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Abstract

Coalitional Game Contexts (CGCs) �the objects of a nonfull subcate-
gory of the category of �Chu spaces� or �formal contexts� � are introduced
and shown to encompass virtually all coalitional game formats as currently
employed in the game- and social choice-theoretic literature. Concept lat-
tices of CGCs are also discussed, and the resulting order dimension for
CGCs is deÞned. Some basic spectral properties of those lattices are stud-
ied. In particular, it is shown that for any positive integer k there exists
a preconvex �hence strongly core-stable� CGC with a concept lattice of
width k.

JEL ClassiÞcation numbers: C70,D71
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1 Introduction

Coalitional game contexts(CGCs) are general incidence structures arising as a
common abstraction from many different coalitional game formats which have
been variously used in the game- and social choice-theoretic literature. Indeed,
CGCs can also be regarded as specialized instances of �classiÞcations� or �Chu
spaces� as recently introduced in logic and theoretical computer science (see e.g.
Barwise and Seligman(1997), Pratt(1999)).
Concept lattices are complete lattices that arise in a �natural� manner from

the study of relational databases, enabling a detailed analysis of the �intrinsic�
hierarchical structures of the latter (see e.g. Davey and Priestley(1990), Ganter
and Wille(1998)).
In this paper�which draws on, and extends, Vannucci (1999a,1999b)� coali-

tional game contexts(CGCs) are introduced and their concept lattices are de-
Þned. Properties of concept lattices arising from a few standard types of CGCs
are studied, and the resulting order dimension theory for CGCs is outlined. A
few spectral properties of CGCs arising from strongly (core-)stable effectivity
functions are also considered. In particular, it is shown that there exist precon-
vex �hence strongly stable� CGCs of arbitrary width.

2 Model and results

2.1 Coalitional Game Contexts:Classifying Coalitions and
Outcome-Subsets

A coalitional game context (CGC) is a triplet G = (C,Z,=) where
C = (C,<) and Z = (Z,<0) are preordered sets,
i.e. < and <0are reßexive and transitive binary relations on C and Z respec-

tively
(C typically denotes the coalition structure, and Z the outcome structure),

and = ⊆ C × Z� the coalition-outcome incidence correspondence� is required
to satisfy a normalization condition, namely there exists a < −minimal s◦ ∈ C
with =(s◦) = ∅.
In particular, a CGC G =(C,Z,=) is said to be
C-topped with top element >C if there exists >C ∈ C such that >C < s for

any s ∈ C,
Z-grounded with bottom element ⊥Z if there exists ⊥Z ∈ Z such that

z <0 ⊥Z for any z ∈ Z, and
semi-bounded if G is both C-topped and Z-grounded.

The following are a few relevant properties the incidence correspondence =
of a CGC G = (C,Z,=) may satisfy

(Normality): =(s) = ∅ for any < −minimal s ∈ C
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(Weak Communal Domain): there exists a <0 −maximal x◦ ∈ Z such that
=(s) ⊇ {x◦} for any s ∈ C such that =(s) 6= ∅

(Communal Domain): there exists a <0 −maximal x◦ ∈ Z such that =(s) ⊇
{x◦} for any s 6= s◦

(C-Monotonicity): for any z ∈ Z, and any s, t ∈ C, if t < s and z ∈ =(s)
then z ∈ =(t) (i.e =−1(z) is an order Þlter of C)

(Z-Monotonicity): for any s ∈ C, and any z, u ∈ Z, if u <0 z and z ∈ =(s)
then u ∈ =(s) (i.e. =(s) is an order Þlter of Z)

(Ferrers Condition): for any s, t ∈ C, and any z, u ∈ Z, if z ∈ =(s)\=(t)
and u ∈ =(t) then u ∈ =(s).

Moreover, if G is C-topped with top element >C then it may satisfy

(Local C−Monotonicity): =(>C) ⊇ =(s) for any s ∈ C

(Nonimposition): =(>C) ⊇ P (Z)\ {∅}

and if G is Z-grounded with bottom element ⊥Z then it may satisfy

(Nonbottom-Valuedness): =(s) ∩ {⊥Z} = ∅ for any s ∈ C .

Other properties of interest can also be deÞned in a natural way when a
CGC is endowed with a suitably richer latticial structure. Hence, a few basic
lattice-theoretic notions are to be recalled here for the sake of completeness:
a lattice L = (L,≥) may be regarded as an antisymmetric preordered set �
or poset� that is both a join-semilattice �i.e. for any a, b ∈ L there exists a
≥ −least upper bound a ∨ b ∈ L� and a meet-semilattice i.e. for any a, b ∈ L
there exists a ≥ −greatest lower bound a ∧ b ∈ L. A lattice is complete if a
≥ −least upper bound and a ≥ −greatest upper bound exist in L for any A ⊆ L,
pseudocomplemented if L has a ≥ −bottom element ⊥L and for any a ∈ L there
exists a∗ ∈ L such that a∗ = max {b ∈ L : b ∧ a = ⊥L} , bounded if L has both
a ≥ −top element >L and a ≥ −bottom element ⊥L, complemented if L is
bounded and for any a ∈ L there exists ac ∈ L such that a ∨ ac = >L and
a∧ ac = ⊥L, distributive if a∨ (b∧ c) = (a∨ b)∧ (a∨ c) for any a, b, c ∈ L, and
Boolean if it is both distributive and complemented. Furthermore, an atom of a
lattice (L,≥) is a ≥ −minimal nonbottom element of L, and �dually� a coatom
is a ≥ −maximal nontop element of L. A lattice is said to be dense if it has a
unique atom, and codense if it has a unique coatom). The following properties
are of special interest:

(Superadditivity): C is a bounded lattice, Z is a lattice, and for any s, t ∈ C,
and any u, z ∈ Z, if s ∧ t = ⊥C , u ∈ =(s) and z ∈ =(t) then u ∧ z ∈ =(s ∨ t)
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(Preconvexity): C and Z are lattices, and for any s, t ∈ C and any u, z ∈ Z,
if u ∈ =(s) and z ∈ =(t) then either u ∧ z ∈ =(s ∨ t) or u ∨ z ∈ =(s ∧ t)

(Regularity): C is a pseudocomplemented lattice, Z is a lattice, and for any
s ∈ C, and any u, z ∈ Z, if u ∈ =(s) and z ∈ =(s∗) then u ∧ z 6= ⊥Z

(Maximality): C is a pseudocomplemented lattice, Z is a lattice, and for any
s ∈ C and any u ∈ Z, if u /∈ =(s) then there exists z ∈ Z such that z ∈ =(s∗)
and u ∧ z = ⊥Z .

As mentioned above, CGCs are a common abstraction of several coalitional
game formats which have been proposed and used both in the game-theoretic
and in the social-choice-theoretic literature. In order to substantiate that claim,
let us consider a few salient examples.

Example 1 Effectivity Functions and Related Formats (see e.g. Rosenthal
(1972), Moulin and Peleg(1982), Moulin(1983), Peleg(1984), Abdou and Keid-
ing(1991)). Given a player set N and an outcome set X, an effectivity function
(EF) is usually deÞned as a function E : P (N) → P (P (X)) such that EF i)
E(∅) = ∅ ; EF ii) ∅ /∈ E(S) for any S ⊆ N ; EF iii) X ∈ E(S) for any
S ⊆ N,S 6= ∅; EF iv) E(N) = P (X)\ {∅} .
A conditional EF can also be deÞned by considering a function E0 : P (N)→Q

x∈X [{x} × P (P (X))] such that for any S ⊆ N , E0(S) =
Q

x∈X {x} × Ex(S)
where �for each x ∈ X� Ex deÞnes an EF (see e.g. Rosenthal (1972) for an
early proposal of a special case of that construct).
(Since both C−monotonicity and Z−monotonicity are necessary conditions

�along with either Regularity or Maximality� for an EF to arise in a standard
way from a strategic game form, in early treatments monotonicity requirements
used to be embodied into the deÞnition of an EF: see Moulin and Peleg(1982),
Moulin(1983). This usage is now over).
Clearly enough, (conditional) characteristic function coalitional game forms

may be regarded as corestrictions of (conditional) EFs to singleton-set-values.
Moreover, it should be recalled here that simple games may be regarded as equiv-
alence classes of simple EFs namely EFs with a set W ⊆ P (N) such that for
any S ∈ P (N)\ {∅} : E(S) = P (X)\ {∅} if S ∈W and E(S) = {X} otherwise.
Several weakenings and extensions of EFs have also been proposed in the lit-

erature under various labels: e.g. well-behaved functions satisfying EF i),EF ii),
EFiii), coalitional game forms (or pseudo-EFs or semi-well-behaved functions
(see e.g. Ichiishi(1989)) satisfying EF i) and EF ii), or even an intermedi-
ate notion of weak EFs satisfying EF i), EF ii) plus EF iii�)X ∈ E(S) for
any S ⊆ N such that E(S) 6= ∅ and EF iv�)E(N) ⊇ E(S) for any S ⊆ N.
The last additions to that list are two mutually related notions, namely dom-
ination patterns and domination structures as recently introduced by Fristrup
and Keiding(2001). A domination pattern on (N,X) denotes an agreement
on simultaneous vetoing of several outcomes on the part of certain coalitions,
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and may be represented as a set DB = {(S(x), x) : ∅ 6= S(x) ⊆ N,x ∈ B ⊆ X}.
A domination structure D is a set of domination patterns such that for any
B ⊆ N, DN

B = {(N,x) : x ∈ X} ∈ D , and D0 ∈ D for any D0 ⊆ D ∈ D.

Claim 2 i) A (standard) EF E : P (N) → P (P (X)) can be represented as a
semi-bounded CGC G(E) = (C,Z,=E) where C = (P (N),⊇), Z = (P (X),⊇),
and =E = {(S,A) : A ∈ E(S)} .Hence, C and Z are Boolean lattices, and G(E)
satisÞes Normality, Communal Domain, Nonbottom-Valuedness, and Nonimpo-
sition.

ii) A domination pattern DB on (N,X) is representable as a semi-bounded
CGC G(D) = (C,Z,=DB ) such that C = (P (N),⊇), Z = (P (X),⊇) and
=DB = {(S,X \ {x}) : (S, x) ∈ DB} . Thus, G(D) satisÞes Normality and Com-
munal Domain.

Remark 3 The foregoing deÞnitions, however, should make it clear that the
basic EF notion can be easily lifted to more general CGCs. (Incidentally, it
should be noticed that such a lifting makes it quite easy to embed into an EF-
format other proposed formats such as set-theoretic forms arising from exten-
sive forms: see Bonanno(1991)). Similar observations hold for Pseudo-EFs,
which amount to retaining Normality and Nonbottom-Valuedness and substitut-
ing Weak Common Domain for Common Domain, while dropping Nonimposi-
tion. Well-behaved functions and weak EFs are similarly represented in a CGC
setting.

Example 4 �Constitutional� Game Forms and Related Formats ( see e.g. Fer-
ejohn and Fishburn(1979), Andjiga,Moulen(1989)). Given a player set N and
an outcome set X, consider
a nonempty set C ⊆ {(S, T ) : S ⊆ N,T ⊆ N and S ∩ T = ∅} , and
a nonempty set Y ⊆ {(A,B) : A ⊆ X,B ⊆ X and A ∩B = ∅} .
Then, a �Constitutional� Game Form(COGF) is a tuple Γ = (N,X,C,Y,K)
where K : Y →P (C)\ {∅}
is such that for any (S, T ) ∈ C with S 6= ∅ there exists (A,B) ∈ Y :
(S, T ) ∈ K((A,B)).
By positing C ⊆ {(S,N\S) : S ⊆ N} the subclass of Constitution Forms as

presented in Andjiga,Moulen(1989) is deÞned.
By positing Y = {({a} , {b}) : a, b ∈ X, a 6= b}, and imposing the requirement

that
for any {{a} , {b}} ∈ Y, and any (S, T )∈ C
if (S, T ) ∈ K(({a} , {b})) then (T, S) /∈ K(({b} , {a}))
the subclass of Binary Constitutions as deÞned in Ferejohn and Fishburn

(1979) is immediately obtained.
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Claim 5 A COGF Γ = (N,X,C,Y,K) can be represented (modulo �natural�
order-isomorphisms) by a CGC G(Γ) =(C,Z,=) where C =(C,w) , Z = (Y,w)
and in both cases �w� is deÞned by the rule (x, y) w (u, z) iff x ⊇ u and
x ∪ y ⊇ u ∪ z (whence C and Z are both bounded posets, indeed bounded
∩-(meet)semilattices with >C = (N, ∅),⊥C = (∅, ∅),⊥Y = (∅, ∅) and >Y =
(X, ∅)), and = = {(S, (A,B)) : (A,B) ∈ K(S)} (notice that in fact =(∅) = ∅ as
required). In particular, it follows that = also satisÞes Normality.

Example 6 Semisimple Games (see Blau and Brown(1989), Kalai, Pazner and
Schmeidler(1976), Packel(1981)). Given a player set N and an outcome set
X, a (Monotonic) Semisimple Game (SSG) is a P (N)−parameterized family
S = {ST ⊆ P (N) : T ⊆ N} such that
SSG i): for any S, T, U ∈ P (N), if S ∈ ST and S ⊆ U ⊆ T then S ∈ SU ,

and
SSG ii): for any S, T, U ∈ P (N), if S ∈ SU and S ⊆ U ⊆ T then S∪(T\U) ∈

ST .
Semisimple games �which are meant to model the sets of globally �win-

ning� coalitions in voting-like processes with variable sets of passive players (the
�abstainers�)� where Þrst proposed in the late �70s by Blau and Brown under the
label of �neutral monotonic social functions� (see Blau and Brown(1989), a pa-
per originally written in 1978), and subsequently dubbed �semisimple games� in
Packel(1981) (see also Kalai,Pazner and Schmeidler(1976) for a strictly related
construct). Note that the original deÞnition of SSGs did not make reference to
the empty coalition, which we consider here for the sake of convenience.

Claim 7 A SSG S = {ST : ∅ 6= T ⊆ N} can be represented�modulo �natural�
order-isomorphisms� as a CGC G(S) = ( C,Z,=) where
C =(C = {(S,T ) : S ⊆ N,T ⊆ N, S ∩ T = ∅} ,w)
with (S, T ) w (U, V ) iff S ⊇ U and S ∪ T ⊇ U ∪ V (therefore >C =

(N, ∅) , and ⊥C = (∅, ∅) i.e. C is a bounded poset, indeed a bounded ∩-
(meet)semilattice), Z = (P ({0, 1}),⊇) (hence Z is a Boolean lattice), and for
any (S, T ) ∈ C,

=((S, T )) =
 ∅ if S = ∅

{0, 1} if ∅ 6= S /∈ SN\T

P ({0, 1})\ {∅} if ∅ 6= S ∈ SN\T

 .
In particular, = thus deÞned also satisÞes Normality, Communal Domain,

Nonbottom-Valuedness, Nonimposition, C-Monotonicity, Z-Monotonicity, and
the Ferrers Condition.

Example 8 Partition Game Forms (see e.g. Shubik(1982), Gilboa and Lehrer(1991)).
Let N be a player set and X an outcome set. Let us denote by ΠN the set of
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all partitions of N (i.e. sets of nonempty pairwise disjoint subsets of N -or
�blocks��that cover N), and by º the �coarser than� partial order on ΠN (i.e.
π0 º π1 iff for any block x ∈ π1 there exists a block y ∈ π0 such that y ⊇ x).
The poset (ΠN ,º) is a bounded lattice, the lattice of partitions of N, with top
element {{N}} and bottom element {{i} : i ∈ N} . A partition characteristic
function for (N,X) is a function f : ΠN → P (X) : f is said to be normalized
if f({{i} : i ∈ N}) = ∅ (partition effectivity functions might also be deÞned
in a similar way). A partition game form (PGF) is a triplet P = (N,X, f);
moreover, P is said to be a normalized PGF if f is normalized.

Claim 9 A normalized partition game form P = (N,X, f) can be represented�
modulo order-isomorphisms� by a CGC G(P ) = (C,Z,=) where C = (ΠN ,º)
is the lattice of partitions of N (hence >ΠN = {{N}}), Z = (P (X),⊇), and
= = {(π, A) : A ∈ f(π)}. Moreover, = also satisÞes Normality.

Example 10 Social Situation-Forms (see Greenberg(1990)). Let N be a player
set, and X an outcome set. A position-form of (N,X) is a pair (S,A) ∈ P (N)×
P (X), hence P(N,X)=P (N)× P (X) is the set of position-forms of (N,X).
The inducement correspondence is a correspondence
I ⊆ P(N,X)× P (N)×X ×P(N,X)
such that
I ⊆ {((S,A), U, x, (T,B)) : x ∈ A,U ⊆ S,U ⊆ T} .
A Social Situation-Form(SSF) for (N,X) is a pair S = (P(N,X),I) as

deÞned above.

Claim 11 A SSF S = (P(N,X), I) can be represented �modulo order-isomorphisms�
by a CGC G(S) = (C,Z,=) where

C = Z = (P (N)× P (X),c)
with (S,A) c (T,B) iff S ⊇ T and A ⊇ B, and

= =
½
((S,A), (T,B)) : there exist x ∈ X,U ⊆ S

such that ((S,A), x, U, (T,B)) ∈ I
¾
.

Thus, CGCs provide a theoretical setting which is broad enough to encom-
pass virtually all the coalitional formats which have been proposed in the extant
game-theoretic literature. It should be noticed that CGCs extend the standard
notions in two respects, namely by weakening the required properties of the
�incidence� relation and by generalizing the underlying coalitional and outcome
structures. It should also be stressed again that the language of CGCs also
provides a bridge to similar constructs which have been quite widely used in
mathematical logic and in theoretical computer science in the last two decades.

7



In fact, CGCs are a special case of �Chu spaces� or �(formal) classiÞcations�,
which can be roughly described as an abstract representation of classiÞcations
of certain �tokens� by means of certain �types� (including the prominent case of
mathematical logic where �tokens� are structures and �types� are sentences of a
certain formal language: see e.g. Barwise and Seligman(1997)). Here, under the
most natural interpretation, coalitions are the �tokens� to be classiÞed accord-
ing to their a priori decision power, while outcome-subsets are the classifying
�types� (of course, a �dual� perspective is also available). In that connection, a
(concrete) category of CGCs can be deÞned having CGCs as objects, and pairs
of order-homomorphisms �between outcome-structures and between coalition-
structures, respectively� asmorphisms: the resulting category of CGCs is clearly
a subcategory of the category of all classiÞcations (a nonfull one, because of the
order-structure embodied in CGCs). The details, however, will not be pursued
here.

2.2 Concept Lattices of Coalitional Game Contexts: Clas-
sifying Classifications

Let G =(C,Z,=) be a CGC with C = (C,<),Z = (Z,<0). The concept lattice
of G is deÞned as follows:
for any D ⊆ C , Y ⊆ Z posit

h=(D) = {z ∈ Z : (d, z) ∈ = for all d ∈ D} and
i=(Y ) = {c ∈ C : (c, y) ∈ = for all y ∈ Y } .

Then, consider
C(G) = {(D,Y ) ∈ P (C)× P (Z) : D = i=(Y ), and Y = h=(D)} .

In the language of formal concept analysis an element (D,Y ) of C(G) is
said to be a concept of the context G, with extent D and intent Y (the latter
notions are amenable to straightforward dualizations).
The concept lattice of G (sometimes also referred to as its Galois lattice) is

L(G) = (C(G),º)
with (D1, Y1) º (D2, Y2) iff Y1 ⊇ Y2 (which is provably equivalent to

D2 ⊆ D1), and
(D1, Y1) ∧ (D2, Y2) = (i=(h=(D1 ∪D2)), Y1 ∩ Y2)
(D1, Y1) ∨ (D2, Y2) = (D1 ∩D2,h=(i=(Y1 ∪ Y2)).

It is also well-known and easily shown that both (i= ◦h=) : P (D)→ P (D)
and (h=◦i=) : P (Z)→ P (Z) are closure operators with respect to set-inclusion
(recall that a closure operator K on a preordered set (Y,≥) is a function K :
Y → Y such that for any y, x ∈ Y : K(y) ≥ y,K(y) ≥ K(x) whenever y ≥ x,
and K(y) ≥ K(K(y)) ), and extents and intents of concepts are precisely the
closed elements of (i= ◦h=)and (h= ◦i=) respectively (i.e. (D,Y ) ∈ C(G) iff
D = i=(h=(D)) and Y = h=(i=(Y ))).
The following proposition is a straightforward corollary to the fundamental

theorem of formal concept analysis (see e.g. Davey and Priestley(1990), Ganter
and Wille(1998)):
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Proposition 12 Let G =(C,Z,=) be a CGC. Then, L(G) = (C(G),º) as
deÞned above is indeed a complete lattice .

The following reÞned result also holds for special classes of CGCs:

Proposition 13 Let G =(C,Z,=) be a semi-bounded CGC. Then,
i) = is Nonbottom-Valued entails that L(G) is a codense complete lattice;
ii) = is Nonimposed entails that L(G) is a dense complete lattice;
iii) = is Ferrers entails that L(G) is a chain (i.e. º is total).

Furthermore, a converse result to the previous propositions can also be read-
ily established, namely:

Proposition 14 Let L be a complete lattice. Then there exists a CGC G =
(C,Z,=) such that L(G) ∼= L. Moreover, if L is a chain (is complete and
codense, complete and dense, respectively) then there exists a (semi-bounded)
CGC G =(C,Z,=) such that = is Ferrers, ( Nonbottom-Valued, Nonimposed,
respectively) and L(G) ∼= L.

Remark 15 In Vannucci(1999b) it is also shown that �within the class of EF-
induced Þnite CGCs� the CGCs whose concept lattice is a chain are precisely
those which are representable by means of a pair of capacities as deÞned re-
spectively on coalition and outcome-subset spaces, while the (larger) subclass of
EF-induced Þnite CGCs with topological closure operators consist precisely of
those EF-induced Þnite CGCs whose singleton-generated closed sets are meet-
irreducible.

Thus, it follows from the foregoing observations and results that a (complete)
lattice �the concept lattice�can be attached in a most �natural� way to each
CGC. This fact opens up the opportunity to introduce �new� classiÞcations of
CGCs from a number of interesting perspectives, relying on suitable concept
lattice parameters. Of course, those parameters (such as width, length, size,
number of join and/or meet irreducibles) provide some complexity-evaluation
criteria concerning the structure of the underlying CGCs.
I recall here some relevant order- and lattice-theoretic notions. The width

w(P) of a poset P = (P,≥) is the (common) size of its largest antichains ( an
antichain of P is a set of pairwise ≥ −incomparable elements). The length l(P)
of a poset P = (P,≥) is the least upper bound of the set of lengths of chains
included in P (a chain is a totally ordered set; the length of a chain of m + 1
elements is m).
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Thus, the width of the concept lattice of a CGC provides some summary
information on the maximum �degree� of specialization of decision tasks that is
allowed by the given CGC. By contrast, the length of the concept lattice of a
CGC provides information on the number of layers of decision power induced
by the latter.
In particular, the notion of order-dimension is made available for CGCs

through their concept lattices. Indeed, let L = (L,≥) be a lattice. Then, the
order dimension dO(L) of L is given by the minimum positive integer h such
that there exist h chains (L,≥1), .., (L,≥h) with ≥= ∩h

i=1. Therefore, for any
CGCG one may also posit dimG = dO(L(G)). Then, the following fact �which
is easily established as an immediate corollary of a well-known result of formal
concept analysis (see Ganter and Wille(1998))� entails that the order dimension
of any Þnite CGC G can be in principle detected by direct inspection of G:

Claim 16 Let G = (C,Z,=) be a Þnite CGC. Then its order dimension is given
by its so-called Ferrers dimension i.e.

dim(G) = min


k ∈ Z+ : there exist

{=i ⊆ C × Z,=i is Ferrers : i = 1, .., k}
such that = = Tk

i=1=i


Summing up, concept-latticial parameters such as width and length or order

dimension provide in a most succinct way some basic information on the charac-
teristic degrees of decentralization, specialization and hierarchization of decision
tasks among coalitions that are induced by a given distributed mechanism.
I also submit that this last circumstance might be of particular signiÞcance

for some possible future developments of an artiÞcial-agent-supported implemen-
tation theory : indeed, suppose one is interested in
a) implementing a certain choice correspondence F (e.g. a cooperative bar-

gaining solution, or any other prescribed social choice rule as deÞned on a
domain of proÞles of nonveriÞable individual characteristics) via a distributed
mechanism, under
b) the additional constraint that the distributed mechanism is to �faithfully�

replicate the allocation of decision power embodied in the choice correspondence
itself, and with
c) the opportunity to take advantage of suitably designed artiÞcial agents

(e.g. artiÞcial �mediators� or �arbitrators�). Now, replicating some (standard)
effectivity function of choice correspondence F within the similar effectivity
function of a mechanism with extra added agents is of course hopeless. Repli-
cating the concept lattice of the relevant effectivity function of F , however, is
not � and seems indeed to be a sensible and attainable goal for �artiÞcial-agent-
augmented� mechanisms.
Be it as it may, the intuitive meaning of concept latticial parameters of CGCs

as outlined above suggests an analysis of the relationship of such parameters to
core-stability and related properties of coalitional game forms, which are the
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focus of a large part of the extant literature on coalitional games. This task is
best accomplished by asking� and answering� a few questions concerning spectral
properties of concept lattices of CGCs , namely questions of the following form:
� what are the possible values of a certain integer parameter t of the concept

lattice of a CGC G, when G is allowed to vary among the CGCs satisfying a
given property p?
In view of the well-known fact that preconvex EF-induced CGCs are strongly

core-stable, we address issues concerning certain spectral properties of their
concept lattices. We have the following results:

Proposition 17 Let N,X be Þnite sets such that t = min {#N,#X} . Then,
for any positive integer k ≤Pt−1

h=1(t− h) there exists a Z-monotonic preconvex
G = (C,Z,=) �induced by an EF on (P (N), P (X))� such that l(L(G)) = k

Clearly enough, the previous proposition only provides a lower bound on the
maximum concept-latticial length of a Z-monotonic preconvex CGC. It is not
known to the author whether this lower bound can be ameliorated. A neater
�positive� result is embodied in the following:

Proposition 18 Let N,X be Þnite sets such that t = min {#N,#X} is odd,
and let U ∈ {N,X} with #U = t. Then,
for any positive integer k ≤ #©S ⊆ U : #S = 1

2 [(#U) + 1]
ª
there exists a Z-

monotonic preconvex CGC G =(C,Z,=) �induced by an EF on (P (N), P (X))−
such that w(L(G)) = k.

Notice that for a Þnite set Y of odd cardinality,
©
S ⊆ Y : #S = 1

2 [#(Y ) + 1]
ª

is an antichain of maximum size of (P (Y ),⊇) (this is indeed the content of
Sperner�s theorem: see e.g. Anderson(1987)). Thus, the foregoing proposition
establishes that the requirement of preconvexity (hence of strong core stability)
on a CGC does not entail any structural constraint on the width of the cor-
responding concept lattice. From the point of view of mechanism design, that
proposition amounts of course to an interesting positive result. In that connec-
tion it would be interesting to explore the possibility to extend the result to the
case of maximal Z−monotonic preconvex CGCs.

3 Summary

Coalitional game contexts (CGCs) have been introduced and shown to encom-
pass the standard formats of coalitional game-theoretic data structures, and
extend them in two ways namely by weakening the incidence structure and gen-
eralizing the underlying coalitional and outcome space structures. Moreover,
CGCs establish a precise formal connection to the mathematical logic literature

11



in that the category of CGCs is a (nonfull) subcategory of �classiÞcations� or
�Chu spaces�. Concept lattices of CGCs have also been introduced and discussed.
A natural notion of order-dimension of CGCs based upon their concept lattices
has been presented. Some spectral properties of concept lattices of �nice� pre-
convex CGCs have also been studied. In particular, it has been shown that
�essentially� preconvex CGCs with a concept lattice of arbitrary width can be
devised.
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