv . = \/» A/ dt and e, are normally distributed increments with mean zero and unitary
qI

variance. From (Al) we can calculate the average change and variance of the change in position which is
given respectively by E[Dx] = it and VAR[Dx| = s%t. This implies that the stochastic process the
firms are facing is in the limit of Dt ® O representable by a Brownian motion. As pointed out in a

previous footnote, J ,defined as J = €%, where x follows a Brownian motion (Al), follows a geometric

Brownian motion (2), with mean and variance appropriately redefined.

Appendix Il: Proof of Proposition 1

The stationary average densities for m > 0 are given by the following system

1
I’C+ gra+
_a+b
s, a Fe,
_a+b b
s,-1 — a rsm_grm
_a+b b
<,-2 a rsml_grsm
_a+b b
0——a I’L-—I'Z+

Forg"=2wehavethat r, =r_ whileforg'=2+iwehavethat r, =r ,;. The stationary average

a+b
a

densties are related in a recursive way: X, , = Xiq - EX" This latter is a second order linear

s
difference equation with roots 1 and a/b and so general solution X, = C, + g% C,. In order to find the

. - a+b
vaue of the two constants we impose the conditions that X, =r = 2 r,and that
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a+b)’- ab
X, = % o, - Solving this linear system and substituting the result into the general solution

we find the following resuilt:

9"
gt—; (All1)

0
g

(<o} :\C

which is the relation between dationary average density of firms in state 0 and firms in active
investment state a function of g*. Since we assumed that | £ Y5, we have that a2 b. The same applies

for m < 0 and applying the same reasoning to this part of the system we get the follow

A _ .0 u
1 @0 -

Mo g™ = -, . (Al12)
g a- bgho A

Putting (Al11) and (All2) together we get (15) stated in Proposition 1.

Appendix I11: Proof of Proposition 2

Consider the case where h, €© > 0, and so we have that r, =Q"r, . Using (14) we can

rewrite aand b as follows

g'h(1- a) +h*(1- a)(1+Q") +ahe’ - he Q"
e"- e Q"+h(1- a)(1+Q")

g h(1- a)Q"+h*(1- a)(1+Q") +ahe’ - he' Q"
e~ e Q+{1- a)n(i+Q)

(Alll1a)

b= (Alll1b)

Inserting (Alll1) into (14) we obtain the following relationship which defines implicitly Q’

[9°0- a) +h@- a)(1+ @) +ae’- e Q] - [g (- a)Q+he- a)(a+ @) +ae’- e Q] _
[g*(l- a)+h(l- a)(1+Q")+ae' - e Q"]g_ - [g' (1- a)Q"+h(1- a)(1+Q") +ae* - e Q"]g'
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= [g+(1' a)+h(1- a)(1+Q") +ae* - e Q"]g+
[9' (1- a)Q"+h(1- a)(1+Q") +ae’ - & Q"]g

-Q" (All12)

We define g = g/ g, and evaluating (All12) in the limit of €@ ® 0and h® 0, we obtain the following
relationship which defines implicitly Q

gg:(gQ)gy =Q (AlI3)

Aslongasa ! 1wehavethat (Alll3) has aunique solution, given by Q = 0. On the other side, if a = 1,
then we have that (AllI3) has two solutions, Q; = 0 and Q, = 1/g, where /g< 1,i.e. g < g . By

+

definition we have that " = e’ g— or equivalently e =e*g. Thus, we have that in the case of

solution Q, the conservation law (14) is satisfied only if | =%, i.e. a = 1. Consder now the case where

at land —r =r, . Weobtainin this case equation

Q a

Q-0:
Q- IO

(All14)

O+

o @
- ga

.

.
DO
Q|
Q|-

which has two solutions: Q; =0 and Q, =g whereg< 1,i.e. g > ¢.

Appendix 1V?: Proof of Proposition 3
We define the generalised variability function asf (X - X, t - t') and we define

Or,(xt)= & .. (x- x,t- t)Dh(x,t)d*xdr+o((Dh)’)  (ava

29 We follow the steps of the proof in VVespignani and Zapperi (1998) for the derivation of the average



If we set the perturbation [Dh(x', t')]? = d(t)d*(x) and so solving the integral over time and space we have

that D°r al(X,t) =f e (X,t) . We define the total variability of the system as

f h.e = (‘ﬁ h.e (X’t)ddth

The variation of the average number of firms adjusting in the case of an exogenous technology shock is

given by
DN, = a°r . (x,t)d xdt =f , ,

In the absence of externa driving force, that is in the limit of h ® 0, we have that the change in the

number of firms adjusting is |DNa| = <SZ> . We have aso that the following relationship is satisfied

= ($).

|f e| = ‘LI@I’E]f h.e

Now we assume that the perturbation applied to the field is given by [DI‘I(X',I')]2 = (DI‘I)2 and

further we define for smplicity t" =t - t' and X" = x - X'. We can rewrite (Al1V1) asfollows

D'r, = (Dh)’ o ... (x',t")d*x dt" = (Dh)f , .

. Dr 2r
Wehavesothat f . =1im o= l — . Using the above relationships we obtain the following
© weo(Dh)*  qh
2
: r.(h
(s*)=[f.|= jim =) ()
€ h® 0 ﬂhz

which isrelation stated in Proposition 2.

avalanche size.
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Appendix V: Proof of Proposition 4

In order to be able to calculate the first and the second moment of the distribution of avalanches
we need the stationary average density of firms in the active investment and disinvestment state. Form
(14), (15) and Proposition 2 we have that if | < Y%, then the limiting behaviour, of approaching the
critica dtate, of the dationary average densities of firms in the active and critical investment and
disnvestment state is described by

_ h(1- a)
Mo 7o +h(1- a)- [e' - h(1- a)]Q“ (Aviy
F o= 1
“ ae'+h(l-a)- e - h(1- a) Q. .
1-a g
_ h(1- a)Q"
fa = +h(1- a)- [e' - h(1- a)]Q" (AVID)
- 1
© ae'+h(1-a)- [e - h(1- a)|Q" ‘o
(L-a)Q ’

where we have seen, from  Proposition 2, that, in the criticd  date,

Q" ¥ YaF4® Q' Y23 ¥a¥a® Q = 0. As we have dready pointed previoudly, in the absence of an

exogenous driving force, i.e. h ® 0, we have that the system falls in one of its absorbing state, where
the stationary average density of firms in the active investment and disinvestment state is equal to zero.
Using (16), (17) and (AV1) we can caculate the average avalanche size and the second moment of the
distribution of avalanchesin the case of | < %%

In order to evaluate the limiting behaviour of Q' in the case of perfect spill-over effects we take
a first order approximation of Q" around its limit 0. The limiting behaviour of Q" is approximately

¢ ae'+(t-a)h U
-6 " u
. . &e +(h+g’)i-a)g N
described by Q"= 5 < 1. If we tune the exogenous driving force down to
éae* +(h+g')(1- a)u
+ u
ae’+(1-a)h §

1

-1

m D>
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/
«Q

+

1 ae

gae’ +g°(1-a)
éae’ +g'(1-a)d’
& ae' g -1
e u

> (D

O

. Thus, from this last expression we see

zero, i.e. h® 0, we have that Q'=

that in the limit of perfect spill-over effects we have that Q ® 0 which is a result which has aready
been stated in Proposition 2. Thus, we have for every g° 3 2 and g 2 2, the average avalanche size of
firms investing tends to infinity while the average avalanche size of firms disinvesting tends to zero.
Thus, we have that the average investment avalanche size diverges toward infinity, while the average

disinvestment avalanche size converges towards zero.

We turn now to study the behaviour of the second moment of the distribution of avalanches.
Fir¢, we have to show that the Ilimit LI@ﬂg%Q is a finite value. We have that

+

g

> (D~

ae"+(1-a)h

1- &
ge +(h+g')(1- a) T y
"= 5 . Taking the first derivative with respect to the driving rate h and

éae’ +(h+g')(1- a)u
é " a
g ae" +(l-a)h g

[( @ ey e

afterwards evauating the derivative in the limit of h® 0 we obtain

¢ ae U
n €. + + u 2 4+
sae"+qg°(1- a 1-
Th éae" +g'(1-a)u 1[ae +(1- a)g ]
& ae’ |
é ae’ i
1- A A
Ge'+g'(l-a)i  éae’+g'(1-a)t’ (1-a)'g?
+9 N . .2 e ae’ L,J +\2 (AVZ)

jéae+g*(1-a)u’” € 0 (ae’)

X5 + a0 -ly

Te ae U b

which isafinite value.
We gtart with the study of the second moment of the distribution of investment avalanches

(18c). Taking into account (AV2) we see that the first term in the absolute value of (18c) divided by
1/(e")?, evaluated at the limit of € ® 0, is either zero or afinite value, depending on whether g = 2 or g
> 2. The second term in the absolute value of (18c), divided by 1/(e")? and evaluated at the limit of €'
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® O diverges aways towards infinity. So the second moment of the distribution of investment
avalanches diverges always towards infinity, with the power 1/(€")? wheree' ® 0.

We study now the limiting behaviour of the second moment of the distribution of the
disinvestment avalanches (18d). The third term in the absolute value of (18d), evaluated in the limit of €

® 0isequa to zero. The second term in the absolute vaue of (18d) in the case of g = 2 convergesin

aZ
the limit of € ® 0 towards - W while in the case of g > 2 this term converges, in the limit of €'
g

® 0, towards zero. The first term in the absolute value of (18d) in the case of g = 2 converges in the

a
limit of € ® 0 towards ZW , while in the case of g > 2 this term converges, in the limit of €" ® O,
g

towards zero. Putting these results together we abtain the results stated in Proposition 4.

Appendix VI: Distribution of the stationary average densities in the
critical state and stability

We are going to derive the stationary state distribution of the average densities in the case of
perfect spill-over effects. Further, we are going to show that this state is asymptoticaly stable. In
Appendix 11 we have described the stationary state of the model. Thisis given by

re =7Ta (AVI1a)
a+b

le =5 T (AVI1b)
a+tb b

<, -1 = a rsc+ - grm (AVI]-C)

a+b b
w2 Ne 1_5rsc+ (AVI1d)
_a+b b
O_Trl*-grz* (AVIle)
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We have seen in Appendix V that we can rewrite (AV11a) in the following way:

1
“ ae"+h(l-a)- e - h(1- a)|Q"
1-a

r

(AVI2)

1
Thus, in the limit of perfect spill-over effects €¥ ® Oandh® Owe havethat r, = e In order to

be able to evaluate (AVI1b) we have to calculate b/a in the limit of perfect spill-over effects. By

definition, we have that

b_| h+(g -e)Qrr, (AVI3)
a (1-1)h+(g"-e’)r,
Using (AV1a) we can rewrite (AV13) asfollows:
I
b 14 [e+ +h(1- a)- (e' - h)Q" +(g' - e')Q"
7L (AVI4)

L ; [e+ +h(1- a)- (e - h)Q"|+(g" - ')

From Proposition 2 we know if there is a positive drift in the exogenous driving force, then in the limit

of perfect spill-over effects, Q" %234, #4® Q' %134 ¥4 ¥® Q® 0. Thus, the RHS of (AVI4)

1
converges in this limit to zero. (AVI1b) becomesso r, =r . = ? From (AVI11c) and (AVI1d) and

Cy

(AVllg)weseethat r, =r, =...=rgy, =r  =—.

We have now to consider states where the firm has more capital than optimal. We have in this

case a system symmetric to (AV11):

1
r =- AVI5
e =pla (AVI5a)
a+b
Mg :TrC- (AV15h)
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=S -2, (AVI50)

2 g, _ (AVI15d)

=r, (AVI15€)

Using (AV1b) seen in Appendix V we see that in the limit of perfect spill-over effects the stationary

average dengity of firms in the critical disinvestment state converges towards zero. We can rewrite

b a+b
(AVI5c) as grsc__l = Trsc_ - I'. . Thus, taking into account that in the limit of perfect spill-over

effects b/a converges towards zero we obtain that r, =r . In the same way, we can rewrite (AV15d)

b atb - . .
as Iy, :Trsc_-l- I andsowe obtainin the limit of perfect spill-over effects ro, ., =r, .
Thus, weobtainthat r, =..=r ,=rg =r_ =r, =0.

We are now going to proof that this is the asymptotic distribution in the case of perfect spill-

over effects. In other words, we are now going to show, that the critical state

is asymptotically stable.
In order to study the local sability of critica state of the system we take a first order

approximation of the dynamical system. Written in matrix form we obtain

d
—z=Bz
dt
where
Tér r 1r ! r L r r r u
z =8 Sy - sy I
& * v g =g “ g = ; * 3
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and

é e u
& -— h 0 0 0 0 0 0 g
e 9 d
e u
& 0 -(+ah h 0 0 0 0 0 g
e 4
g 0 ah - (1+a)h 0 0 0 0 0 3
é u
é U
é (
é U
e 1 0 0 - (1+a)h 0 0 0 0
e 4
_€ u
B=¢ a
€ d
é ) U
g O 0 0 0 (1+a)h 0 0 13
é a
é u
é a
é a
é 0 0 0 0 0 - (1+a)h h 0 u
é a
é a
e O 0 0 0 0 ah - (1+a)h 0 g
e 4
e u
~ 0 0 0 0 0 0 ah 1
g H

In order to study the stability of the system write down the characteristic equation of B

g?z_i- | 3[ (1+a)h- | ]g”g"l(- 1-1)=0 (AV16)

+

e
Solution of (AVI6) gives the eigenvalues of the system, which are, |, = - e l,=-(1-a)h and

| ; =-1 which are dl negative. This is sufficient to show that the system is localy asymptotically
stable.

Appendix VII: Proof of Proposition 5

We ae going to proof Proposition 5 by contradiction. Suppose equilibrium

Q" ¥ ¥aF4® Q' ¥aZ Vo ¥® Q = is a criticd state. Thus we should be able to get the

(e} |(Q
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stationary average densities of firms in the active investment/disinvestment state. We can rewrite the

conservation law (14) asfollows
+ 1 - + -
—~h (1- rm)+—h (1- ra_):e r.-€er, (AVII1)

where h* and h™ are positive (negative) shocks. Taking into account conservation law (AVI11) we have
that the limiting behaviour, of approaching the critical state, of the stationary average density of firmsin
the active and critical investment and disinvestment state is described, in this state, by

h
=— AVII2
fa 2e" +h ( 3
(=N (AVI12b)
& 2e +h

Using (AVII2) we have that the average investment and disinvestment avalanche size in this

. 1
= > and () = Py Thus, in the limit of perfect spill-over effects, the

average avalanche size of firms investing and disinvesting diverges towards infinity. We have also that,

case is, respectively, (S)"

in the limit of perfect spill-over effect, also the second moment of the distribution of investment and
disnvestment avalanches diverges towards infinity, being consistent with a critica state where no
characteristic scale exists.

It is dso possible to calculate the distribution of the stationary average densities in this tate.
Following the steps of the proof in Appendix VI and taking into account that the average densities have

to sum up to one, we have that the stationary distribution of average densities will be

r—Or—1 r—lr—1+1r—1 r—ir—o
& C+ 29+ 'EE] L_29+ 0_29+ 29_ 1_ _29_ Tl C._29' a_
(AVI113)

Consider now for example the average investment avalanche size, given that a firm isin an

active investment state. This expectation can be written as follows:

E[sisi = a*] = 1+(g+ - e*)rc+ +[(g+ - e*)rg]2 +[(g+ - e*)rc+]3+.... (AVII4)
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where s is the number of firms investing. (AV114) takes into account that the probability that there is
only one firm adjusting its capital stock is one, the probability that there are two firms adjusting their

capital stock is (g+ - e+)rc+ and so on.

Aslongas (g" - €")r. <1wehavethat (AVII4) will be

Cy

EHSi - a+] - Il- " -1e+)rC+J (AVII5)

Criticality is reached if (g+ - e+)rc+ ® 1. But according to (AVI115) we have that in the limit of perfect

1
spill-over effects r . = 2q° and so E[sisi = a+] = 2 and so we got a contradiction.

Appendix VIII: Proof of Proposition 6

Consider first the long run growth rate of aggregate output. Applying the expectation operator
. . 1 + + - - . .
E(.) to (23) we have that the second term of (23) is given by E[<S> (eg - 1)- (s) (eg - 1)] , which is

the long run aggregate net-investment rate. The long run average aggregate growth rate of output is
given by

11, \+f o A
— - g _ _ g _
E[gy] =c+b n[<5> (e 1) (s) (e 1)] (AVIII1)
Inserting results stated in Proposition 4 into (AV1111) we obtain the following expression

€l.a e -1 1-a Qe - 1)t
E[gy]:c+b§g+;el_Q - g'ri:- 1-0 E

Evaluating this last expression case by case we obtain the results stated in Proposition 6.
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Consider now the variance of the growth rate of aggregate output. Taking into account the fact

L A ELY -
e ;I';}l[l(st L)(e - L~ 1s) =u')(ef )US’Z‘H

ize<sz> (e‘f - 1)2- 2<s+,s' >(eg+ - 1)(e9' - 1)+<sz>' (eg' - 1)28, where <s+,s'> is the covariance

of the investment and disinvestment avalanches, we have that the variance of the aggregate growth rate

isgiven by
Varlg,) = b7 () (e - - 2l s (e - e - (o) (e - ]+
_ %b%ksy(eg* - 1)' (s (eg_ ) 1)]\22 (AVIII2)

Inserting results stated in Proposition 4 into (AV1112) we have that the variance of the average aggregate

growth rateis
7 2
Var(gy) = bzém(e‘f - 1)§

Evaluating this last expression case by case gives the expressions stated in Proposition 6.
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