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Abstract

Coalitional Game Contexts (CGCs) —the objects of a nonfull subcate-
gory of the category of ‘Chu spaces’ or ‘formal contexts’ — are introduced
and shown to encompass virtually all coalitional game formats as currently
employed in the game- and social choice-theoretic literature. Concept lat-
tices of CGCs are also discussed, and the resulting order dimension for
CGQCs is defined. Some basic spectral properties of those lattices are stud-
ied. In particular, it is shown that for any positive integer k there exists
a preconver —hence strongly core-stable— CGC with a concept lattice of
width k.
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1 Introduction

Coalitional game contexts(CGCs) are general incidence structures arising as a
common abstraction from many different coalitional game formats which have
been variously used in the game- and social choice-theoretic literature. Indeed,
CGCs can also be regarded as specialized instances of “classifications” or “Chu
spaces” as recently introduced in logic and theoretical computer science (see e.g.
Barwise and Seligman(1997), Pratt(1999)).

Concept lattices are complete lattices that arise in a ‘natural’ manner from
the study of relational databases, enabling a detailed analysis of the ‘intrinsic’
hierarchical structures of the latter (see e.g. Davey and Priestley(1990), Ganter
and Wille(1998)).

In this paper—which draws on, and extends, Vannucci (1999a,1999b)— coali-
tional game contexts(CGCs) are introduced and their concept lattices are de-
fined. Properties of concept lattices arising from a few standard types of CGCs
are studied, and the resulting order dimension theory for CGCs is outlined. A
few spectral properties of CGCs arising from strongly (core-)stable effectivity
functions are also considered. In particular, it is shown that there exist precon-
vex —hence strongly stable- CGCs of arbitrary width.

2 Model and results

2.1 Coalitional Game Contexts:Classifying Coalitions and
Outcome-Subsets

A coalitional game context (CGC) is a triplet G = (C, Z,<) where

C=(C,<) and Z = (Z,<’) are preordered sets,

i.e. < and <’are reflexive and transitive binary relations on C' and Z respec-
tively

(C typically denotes the coalition structure, and Z the outcome structure),
and & C C x Z— the coalition-outcome incidence correspondence— is required
to satisfy a normalization condition, namely there exists a < —minimal s° € C
with S(s°) = 0.

In particular, a CGC G =(C, Z,S) is said to be

C-topped with top element T if there exists T¢ € C such that T¢ < s for
any s € C,

Z-grounded with bottom element | if there exists 1> € Z such that
z<' 1z for any z € Z, and

semi-bounded if G is both C-topped and Z-grounded.

The following are a few relevant properties the incidence correspondence &
of a CGC G = (C, Z,3) may satisfy

(Normality): S(s) = 0 for any < —minimal s € C



(Weak Communal Domain): there exists a < —mazimal z° € Z such that
S(s) D {x°} for any s € C such that I(s) # 0

(Communal Domain): there exists a <' —mazimal x° € Z such that (s) D
{z°} for any s # s°

(C-Monotonicity): for any z € Z, and any s,t € C, if t < s and z € J(s)
then z € 3(t) (i.e 71(2) is an order filter of C)

(Z-Monotonicity): for any s € C, and any z,u € Z, if u <’ z and 2z € J(s)
then u € (s) (i.e. I(s) is an order filter of Z)

(Ferrers Condition): for any s,t € C, and any z,u € Z, if z € J(s)\S(t)
and u € (t) then u € I(s).

Moreover, if G is C-topped with top element T¢ then it may satisfy
(Local C—Monotonicity): S(Tc) 2 3(s) for any s € C
(Nonimposition): S(Tc) 2 P(Z)\{0}

and if G is Z-grounded with bottom element 1 then it may satisfy
(Nonbottom-Valuedness): S(s)N{Lz} =0 for any s € C

Other properties of interest can also be defined in a natural way when a
CGC is endowed with a suitably richer latticial structure. Hence, a few basic
lattice-theoretic notions are to be recalled here for the sake of completeness:
a lattice L = (L,>) may be regarded as an antisymmetric preordered set —
or poset— that is both a join-semilattice —i.e. for any a,b € L there exists a
> —least upper bound a Vb € L— and a meet-semilattice i.e. for any a,b € L
there exists a > —greatest lower bound a Ab € L. A lattice is complete if a
> —least upper bound and a > —greatest upper bound exist in L for any A C L,
pseudocomplemented if L has a > —bottom element L and for any a € L there
exists a* € L such that a* = max{be€ L:bAa= 1L}, bounded if L has both
a > —top element T and a > —bottom element L, , complemented if L is
bounded and for any a € L there exists a® € L such that a vV a® = T and
aNa® =1, distributive if aV (bAc) = (aVD)A(aVc) for any a,b,c € L, and
Boolean if it is both distributive and complemented. Furthermore, an atom of a
lattice (L, >) is a > —minimal nonbottom element of L, and —dually— a coatom
is a > —maximal nontop element of L. A lattice is said to be dense if it has a
unique atom, and codense if it has a unique coatom). The following properties
are of special interest:

(Superadditivity): C is a bounded lattice, Z is a lattice, and for any s,t € C,
and any u,z € Z,if sAt = Lc , u € 3(s) and z € S(t) then u A z € (s V1)



(Preconvezity): C and Z are lattices, and for any s,t € C and any u,z € Z,
if u e Y(s) and z € (¢) then either uAz € J(sVi)oruVze I(sAt)

(Regularity): C is a pseudocomplemented lattice, Z is a lattice, and for any
se€C,and any u,z € Z, if u € J(s) and z € (s*) then u Az # Lz

(Mazimality): C is a pseudocomplemented lattice, Z is a lattice, and for any
s € C and any u € Z, if u ¢ (s) then there exists z € Z such that z € J(s*)
and uNz=1z.

As mentioned above, CGCs are a common abstraction of several coalitional
game formats which have been proposed and used both in the game-theoretic
and in the social-choice-theoretic literature. In order to substantiate that claim,
let us consider a few salient examples.

Example 1 Effectivity Functions and Related Formats (see e.g. Rosenthal
(1972), Moulin and Peleg(1982), Moulin(1983), Peleg(1984), Abdou and Keid-
ing(1991)). Given a player set N and an outcome set X, an effectivity function
(EF) is usually defined as a function E : P(N) — P(P(X)) such that EF i)
E0) =0 ; EF ii) 0 ¢ E(S) for any S C N; EF iii) X € E(S) for any
SCN,S#0; EF i) E(N) = P(X)\ {0}.

A conditional EF can also be defined by considering a function E' : P(N) —
[Ixex [{z} x P(P(X))] such that for any S € N, E'(S) = [[yex {2} x Ex(S)
where —for each x € X— Fx defines an EF (see e.g. Rosenthal (1972) for an
early proposal of a special case of that construct).

(Since both C—monotonicity and Z—monotonicity are necessary conditions
—along with either Regularity or Maximality— for an EF to arise in a standard
way from a strategic game form, in early treatments monotonicity requirements
used to be embodied into the definition of an EF: see Moulin and Peleg(1982),
Moulin(1983). This usage is now over).

Clearly enough, (conditional) characteristic function coalitional game forms
may be regarded as corestrictions of (conditional) EFs to singleton-set-values.
Moreover, it should be recalled here that simple games may be regarded as equiv-
alence classes of simple EFs namely EFs with a set W C P(N) such that for
any S € P(N)\{0} : E(S) = P(X)\ {0} if S € W and E(S) = {X} otherwise.

Several weakenings and extensions of EFs have also been proposed in the lit-
erature under various labels: e.g. well-behaved functions satisfying EF i),EF ii),
EFiii), coalitional game forms (or pseudo-EFs or semi-well-behaved functions
(see e.g. Ichiishi(1989)) satisfying EF i) and EF i), or even an intermedi-
ate notion of weak EFs satisfying EF i), EF ii) plus EF iii’)X € E(S) for
any S C N such that E(S) # 0 and EF iw’)E(N) 2 E(S) for any S C N.
The last additions to that list are two mutually related motions, namely dom-
ination patterns and domination structures as recently introduced by Fristrup
and Keiding(2001). A domination pattern on (N, X) denotes an agreement
on simultaneous vetoing of several outcomes on the part of certain coalitions,



and may be represented as a set Dg = {(S(z),z): 0 # S(x) C N,x € BC X}.
A domination structure D is a set of domination patterns such that for any
BCN,Dy ={(N,z):x€ X} €D, and D' € D for any D' C D € D.

Claim 2 i) A (standard) EF E : P(N) — P(P(X)) can be represented as a
semi-bounded CGC G(E) = (C, Z,3g) where C = (P(N),D), Z = (P(X),D),
and Sg = {(S,A) : A€ E(S)} .Hence, C and Z are Boolean lattices, and G(F)
satisfies Normality, Communal Domain, Nonbottom-Valuedness, and Nonimpo-
sition.

it) A domination pattern Dg on (N, X) is representable as a semi-bounded
CGC G(D) = (C,2,8pg) such that C = (P(N),D), Z = (P(X),2) and
Spg = {(5, X\ {z}) : (S,x) € Dg}. Thus, G(D) satisfies Normality and Com-
munal Domain.

Remark 3 The foregoing definitions, however, should make it clear that the
basic EF notion can be easily lifted to more general CGCs. (Incidentally, it
should be moticed that such a lifting makes it quite easy to embed into an EF-
format other proposed formats such as set-theoretic forms arising from exten-
sive forms: see Bonanno(1991)). Similar observations hold for Pseudo-EFs,
which amount to retaining Normality and Nonbottom- Valuedness and substitut-
ing Weak Common Domain for Common Domain, while dropping Nonimposi-
tion. Well-behaved functions and weak EFs are similarly represented in a CGC
setting.

Example 4 ‘Constitutional’ Game Forms and Related Formats ( see e.g. Fer-
ejohn and Fishburn(1979), Andjiga, Moulen(1989)). Given a player set N and
an outcome set X, consider

a nonempty set C C{(S,T): SC N, TC N and SNT =0} , and

a nonempty set Y C {(A,B): ACX,BC X and ANB=0}.

Then, a ‘Constitutional’” Game Form(COGF) is a tuple ' = (N, X,C, Y ,K)

where K : Y —P(C)\ {0}

is such that for any (S,T) € C with S # 0 there exists (A,B) € Y :

(5,T) € K((4, B)).

By positing C C {(S,N\S) : S C N} the subclass of Constitution Forms as
presented in Andjiga, Moulen(1989) is defined.

By positing Y ={({a},{b}) : a,b € X,a # b}, and imposing the requirement
that

for any {{a},{b}} €Y, and any (S,T)e C

if (5,T) € K(({a},{b})) then (T, S) ¢ K(({0},{a}))

the subclass of Binary Constitutions as defined in Ferejohn and Fishburn
(1979) is immediately obtained.



Claim5 A COGFT = (N, X,C,Y,K) can be represented (modulo ‘natural’
order-isomorphisms) by a CGC G(T') =(C, Z,S) where C =(C,J) , Z =(Y,J)
and in both cases ‘2’ is defined by the rule (x,y) I (u,2) iff x 2O u and
xUy D uUz (whence C and Z are both bounded posets, indeed bounded
N-(meet)semilattices with Tc = (N,0), Lc = (0,0), Ly = (0,0) and Tv =
(X,0)), and I ={(S,(A4,B)): (A,B) € K(S)} (notice that in fact I(0) =0 as
required). In particular, it follows that S also satisfies Normality.

Example 6 Semisimple Games (see Blau and Brown(1989), Kalai, Pazner and
Schmeidler(1976), Packel(1981)). Given a player set N and an outcome set
X, a (Monotonic) Semisimple Game (SSG) is a P(N)—parameterized family
S={St CP(N):T C N} such that

SSG i): for any S,T,U € P(N), if S € St and S CU C T then S € Sy,
and

SSG it): forany S,T,U € P(N), if S € Sy and S CU C T then SU(T\U) €
St.

Semisimple games —which are meant to model the sets of globally ‘win-
ning’ coalitions in voting-like processes with variable sets of passive players (the
‘abstainers’)— where first proposed in the late "70s by Blau and Brown under the
label of ‘neutral monotonic social functions’ (see Blau and Brown(1989), a pa-
per originally written in 1978), and subsequently dubbed ‘semisimple games’ in
Packel(1981) (see also Kalai,Pazner and Schmeidler(1976) for a strictly related
construct). Note that the original definition of SSGs did not make reference to
the empty coalition, which we consider here for the sake of convenience.

Claim7 A SSG S = {St :0#T C N} can be represented-modulo ‘natural’
order-isomorphisms— as a CGC G(S) = ( C, Z,) where
C=(C={(5T):SCN,TCN, SNT=0},3)
with (S,T) 3 (U,V) iff S DU and SUT D UUV (therefore Tc =
(N,0) , and Lc = (0,0) i.e. C is a bounded poset, indeed a bounded N-
(meet)semilattice), Z = (P({0,1}),D) (hence Z is a Boolean lattice), and for
any (S,T) € C,

0ifS=0
S(S.T)={ (0.1} f0#£S¢Smr .
P({0, 1)\ {0} if 0 # S € ST
In particular, ¥ thus defined also satisfies Normality, Communal Domain,
Nonbottom-Valuedness, Nonimposition, C-Monotonicity, Z-Monotonicity, and
the Ferrers Condition.

Example 8 Partition Game Forms (see e.g. Shubik(1982), Gilboa and Lehrer(1991)).
Let N be a player set and X an outcome set. Let us denote by IlN the set of



all partitions of N (i.e. sets of nonempty pairwise disjoint subsets of N -or
‘blocks’~that cover N ), and by > the ‘coarser than’ partial order on TN (i.e.
o = 71 iff for any block x € wy there exists a block y € 7o such that y O x).
The poset (IIN, =) is a bounded lattice, the lattice of partitions of N, with top
element {{N}} and bottom element {{i} :i € N}. A partition characteristic
function for (N, X) is a function f : Iy — P(X) : f is said to be normalized
if f({{i}:ie N}) = 0 (partition effectivity functions might also be defined
in a similar way). A partition game form (PGF) is a triplet P = (N, X, f);
moreover, P is said to be a normalized PGF if f is normalized.

Claim 9 A normalized partition game form P = (N, X, f) can be represented—
modulo order-isomorphisms— by a CGC G(P) = (C, Z,S) where C = (IIn, )
is the lattice of partitions of N (hence Tr, = {{N}}), Z = (P(X),2), and
S={(mA): A€ f(m)}. Moreover, S also satisfies Normality.

Example 10 Social Situation-Forms (see Greenberg(1990)). Let N be a player
set, and X an outcome set. A position-form of (N, X) is a pair (S, A) € P(N)x
P(X), hence P(N,X)=P(N) x P(X) is the set of position-forms of (N, X).

The inducement correspondence is a correspondence

I CP(N,X) x P(N) x X x P(N, X)

such that

IC{((S,A),Uz (T,B):x€ AUCSUCT}.

A Social Situation-Form(SSF) for (N,X) is a pair S = (P(N,X),I) as
defined above.

Claim 11 A SSF'S =
by a CGC G(S) = (C,
C=Z=
with (S, A) ¢ (T,B) iff S2 T and A D B, and
o~ (S, A), (T B)) : there exist x € X,U C S
Y =
such that ((S,A),z,U,(T,B)) €I

(P(N,X),I) can be represented —modulo order-isomorphisms—
Z,9) where
(P(N) x P(X),c)

Thus, CGCs provide a theoretical setting which is broad enough to encom-
pass virtually all the coalitional formats which have been proposed in the extant
game-theoretic literature. It should be noticed that CGCs extend the standard
notions in two respects, namely by weakening the required properties of the
‘incidence’ relation and by generalizing the underlying coalitional and outcome
structures. It should also be stressed again that the language of CGCs also
provides a bridge to similar constructs which have been quite widely used in
mathematical logic and in theoretical computer science in the last two decades.



In fact, CGCs are a special case of ‘Chu spaces’ or ‘(formal) classifications’,
which can be roughly described as an abstract representation of classifications
of certain ‘tokens’ by means of certain ‘types’ (including the prominent case of
mathematical logic where ‘tokens’ are structures and ‘types’ are sentences of a
certain formal language: see e.g. Barwise and Seligman(1997)). Here, under the
most natural interpretation, coalitions are the ‘tokens’ to be classified accord-
ing to their a priori decision power, while outcome-subsets are the classifying
‘types’ (of course, a ‘dual’ perspective is also available). In that connection, a
(concrete) category of CGCs can be defined having CGCs as objects, and pairs
of order-homomorphisms —between outcome-structures and between coalition-
structures, respectively— as morphisms: the resulting category of CGCs is clearly
a subcategory of the category of all classifications (a nonfull one, because of the
order-structure embodied in CGCs). The details, however, will not be pursued
here.

2.2 Concept Lattices of Coalitional Game Contexts: Clas-
sifying Classifications

Let G =(C, Z,9) be a CGC with C = (C, <), Z = (Z,<’). The concept lattice
of G is defined as follows:

forany D C C ,Y C Z posit

hs(D)={2€Z:(d,z) € S for all d € D} and
is(Y)={ceC:(c,y) eSforallyeY}.

Then, consider

C(G)={(D,Y)e P(C)xP(Z):D=1ug(Y), and Y =hg(D)}.

In the language of formal concept analysis an element (D,Y) of C(G) is
said to be a concept of the context G, with extent D and intent Y (the latter
notions are amenable to straightforward dualizations).

The concept lattice of G (sometimes also referred to as its Galois lattice) is
L(G) = (C(G), =)

with (D1,Y1) = (D2, Ys) iff Y1 D Y, (which is provably equivalent to
D2 g Dl), and
(D1,Y1) A (D2, Y2) = (Eg(hg(D1 U D2)), Y1 NY2)
(Dl,Yl) \Y (DQ, Yﬁ) = (Dl N Da, hg\y( i C\\Y(Yl U Yﬁ))

It is also well-known and easily shown that both (Fgohg) : P(D) — P(D)
and (hgollg) : P(Z) — P(Z) are closure operators with respect to set-inclusion
(recall that a closure operator K on a preordered set (Y, >) is a function K :
Y — Y such that for any y,x € Y : K(y) >y, K(y) > K(x) whenever y > x,
and K(y) > K(K(y)) ), and extents and intents of concepts are precisely the
closed elements of (K¢ ohg)and (hg o Bg) respectively (i.e. (D,Y) € C(G) iff

The following proposition is a straightforward corollary to the fundamental
theorem of formal concept analysis (see e.g. Davey and Priestley(1990), Ganter
and Wille(1998)):



Proposition 12 Let G =(C, Z,3) be a CGC. Then, L(G) = (C(G),>) as
defined above is indeed a complete lattice .

The following refined result also holds for special classes of CGCs:

Proposition 13 Let G =(C,Z.3) be a semi-bounded CGC. Then,
i) S is Nonbottom-Valued entails that L(G) is a codense complete lattice;
i1) & is Nonimposed entails that L(G) is a dense complete lattice;
i11) & is Ferrers entails that L(G) is a chain (i.e. > is total).

Furthermore, a converse result to the previous propositions can also be read-
ily established, namely:

Proposition 14 Let L be a complete lattice. Then there exists a CGC G =
(C,Z,3) such that L(G) = L. Moreover, if L is a chain (is complete and
codense, complete and dense, respectively) then there exists a (semi-bounded)
CGC G =(C, Z,3) such that I is Ferrers, ( Nonbottom-Valued, Nonimposed,
respectively) and L(G) = L.

Remark 15 In Vannucci(1999b) it is also shown that —within the class of EF-
induced finite CGCs— the CGCs whose concept lattice is a chain are precisely
those which are representable by means of a pair of capacities as defined re-
spectively on coalition and outcome-subset spaces, while the (larger) subclass of
EF-induced finite CGCs with topological closure operators consist precisely of
those EF-induced finite CGCs whose singleton-generated closed sets are meet-
wrreducible.

Thus, it follows from the foregoing observations and results that a (complete)
lattice —the concept lattice—can be attached in a most ‘natural’ way to each
CGC. This fact opens up the opportunity to introduce ‘new’ classifications of
CGCs from a number of interesting perspectives, relying on suitable concept
lattice parameters. Of course, those parameters (such as width, length, size,
number of join and/or meet irreducibles) provide some complexity-evaluation
criteria concerning the structure of the underlying CGCs.

I recall here some relevant order- and lattice-theoretic notions. The width
w(P) of a poset P = (P,>) is the (common) size of its largest antichains ( an
antichain of P is a set of pairwise > —incomparable elements). The length |(P)
of a poset P = (P, >) is the least upper bound of the set of lengths of chains
included in P (a chain is a totally ordered set; the length of a chain of m + 1
elements is m).



Thus, the width of the concept lattice of a CGC provides some summary
information on the maximum ‘degree’ of specialization of decision tasks that is
allowed by the given CGC. By contrast, the length of the concept lattice of a
CGC provides information on the number of layers of decision power induced
by the latter.

In particular, the notion of order-dimension is made available for CGCs
through their concept lattices. Indeed, let L = (L, >) be a lattice. Then, the
order dimension do(L) of L is given by the minimum positive integer h such
that there exist h chains (L, >1),.., (L, >n) with >= N_,. Therefore, for any
CGC G one may also posit dim G = do(L(G)). Then, the following fact —which
is easily established as an immediate corollary of a well-known result of formal
concept analysis (see Ganter and Wille(1998))— entails that the order dimension
of any finite CGC G can be in principle detected by direct inspection of G:

Claim 16 Let G = (C, Z,) be a finite CGC. Then its order dimension is given
by its so-called Ferrers dimension i.e.
keZy: there exist
dim(G) =min{ {Si CC x Z,Sj is Ferrers: i =1,..,k}
such that S = ﬂli(zl S

Summing up, concept-latticial parameters such as width and length or order
dimension provide in a most succinct way some basic information on the charac-
teristic degrees of decentralization, specialization and hierarchization of decision
tasks among coalitions that are induced by a given distributed mechanism.

I also submit that this last circumstance might be of particular significance
for some possible future developments of an artificial-agent-supported implemen-
tation theory : indeed, suppose one is interested in

a) implementing a certain choice correspondence F' (e.g. a cooperative bar-
gaining solution, or any other prescribed social choice rule as defined on a
domain of profiles of nonverifiable individual characteristics) via a distributed
mechanism, under

b) the additional constraint that the distributed mechanism is to ‘faithfully’
replicate the allocation of decision power embodied in the choice correspondence
itself, and with

c¢) the opportunity to take advantage of suitably designed artificial agents
(e.g. artificial ‘mediators’ or ‘arbitrators’).  Now, replicating some (standard)
effectivity function of choice correspondence F' within the similar effectivity
function of a mechanism with extra added agents is of course hopeless. Repli-
cating the concept lattice of the relevant effectivity function of F , however, is
not — and seems indeed to be a sensible and attainable goal for ‘artificial-agent-
augmented’ mechanisms.

Be it as it may, the intuitive meaning of concept latticial parameters of CGCs
as outlined above suggests an analysis of the relationship of such parameters to
core-stability and related properties of coalitional game forms, which are the
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focus of a large part of the extant literature on coalitional games. This task is
best accomplished by asking— and answering— a few questions concerning spectral
properties of concept lattices of CGCs , namely questions of the following form:

e what are the possible values of a certain integer parameter ¢ of the concept
lattice of a CGC G, when G is allowed to vary among the CGCs satisfying a
given property p?

In view of the well-known fact that preconvex EF-induced CGCs are strongly
core-stable, we address issues concerning certain spectral properties of their
concept lattices. We have the following results:

Proposition 17 Let N, X be finite sets such that ¢ = min {#N,#X}. Then,
for any positive integer k < Zﬂ;ll (t — h) there exists a Z-monotonic preconvex

G = (C,2,9) —induced by an EF on (P(N), P(X))- such that | (L(G)) = k

Clearly enough, the previous proposition only provides a lower bound on the
maximum concept-latticial length of a Z-monotonic preconvex CGC. It is not
known to the author whether this lower bound can be ameliorated. A neater
‘positive’ result is embodied in the following:

Proposition 18 Let N, X be finite sets such that t = min {#N,#X} is odd,
and let U € {N, X} with #U =t. Then,

for any positive integer k < # {S CU:#S=3[(#U)+ 1]}there exists a Z-
monotonic preconver CGC G =(C, Z,3) —induced by an EF on (P(N),P(X))—
such that w(L(G)) = k.

Notice that for a finite set Y of odd cardinality, {S C Y : #5 = 1[#(Y) + 1]}
is an antichain of maximum size of (P(Y'),D) (this is indeed the content of
Sperner’s theorem: see e.g. Anderson(1987)). Thus, the foregoing proposition
establishes that the requirement of preconvexity (hence of strong core stability)
on a CGC does not entail any structural constraint on the width of the cor-
responding concept lattice. From the point of view of mechanism design, that
proposition amounts of course to an interesting positive result. In that connec-
tion it would be interesting to explore the possibility to extend the result to the
case of maximal Z—monotonic preconvex CGCs.

3 Summary

Coalitional game contexts (CGCs) have been introduced and shown to encom-
pass the standard formats of coalitional game-theoretic data structures, and
extend them in two ways namely by weakening the incidence structure and gen-
eralizing the underlying coalitional and outcome space structures. Moreover,
CGCs establish a precise formal connection to the mathematical logic literature

11



in that the category of CGCs is a (nonfull) subcategory of ‘classifications’ or
‘Chu spaces’. Concept lattices of CGCs have also been introduced and discussed.
A natural notion of order-dimension of CGCs based upon their concept lattices
has been presented. Some spectral properties of concept lattices of ‘nice’ pre-
convex CGCs have also been studied. In particular, it has been shown that
—essentially— preconvex CGCs with a concept lattice of arbitrary width can be
devised.
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