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Abstract - Egalitarian theorists, since Rawls, have in the main advocated 
equalizing some objective measure of individual well-being, such as primary 
goods, functioning, or resources, rather than subjective welfare. This discussion, 
however, has assumed, implicitly, a static environment. By analyzing a society 
that survives for many generations, we demonstrate that equality of opportunity 
for some objective condition is incompatible with human development over time. 
We argue that this incompatibility can be resolved by equalizing opportunities for 
welfare. Thus, ‘subjectivism’ seems necessary if we are to hope for a society 
which can both equalize opportunities and support the development of human 
capacity over time. 
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1. Introduction. 

 Egalitarians - and more specifically, socialists - have long cherished two ideals: that 

that society is best which promotes human development over time, and equality of condition 

among members of society.1 More recently, since Rawls’s rejuvenation of egalitarian studies, 

several qualifications have been put forth as to what the equalisandum should be. Most, 

although not all, participants in the discussion have advocated what we call an objectivist 

view, that the equalisandum should be something which is measurable independently of the 

views of the individuals who have it - primary goods, functionings, or resources (Rawls 

(1971), Sen (1980), and Dworkin (1981), respectively). The principal non-objectivist 

equalisandum is, of course, welfare or utility, which can only be measured knowing the 

utility function of the individual in question, and can only be compared interpersonally if an 

interpersonally comparable unit scale exists. None of the major writers advocates equality of 

welfare as an ethic.  

 Moreover, in recent years, various theories of equal opportunity have been proposed 

including Arneson (1989), Cohen (1989), and Roemer (1998), and we would say that 

Dworkin’s (1981) equality-of-resources is indeed an equal-opportunity theory as well. So we 

might well say that egalitarians advocate, as well as human development, equality of 

opportunity for some condition. That condition could be something objective like 

functionings or primary goods, or the subjective welfare.  

What we argue in this article is that the three desiderata  

1. protracted human development; 

2. equality of opportunity for some condition; 

3. the condition be an objective characteristic of the individual; 

are inconsistent. Because the first desideratum makes sense only in a dynamic context, 

equality of condition, or equality of opportunity for some condition, becomes equality (of 

opportunity) among all adults who ever live. Our claim says that if the equalisandum is 

                                                 
1 Socialists have said (before consciousness about gender-neutral language) that, in the good society 

there will be ‘self-realization of man’ and ‘self-realization of men.’ The latter means that, over the 

course of a life, a person becomes self-realized, in the sense of developing her capacities. The former 

means that, over generations, human beings become more knowledgeable and developed. Here, we 

take human development to mean ‘self-realization of man.’ 
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objective - something like functioning - then achieving such equality will imply the absence 

of human development over time. It is only by taking the equalisandum to be welfare of a 

particular kind, a non-objectivist concept, that equality of opportunity is consistent with 

human development. 

 If our claimed inconsistency is correct, then egalitarians are faced with a choice: 

either dropping their advocacy of equality (of opportunity), or of human development, or of 

objectivist equalisanda. We think that the most attractive choice is to drop the objectivist 

view.  

 In other words, we claim to show that, if we move away from the static thought 

experiments imagined by Rawls and the objectivist writers heretofore, then objectivism 

ceases to be attractive (if it ever was). We must say, however, that our inquiry does not show 

that justice requires that we endorse subjectivism (the view that welfare is what must count 

for an egalitarian). For we advocate dropping objectivism because of its inconsistency with 

equality of opportunity and human development; and while the equality-of-opportunity part 

of that compound phrase refers to a state of justice, the ‘human development’ part does not. 

That is, we do not claim that justice requires human development, or even, more weakly, that 

justice requires human development in an environment where it is possible. Human 

development over time is, for us, an obvious good, but we do not know what to call the state 

of a society which has it, the way a society with equality of opportunity is in a state of 

justice.  

 

2. The dynamic environment. 

 We will model the problem in a stark way. There is a society that exists for many (an 

infinite) number of generations. At each generation there are adults and children. Each adult 

has one child, and so the population size is constant. Adults, at least at the beginning date 

zero (0), have different wage rates - indeed, we shall seek simplicity by declaring that only 

two wage rates exist at date 0. Taxation of adult income is used to finance education of that 

generation’s children, as well as to redistribute income among adults.  

 We suppose that an adult’s wage is a measure of her family’s socio-economic status 

(SES), where SES has an impact on the docility2 of children. More specifically, the economic 

                                                 
2 In the classical sense -- educability. 
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outcome of educating a child is the wage she will earn as an adult, and it takes more 

educational resources to bring a low SES child up to a given (adult) wage rate than it does a 

high SES child. We take the view that all children have identical inborn talent, and that the 

wage a child eventually earns as an adult is a function of her talent, the educational resources 

invested in her, and the SES status of her parent, our summary of the environmental factor. 

To be specific, we suppose there are two functions h: R+
 → R+ and g: R+

 → R+
 such that a 

child of a parent who has a wage of w will, as an adult, earn a wage of h(x)g(w), if x is the 

fraction of GNP per capita that is invested in her through the educational process. We 

assume: 

Assumption 1: h and g are continuous and strictly increasing. Moreover, h(0) = 0 and g(0) = 

0. 

 Our economic environment dispenses with two important aspects of reality - that 

children are differentially talented, and that children expend differential effort3 - since we 

think they are unnecessary to expose the problem we want to concentrate upon. Capital and 

natural resources exist only implicitly in this model. 

 At each generation, adults must tax themselves, and the tax revenues, in the form of 

educational finance, must be distributed between the two types of child, those from low 

wage parents and those from high wage parents. The result of that education will be adults at 

the next date who have (perhaps) two wage levels, and the problem repeats itself. All 

children of a given SES receive the same educational investment, and hence have the same 

wage as adults.  

 We shall suppose that taxation takes the following form. First, all adult incomes are 

pooled, and each adult receives the average income. Then each adult pays the same fraction 

of her income as a tax. At date 0, a fraction f
L
 of the adults earn the low wage w

L

0, and 

fraction fH
 earn the high wage, wH

0. Thus, fL
 + fH

 = 1, and we define mean income at date 0 as 

µ0 = fL
 wL

0 + fH
 wH

0. If the tax rate is τ0, then the after-tax income of every adult is (1 - τ0) µo. 

                                                 
3 One is, of course, free to interpret the difficulty in educating low SES children as due to their lower 

talent. This is formally equivalent to our model, yet might lead to different ethics. (Some would say 

that it’s alright for low talent people to earn less than high talent people, although it’s not alright for 

kids from disadvantaged backgrounds to earn less than equally talented kids from advantaged 

backgrounds.) 
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 We wish to abstract from incentive problems; in particular, taxation does not alter 

labor supply, nor does anticipation of their future after-tax income affect how hard children 

work in school. These would be poor assumptions if we were interested in advising policy-

makers, but our investigation here is of a different kind. We are interested in exposing 

certain logical inconsistencies in a conception of ‘the good society’, and it is appropriate for 

this inquiry to assume that individual citizens are almost perfectly cooperative. We limit 

their cooperative spirit only by assuming that private incentives would come into play if we 

redistributed adult income so that low wage earners ended up with more income that high 

wage earners. (The best we can do is to equalize all after-tax incomes.) 

 In the theory of equal opportunity (see Roemer [1998]), it is assumed that 

individuals have different circumstances and exert different efforts. Here, we abstract away 

from differential effort. A person’s circumstances -- those characteristics beyond her control 

that influence her outcome -- are two in number, the SES (wage) of her parent, and the date 

at which she is born. We shall take children as adults-in-formation, and are concerned with 

equalizing opportunities among adults for some condition X, which we shall call ‘welfare.’ 

The instruments we have available are the tax rates and the distribution of educational 

finance among child types at each date. Since effort is nugatory, the theory of equal 

opportunity expounded in Roemer (1998) says that our objective is to maximize the minimal 

level of ‘welfare’ among all adults across types, where an adult’s type is a pair (w, t), w 

being her parent’s wage, and t being the date at which she is born. Informally speaking, the 

SES of a child’s parents and the date at which she is born are circumstances beyond her 

control, and equality of opportunity requires that we equalize, so far as possible, the welfare 

of individuals with such different circumstances.  

Thus, our problem is to maximize the least level of ‘welfare’ across all adults who 

ever live. To be specific, at each date we must choose a tax rate of adult income, τ, and, if 

there are adults with two wage levels (there are never more than two), an allocation of 

educational finance (rL
, rH

) among children of the two types, where fL
 rL

 + fH
 rH

 = 1. A child 

from an L family will receive educational investment in the amount τµrL
 and a child from an 

H family will receive τµrH
. Thus, if wL

 and wH
 were the parents’ wages, then the children will 

earn, as adults, h(τ r
L
)g(w

L
) and h(τ r

H
)g(w

H
). 
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 We next define the notion of functioning. We say that an adult’s level of functioning 

is a function F(w, y) of her wage, w, and her consumption (after-tax income), y - F: R+ x R+ 

→ R’, where R’ represents the extended real line. We attempt to capture A. Sen’s (1980) 

idea of functioning, which G. A. Cohen (1993) has characterized as ‘midfare,’ something 

midway between consumption and welfare. To wit, we imagine that a person’s wage is a 

measure of her level of human capital and individuals derive welfare directly from their 

human capital. Functioning involves a degree of self-esteem and self-realization, and these, 

we propose, depend positively on an individual’s level of human capital. Human capital, in 

turn, is reflected in the wage. 

Let F* = inf F(w, y). In what follows we will assume: 

Assumption 2: F is continuous and monotone increasing in both arguments. Furthermore, 

0
lim

→w
F(w, y) = F*, for all y, and 

0
lim

→y
F(w, y) = F*, for all w. 

In section 5, we shall assume: 

Assumption 2’: F(w, y) = γ log w + (1 - γ) log y, where 0 < γ < 1.  

 We define human development as an increase in functioning level of adults over 

time. We believe this is consistent with the standard concept of human development, which 

is not an increase in welfare as such, but rather an increase in human capacity. Capacity, in 

our stark model, is a function of consumption and the wage, or more directly, of 

consumption, self-esteem, and self-realization. The wage is important as the reflection of 

education; in addition, it can be argued that self-esteem is a capacity enhancer, and that, too, 

is captured by the wage. Children embody the knowledge of past generations, through the 

educational process, and we have attempted to capture this in our specification of the 

educational technology. 

 This model has similarities to Arrow (1973) and Dasgupta (1974), in which the 

maximin criterion was examined in a dynamic framework. The main substantive difference 

is that we posit two types of individual, at least at the early dates, while Arrow and Dasgupta 

work with a representative agent. Thus, we are interested in what intergenerational equality 

requires with respect to intra-generational wage differentials, a question that neither Arrow 

nor Dasgupta posed. 
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3. Equality of opportunity for functioning: Model I. 

 Our first exercise is to take the ‘welfare’ of an adult to be her functioning level. 

Thus, our problem becomes to  

Sup Inf [FL

0, FH

0, FL

1, FH

1,…],              (3.1) 

where FJ

t is the functioning level of adults in the ‘J dynasty’ at date t. The ‘low dynasty’ is 

the set of persons consisting of the low wage adults at date 0 and all their descendants; 

likewise for the ‘high dynasty.’ The instruments of the optimization are {τt, rL

t}
t=0,1…

 ≡ {τ0, rL

0, 

τ1, rL

1,…}, where we note that rH

t is determined by rL

t via the accounting identity fL rL
 + fH rH

 = 

1. The level of functioning of J adults at date t is FJ

t = F(wJ

t, (1 - τt)µt), where µt is mean 

income at date t, and the wages are given recursively by wJ

t = h(τt-1 rJ

t-1)g(wJ

t-1), ∀t > 0, J = H, 

L. Hence,  

wJ
t = h(τt-1rJ

t-1)∗g{h(τt-2rJ
t-2)∗g{h(τt-3rJ

t-3)∗....∗g{wJ
0}}....}}, ∀i, J = L, H.        (3.2) 

It is important to note that, at some date, the wages of the two adult types may be 

equalized, and if that is the case, then we stipulate that, thereafter, since there is only one 

type of child, there is no longer any decision concerning how to allocate educational finance 

- all children receive the same investment. We need not consider the possibility that a child 

in the H dynasty has a wage lower than one in the L dynasty at a given date, for that will 

never be an aspect of an optimal solution. It thus follows that at any date, the functioning 

level of L adults will be less than or equal to the functioning level of H adults (where L and 

H refer to the dynasties, not to the wages of particular adults), because the two types have 

same consumption. Consequently, the equality-of-opportunity program takes the form: 

 Sup Inf [F
L

0, F
L

1,…]       (3.1’) 

 s.t.  wH

t ≥ wL

t, t = 1, 2, … 

 We immediately observe: 

Proposition 1. Let A1, A2 hold. At the solution to (3.1’), FL

0 = FL

t, ∀t.  

Proof: 1. Clearly, 0 < τt < 1, ∀t, since 
1

lim
→tτ

F
L

t = F*, and if τt’ → 0 then, by (3.2), FL
t → F*, 

∀t ≥ t’, which by A2 are certainly not optimal. 

2. Suppose F
L

0 > F
L

t’, some t’ > 0. Then it is possible to increase τ0 a little and leave all other 

variables the same, so that FL

0 is still above the minimum, while, by (3.2) wL

t, and thus FL

t, 

increase ∀t > 0.  
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3. Suppose FL

t’ > FL

0, t’ > 0. By part 1, decrease τ0, …, τt’-1 so that consumption and therefore 

the levels of FL

t increase ∀t ≤ t’-1. Next, increase τt’ enough so that wJ

t, J = L, H, t > t’ + 1 

increase. We have now increased FL

t, ∀t ≠ t’ and we can make all these changes in tax rates 

small enough so that F
L

t’ is not the smallest functioning level.� 

P1 establishes that equality of opportunity for functioning is inconsistent with 

human development, in the sense that a fraction fL
 of adults at every date remain at the (low) 

level of functioning of date 0 L adults. If, as is reasonable, fL
 > .5, then the majority of all 

adults are held to a low level of human capacity. 

Do the H adults get reduced, over time, to this same low level of functioning? Not 

necessarily. Let, e.g., A2’ hold: if γ is sufficiently close to 0, then consumption is very 

important in functioning, and it may pay to keep the wages of the H adults above the L 

adults’ wages in order to bring about a relatively high mean income. 

The maximin social welfare function is sometimes criticized for spending huge 

amounts of resources to raise the level of welfare of a very small group of individuals who 

are very poor welfare producing machines. Let us note this criticism does not apply here. 

Nobody is extremely handicapped in our environment - there are no terribly inefficient 

‘welfare’-creating individuals. It is true, however, that L adults at date 0 comprise an 

arbitrarily small fraction of the adults who have lived up to date T, as T becomes large, and 

all L adults are held to their level of functioning. This is surely a form of ‘extremism’ of 

maximin, although it has a different character from the form of extremism we referred to in 

the first sentence of this paragraph. If we contemplate sacrificing the L adults at date 0, we 

are led to ask, why do they have less than an equal right to welfare than those at later dates? 

The answer ‘Because it is too costly to their descendents not to sacrifice them’ invites 

sacrificing the L adults, or indeed all adults, at any finite number of dates beginning at date 

0. After all, this group, too, constitutes an arbitrarily small fraction of all adults who shall 

ever live. 

 

4. Equality of opportunity for welfare: Model II. 

 We now suppose that adults care about the functioning levels of their children, as 

well as their own. We define the utility of an adult of dynasty J at date t as uJ

t = u(FJ

t, FJ

t+1), 

where FJ

t is her own functioning level, FJ

t+1 is the functioning level of her child, and u is 
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monotone increasing in both arguments and continuous. Hence, if u* ≡ inf u(FJ

t, FJ

t+1), with a 

slight abuse in notation, we may write u(F*, F*) = u*. We will also rule out an extreme form 

of altruism by assuming 

Assumption 3: u(X, F*) ≥ u(F*, X).4 

Our equal-opportunity program now becomes 

 Sup Inf [uL

0, uL

1,…]  

s.t.  wH

t ≥ wL

t, ∀t,               (4.1) 

where the requirement w
H

t ≥ w
L

t, ∀t, is surely superfluous. We now have: 

Proposition 2. Let A1, A2, A3 hold. Let m denote the value of program (4.1). At the 

solution to (4.1), uL

0 = m. Furthermore, there are no two consecutive dates t and t + 1 such 

that uL

t > uL

0 and uL

t+1 > uL

0. 

Proof. 1. Clearly, in the optimum τt > 0, ∀t. Similarly, τt → 1 and τt+1 → 1 imply that uL
t → 

u*, therefore it must be either τt < 1, or τt+1 < 1, or both. 

2. Suppose uL

0 > m. Assume that F is defined at τ = 1. Case 1. If τ0 < 1, increase τ0 a little. 

This raises uL
t, ∀t > 0, and does not lower uL

0 to m. Case 2. Let τ0 = 1, and thus uL
0 = u(F*, 

X), u(F*, X) > m. By A3 it follows that uL
1 > m, ∀τ1, τ2. Hence, by part 1, increase τ1 a little: 

both uL
0 and uL

1 remain above m, while uL
t increases, ∀t ≥ 2. 

3. Suppose uL

1 > m and uL

2 > m. (The same argument holds for any two consecutive u
L

t and 

u
L

t+1, t ≥ 1.) Then decrease τ1 a little, which increases uL

0 above m. Assume that F is defined 

at τ = 1. Case 1. If τ2 < 1, increase τ2 so that both wL

3 and wH

3 (and thus wJ

t and uJ

t, ∀t ≥ 3, J = 

L, H) are at least as high as before the perturbations.5 Since uL

1 and uL

2 were initially greater 

than m, they still are. Hence, by part 2, it follows that uL

1 and uL

2 cannot be both greater than 

m. Case 2. Let τ2 = 1 and thus uL
2 = u(F*, X), u(F*, X) > m. By A3, u

L

3 > m, ∀ τ3, τ4. Hence, 

                                                 
4 A3 shortens the proof of P2 considerably, however none of the main results changes if A3 is 

dropped. Notice that if A2’ holds and Ft → F* implies u(Ft, Ft+1) → u* (e.g. if u is additive), then τt < 

1, ∀t (cf. L1 below), and P2 immediately follows. 
5 If h(τtrj

t) = k ( )τ t
J
t cr 1 , and g(wj

t) = ( )wJ
t c2 , J = L, H, it is not difficult to show that, given rL

t, rL

t+1 

constant, if dτt+1/dτt = - c2τ
t+1/τt, then wL

t+i and wH

t+i, remain unchanged, ∀t ≥ 0, ∀i ≥ 2.  
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by part 1, increase τ3 a little, so that u
L

1, u
L

2 and u
L

3 remain above m, while u
L

t increases, ∀t > 

3.  

If Ft is not defined in τt = 1, let τt → 1 and notice that uL
t → u(F*, X), with u(F*, X) > 

m. Then by A3 all arguments in parts 2 and 3 above follow.� 

 If each adult cares about her child’s and her grandchild’s level of functioning, then 

the same argument shows that no three consecutive utilities can be greater than the value of 

the program, which is achieved at date 0. Thus, allowing parents to care about the 

functioning levels of a finite sequence of their descendents does not enable us to escape the 

conclusion that protracted human development fails to occur. For it is clear that if the utility 

level of the L dynasty returns to uL

0 periodically, then the functioning level of one generation 

must return, periodically, to FL

0 or FL

1 or lower, by u’s monotonicity. In this society, history 

repeats itself, condemning every nth generation to the level of human development of the 

primeval ancestor. 

 It is worth noting that u can be any continuous monotonic utility function. In 

particular, an adult may well prefer that her child functions at a higher level than she, in the 

sense that, for all X and small δ > 0, u(X - δ, X + δ) > u(X, X).6 This is perhaps somewhat 

surprising: even if adults want their children to function at a higher level than themselves, 

there is no protracted human development in the optimum. 

 

5. Equality of opportunity for welfare: Model III. 

 We now suppose that adults care about their own level of functioning and their 

child’s utility. Suppose there is a concept of utility such that 

 uJ

t = Ft + βuJ

t+1 ∀t ≥0; J = L, H    (5.1) 

Hence, we can write uJ

0 recursively as 

 u F uJ
t

t

N

J
t N

J
N0

0

1 1= +
=

+ +∑ ( ) ( )β β , for any N; J = L, H 

Suppose that the discounted sum of functioning levels of this dynasty is bounded 

above, i.e., β t

t
J
tF

=

∞

∑
0

 is bounded above for every feasible sequence {wt
H, wt

L}t=0,1,2…, given 

                                                 
6 Notice that this limited form of altruism is consistent with A3. 
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(w0
H, w0

L), and therefore β < 1.7 Hence, without loss of generality, we can assume 

lim
N→ ∞

β N +1uN +1 = 0 , and the utility of any adult born in period i ≥ 0 is: 

 u FJ
i t i

t i
J
t= −

=

∞

∑β , ∀i ≥0; J = L, H    (5.2) 

Thus, the utility of any adult is the discounted sum of her dynasty’s levels of 

functioning. Caring about the welfare of your child forces you, implicitly, to care about the 

functioning of your descendents, all the way down. It is reasonable to suppose that this 

formulation is psychologically accurate. Are we parents content if our children are 

functioning well, or does our contentment depend upon their happiness, where their 

happiness derives from the happiness of their children? 

 Our equal-opportunity-for-welfare program is stated again as (4.1), where the 

notation now refers to the new concept of utility. Again, the value of program (4.1) is 

achieved at the date 0 utility. (If it weren’t, increase τ0,8 which will increase FL

t, and thus uL

t, 

∀t ≥ 1.) Consequently, program (4.1) is equivalent to the program: 

    sup uL

0 

    s.t. wH

t ≥ wL

t, ∀t    (5.3) 

Clearly, at the solution to (5.3), we have uL

0 < uL

t, ∀t. Assume: 

Assumption 1’: 1)( ckxxh = , 2)( cwwg = , where k > 0, 0 ≤ c1
, c2

 ≤ 1. 

Moreover, let A2’ hold. The sequence problem (SP) can be written as  
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As we will show, the solution to SP will depend on the initial wage ratio, ρ0 ≡ 

wH

0/wL

0. Therefore, let us first solve the single-wage SP, i.e. the SP for ρ0 = 1. 

                                                 
7 In what follows, by A1’ and A4, F is bounded above so that such a condition is satisfied. 
8 In L1 below we prove that if F is bounded above, in the solution to (4.1), it will be τ0 < 1. 
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[ ]
21 )()(..

)1log()1(logsup)(*

1

0

0

ctctt

t

ttt

wkwts

wwv

τ

τγβ

=

∑ −−+=
+

∞

=    (5.4) 

where the only instruments are tax rates - all children receive an equal per capita share of 

educational investment - and v* denotes the supremum function.  

In order to analyze the single-wage SP, let W ⊆ R
+
 denote the state space and let Γ: 

W → W denote the feasibility correspondence, where ])(,0[)( 2cwkw =Γ , and thus 

Γ( )w ≠ ∅ , ∀w. Next, let A = {(w, y) ∈ W x W| y ∈ Γ(w)} be the graph of Γ. The one period 

return function at date t is a function Φ: A → R’ whose value is F(wL

t, (1 - τt )µt) but where τt 

is expressed as a function of (wt, wt+1). By substituting for τt, Φ(wt, wt+1) = 







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+
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1 /

/11

/1 )(

)(1
1log)1(log
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w γ  and SP can be written as  

])(,0[
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/11

/1
0
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∞
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∑ γβ
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By A1’, 21

1

ckw −=  is the highest sustainable value of w, and therefore, without loss of 

generality, we restrict the analysis to a subset, W’ ⊂ W, W’ = {w ∈ W| w ≤ w’, 21

1

ckw −>′ }, w’ 

finite.9 Hence, Φ is bounded above by Φ(w’, 0) and for all w0 ∈ W’ and all feasible 

sequences {wt}
t=0,1,…

, ∑
=

+

∞→
Φ

N

t

ttt

N
ww

0

1 ),(lim β  exists in R ∪ {-∞} and (5.5) is well defined. 

Moreover, as shown in Appendix 1, if c1
 + c2

 ≤ 1, Φ is strictly concave. Thus, we henceforth 

assume: 

Assumption 4: c1
 + c2

 ≤ 1. 

Bellman’s functional equation (FE) can be written as  

v w w
w

k w
v w

w k w

c

c c c
c

( ) sup log ( ) log
( )

( )
( )

[ , ( ) ]

/

/ /
0

0

0
1 1

1 0
1

1 0 2

1

1 2 1
1 1= + − −







 +











∈
γ β           (5.6) 

                                                 
9 If c2 = 1, the state space is not bounded. However, by A3, c2 = 1 implies c1 = 0: education plays no 

role, the optimal tax rate is zero and, actually, there is no genuine dynamic decision.  
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where v(w) denotes the solution to FE. We now prove that the function v(w) = φ + ψ log w, 

where φ and ψ are unknown constants to be determined, solves (5.6): 

v w w
w

k w
w

w k w

c

c c c
c

( ) sup log ( ) log
( )

( )
log

[ , ( ) ]

/

/ /
0

0

0
1 1

1 0
1

1 0 2

1

1 2 1
1 1= + − −







 + +











∈
γ βφ βψ  

The first order condition for this problem is 

( ) ( )

( )

( )

( )

/

/ /

/

/ /

1
1

1

1 1

1 0

1 1

1 0

1

1 2 1

1

1 2 1

−
= −









γ
βψ

c

w

k w

w

k w

c

c c c

c

c c c  

and therefore 

w k
c

c
w

c

c1 1

1

0

1

1

2=
− +









βψ
γ βψ( )

( )  

The postulated function solves FE if  

1

1

1

1

0

2

0

)1(
loglog

)1(

)1(
log)1(log)1(log

c

c
ck

c
wcw

βψγ
βψβψβψ

βψγ
γγβψβφψφ

+−
++

+−
−−+++=+  

or, by the method of undetermined coefficients,  

)1(

1

2
cβ

ψ
−

=  

12

1

2

1

212

2

)1)(1(
log

)1)(1(
log

)1)(1()1)(1(

)1)(1(
log

)1(
)1(

cc

c

c

c
k

ccc

c

ββγ
β

ββ
β

ββ
β

ββγ
βγ

β
γφ

+−−−−
+

−−
+

+−−
−−

−
−=   (5.7) 

We now have:10 

Proposition 3. Let A1’, A2’, A4 hold. Let wL

0 = wH

0 = w0, then v*(w0) = φ + [1/(1 - βc2
)]log 

w0 solves (5.5), where φ is given by (5.7). The optimal policy is given by  

2

1

)*(
)1)(1(

*
12

11 ct

c

t w
cc

c
kw 





+−−

=+

ββγ
β

 

Proof. 1. Notice that lim sup
t→∞ βt v(wt) = lim sup

t→∞ βt {φ + [1/(1 - βc2
)]log wt}. Clearly, 

lim
t→∞ βt φ = 0. Moreover, [1/(1 - βc2

)] lim sup
t→∞ βt log wt ≤ [1/(1 - βc2

)] lim
t→∞ βt (log ktw0) 

= [1/(1 - βc2
)] lim

t→∞ βt [logkt + logw0]. Given that lim
t→∞ βtt logk = 0, it follows that lim 

sup
t→∞ βt v(wt) = 0, for all feasible sequences {wt}

t=0,1,….
 

                                                 
10 An alternative proof of P3 is provided in App.1, based on the Euler equations. 
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Next, as shown in App.1, the sequence {w*t}
t=0,1,…

, is such that (a) for every feasible 

sequence {wt}
t=0,1,…

, β βt t t

t

t t t

t

w w w wΦ Φ( * , * ) ( , )+

=

∞
+

=

∞

∑ ∑≥1

0

1

0

 and (b) lim
t→∞ 

βt v(w*t) = 0. 

Hence, by the theorems on dynamic optimization (see e.g. Stokey and Lucas, 1989, pp.72-5), 

v(w0) = v*(w0).  

2. The second part of the proposition is an immediate consequence of the first.� 

As concerns the relationship between equality and growth:11 

Corollary 1. Let A1’, A2’, A4 hold. In an egalitarian economy with wL
0 = wH

0, the optimal 

wage eventually converges to w k
c

c c
c

c

c

=
− − +







−

−

( )
( )( )

1

1 1

2 1

1
2

1

2

1 1

β
γ β β

  

We now proceed to study the program (5.4) when wL
0 ≠ wH

0, i.e. ρ0 > 1. Let now W ⊆ 

R2 denote the state space, with generic element w = (wL
, wH

) and let Γ: W → W denote the 

feasibility correspondence, where now 

{ }Γ( ) � | , ( , ): , � ( ) ( ) , � ( ) ( )w w W r r f r f r w k r w w k r wL H L L H H L L
c

L
c

H H
c

H
c= ∈ ∃ ≤ ≤ ∃ + = ≤ ≤0 1 1 1 2 1 2τ τ τ  

so that Γ( )w ≠ ∅ , ∀w. The one-period return function Φ(wL

t, wH

t, wL

t+1, wH

t+1) is  

]log[)1(
)(

)(

)(

)(1
1log)1(log

12

1

12

1

1 /

/11

/

/11

/1

t

HH

t

LLcct

L

ct

L

Lcct

H

ct

H

Hc

t

L
wfwf

w

w
f

w

w
f

k
w +−+













+−−+

++

γγγ  

and if v*(wL

0, wH

0) denotes the supremum function, we can write SP as  

v w w w w w w

w w w w

L H
t

t
L
t

H
t

L
t

H
t

L
t

H
t

L
t

H
t

* ( , ) sup ( , , , )

( , ) ( , )

0 0

0

1 1

1 1

=

∈
=

∞
+ +

+ +

∑β Φ

Γ
   (5.8) 

Again, define a vector w’ = (wL’, wH’), with wL’ and wH’ finite and such that 

)1/(1

)1/(

2

21
)(

)(

1 c

cc

H

H
k

f
w −

−
>′  and )1/(1

)1/(

2

21
)(

)(

1 c

cc

L

L
k

f
w −

−
>′ . Without loss of generality, we restrict 

the analysis to the subset W’ = {w ∈ W| w ≤ w’}. Hence, Φ is bounded above by Φ(wL’, w’H
, 

0, 0) and for all w0 ∈ W’ and all feasible sequences {wt}t = 0, 1, …
, 

                                                 
11 If c2 = 1 we get unbounded growth (provided k ≥ 1). However, as argued in fn. 9, this case can be 

ruled out. 
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∑
=

++
∞→ Φ

N

t

t
H

t
L

t
H

t
L

t
N wwww

0

11 ),,,(lim β  exists in R ∪ {-∞} and (5.8) is well defined. 

Moreover, Φ is differentiable in all arguments and, by A4, strictly concave. 

We now prove: 

Proposition 4. v*(wL

0, wH

0) is increasing in both arguments. Moreover,  

v w w w f w f w
c

c

w w

f w f wL H L L L H H
L

c c
H

c c

L L
c c

H H
c c*( , ) log ( ) log[ ]

( )
log

( ) ( )

[ ( ) ( ) ]

/ /

/ /
0 0 0 0 0 1

2

0 0

0 01
1

2 1 2 1

2 1 2 1
≥ + + − + +

− +
φ γ γ

β
β

 

v w w
c

wL H H*( , )
( )

log0 0

2

01

1
≤ +

−
φ

β
 

where φ is given by (5.7). 

Proof. 1. Let {wL

t, wH

t}t=0,1,…
 denote a feasible path of the states, given initial conditions (wL

0, 

wH

0). If the initial conditions are (w’L

0, wH

0), w’L

0 > wL

0, the path {w’L

t, w’H

t}t=0,1,…
 such that w’L

t 

= wL

t, ∀ t ≥ 1, w’H

t = wH

t, ∀ t ≥ 0, is clearly feasible with 

β βt
L
t

L
t

H
t

H
t

t

t
L
t

L
t

H
t

H
t

t

w w w w w w w wΦ Φ( ' , ' , ' , ' ) ( , , , )+ +

=

∞
+ +

=

∞

∑ ∑≥1 1

0

1 1

0

, and since this is true for every 

feasible path, v*(w’
L

0, wH

0) ≥ v*(wL

0, wH

0). 

2. Firstly, notice that, by P3 and the monotonicity of v*, it follows that v*(wH

0, wH

0) = φ + 

1/(1 - βc2
) log wH

0 ≥ v*(wL

0, wH

0). Secondly, notice that it is always feasible to equalize the 

wages in t = 1, i.e. to set r
w

f w f wL
H

c c

L H
c c

H L
c c

0
0

0 0

2 1

2 1 2 1
=

+
( )

( ) ( )

/

/ /
. Hence, by P3,  

v w w w f w f w
c

k

c

c

c

c

w

f w f w

c

c
w

L H L L L H H

H
c c

L H
c c

H L
c c L

* ( , ) sup log ( ) log( ) ( ) log[ ] log

log log
( )

( ) ( )
log

[ , ]

/

/ /

0 0

0 1

0 0 0 0

2

1

2

0 1

2

0

0 0
2

2

0

0

2 1

2 1 2 1

1 1 1
1

1 1 1

≥ + − − + − + + +
−

+
−

+
− +

+
−

∈τ
γ γ τ γ βφ

β
β

β
β

τ
β

β
β

β

 

and maximizing the right hand side with respect to τ0 the result follows. � 

As concerns the optimal path of the controls, we now prove  

Lemma 1. Let A1’, A2’ hold. For any finite t, in the optimum, rL

t > 0 and 0 < τt < 1. 

Proof. By A2’, lim
wL

t →0
F(wL

t, (1 - τt)[fL
 wL

t + fH
 wH

t]) = - ∞, ∀τt ∈ [0, 1], while, by A1’, rL

t = 0 or 

τt = 0 imply wL

j = 0, ∀ j ≥ t + 1, and hence in the optimum rL

t > 0 and τt > 0. Given the 

boundedness of F, a similar argument can be used to prove that τt < 1.� 
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Our strategy to solve (5.8) will be to recursively construct a function v(wL

0, wH

0) that 

solves FE; then we will prove that v(wL

0, wH

0) = v*(wL

0, wH

0). As a first step, consider the 

Euler equations. Given the inequality constraint on wages, it is more convenient to write the 

one-period return as a function Ψ of wL
 and the wage ratio ρ ≡ (wH

/wL
).12 Thus, Ψ(wL

t, ρt, wL

t+1, 

ρt+1) can be written as 
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Thus, in an interior solution, the Euler Equations and can be written as 
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Actually, the Euler equations can be re-written, and made more intelligible, in terms 

of the controls τt and r
L

t: 

1

1

21 1
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1
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−+=
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t
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t

cc
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τγββ
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τγ               (5.9) 
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        (5.10) 

Consider t = 0. Given that ρ0 = 1 ⇒ ρt = 1, ∀ t > 0, we conjecture that there exists a 

number 10 ≥ρ  such that if ],1[ 0
0 ρρ ∈  then in the optimum ρ1 = 1, and thus ρt = 1, ∀ t > 1. 

From the dynamic constraints it is possible to express rL

t as a function of ρt and ρt+1. Thus, 

substituting for rL

0 and rL

1 in (5.10) and setting ρ1 = ρ2 = 1, a necessary condition for, ρ1 = 1 to 

be optimal is  

                                                 
12 The FOCs deriving from the maximization of Ψ(wL

t, wL

t+1, ρt, ρt+1) + β Ψ(wL

t+1, wL

t+2, ρt+1, ρt+2) subject 

to ρt+1 ≥ 1 are the same as the FOCs deriving from the maximization of Φ(wL

t, wL

t+1, wH

t, wH

t+1) + β 

Φ(wL

t+1, wL

t+2, wH

t+1, wH

t+2) subject to wH

t+1 ≥ wL

t+1. 
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          (5.10’) 

Next, by P3, if ρ1 = 1 then in the optimum τ1 = τ* ≡ βc1
/[(1 - γ)(1 - βc2

) + βc1
]. Hence, 

by (5.9) τ0 = τ* and (5.10’) becomes: 
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Given the parameter restrictions, ρ0 1> , moreover 
0ρ  is higher, the higher γ and the 

lower fL
, β, and c2

. We can now prove:13 

Proposition 5. Let A1’, A2’, A4 hold. If ],1[ 0
0 ρρ ∈  then in the optimum τt = τ* = βc1

/[(1 - 

γ)(1 - βc2
) + βc1

], ∀ t, and ρt = 1, ∀ t ≥ 1.  

Proof. Let ∆ denote the difference between the objective function evaluated at {w*L

t, 

w*H

t}
t=0,1,…

, the path of the two states in the proposed solution, and at {wL

t, wH

t}
t=0,1,…

, any 

feasible path. Let Φ
wJ

i (wL
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t+1) ≡ ∂Φ/∂wJ

i, J = L, H, i = t, t + 1. By the concavity 

of Φ 
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In the proposed solution 
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and wL

*t = wH

*t, ∀t. Therefore since wL

*0 = wL

0, wH

*0 = wH

0, 

                                                 
13 We adapt the proof of Thm.4.15 (Stokey and Lucas, 1989, p.98) to the case of a corner solution. 
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and therefore, ∆ ≥ 0. � 

Hence, if ],1[ 0
0 ρρ ∈ , define v0
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14 Notice that r0 is the optimal rL

0. The optimal rH

0 can be derived from the constraint fLr0 + fHrH

0 = 1. 
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where ϖ
0,L

: W’ → R+ and ϖ
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: W’ → R+ are the optimal wage functions, if ],1[ 0
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Hence, v0
 is strictly increasing in both variables and, as shown in Appendix 2, 

strictly concave. Moreover, it is straightforward to show that if ],1[ 0
0 ρρ ∈  v0

 solves15 

v w w w w w w v w wL H
w w

L H L H L H0
0 0 0 0 1 1

0
1 1

1 0
( , ) max [ ( , , , ) ( , )]

( )
= +

∈Γ
Φ β  

at the corner solution ρ1 = 1, and τ1 = τ*. Assuming v0
 to be the value function if ],1[ 0

0 ρρ ∈ , 

in Appendix 3 we prove that there exists an interval ],( 10 ρρ  such that if ρ0 ∈ ],( 10 ρρ , it is 

optimal to set ],1[ 0
1 ρρ ∈ , and therefore ρj = 1, j ≥ 2. Thus, if ],( 10

0 ρρρ ∈ , where ϖ
1,L

: W’ 

→ R+ and ϖ
1,H

: W’ → R+ denote the optimal wage functions, and define R→':1 Wv  as 

    v w w w f w f w v w w w wL H L L L H H L L H H L H1
0 0 0 0 0

1 0 1
1 1

1
1 11 1 1( , ) log ( ) log( ) ( ) log( ) ( ( , ), ( , )), ,= + − + + − − +γ γ γ τ β ϖ ϖ  

and continue the iterative procedure, assuming that v1
 is the value function on ],( 10

0 ρρρ ∈ , 

and verifying that there exists a 2ρ  such that, if ρ0 ∈ ( , ]ρ ρ1 2 , it is optimal to set 

],( 10
1 ρρρ ∈ , ρ ρ2

01∈[ , ]  and ρj = 1, j ≥ 3. In general, in App. 3, we prove that in the 

solution to FE, there exist derive an infinite sequence of intervals ( , ]ρ ρk k−1  such that, if ρ0 ∈ 

( , ]ρ ρk k−1
, then ρk+1 = 1, k ≥ 0 (if k = 0, ρk − =1 1 ).  

We can now prove: 

Theorem 1. Let A1’, A2’, A4 hold. Consider an inegalitarian economy in which wL
0 ≠ wH

0. 

Let ρt ≡ wH
t/wL

t. For any finite ρ0, in the solution to the program (5.3), equality is reached in a 

                                                 
15 We henceforth use the “max” notation because, as we shall see, the supremum is actually attained. 
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finite number of periods. Once equality is reached wages grow forever as described in P3 and 

converge in the limit to the steady state w  in C1.  

Proof. We need to show that the increasing function v(wL

0, wH

0) solving Bellman’s FE, 

obtained in Appendix 3 is the value function.  

Firstly, by the monotonicity of v, v(wL

t, wH

t) ≤ v(wL’, wH
’), ∀ (wL

t, wH

t) ∈ W’. Hence, 

lim sup
t→∞ βt v(wL

t, wH

t) ≤ lim
t→∞ βt v(wL’, wH

’) = 0. Next, by L1 and P5, the optimal sequence 

{w*L

t, w*H

t}
t=0,1…

 is bounded away from zero. Hence, by the monotonicity of v, lim
t→∞ βt 

v(w*L

t, w*H

t) = 0, and, by the theorems on recursive dynamic optimization, v(wL

0, wH

0) = 

v*(wL

0, wH

0) and the policies derived from v in App. 3 are indeed optimal.� 

In other words, the optimal path involves equating the wages of the contemporaneous 

members of the two dynasties in a finite number of periods: if ρ0 ∈ ( ρk −1 , ρk
], convergence 

occurs in k + 1 periods. Once equality is reached, human development continues forever. 

 

5. Conclusion. 

 Earlier, we remarked on the similarity between the present paper, Arrow (1973) and 

Dasgupta (1974) (A-D, henceforth). The main differences between A-D’s models and ours 

are: (1) A-D have a representative agent each period, and so the only issue is to maximin 

welfare of that agent’s descendents across time, whereas in the present model, there is an 

issue of intragenerational as well as intergenerational justice; (2) in A-D, agents care only 

about consumption, not about functioning (i.e., not about the wage per se); (3) in A-D, 

investment is modeled as capital investment, rather than educational investment. 

Mathematically, the main difference is that the planner has only one instrument each period 

in A-D, whereas in our model, she has two instruments. (This is, of course, due to difference 

(1) above.) Nevertheless, A-D’s results are qualitatively similar to ours: an increase in 

consumption over time is compatible with maximin only if the equalisandum is welfare, in 

which case parents care about the consumption stream of their entire dynasty. Thus, the 

present paper may be considered an intellectual descendent of Arrow (1973) and Dasgupta 

(1974). 

Our concern with intragenerational inequality, not expressed in the earlier literature, 

led us to deduce that, as long as individuals value their human capital as well as their 

consumption, then the maximin program will eventually equalize the levels of human capital 
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of all individuals. We remark, however, that this result may well depend on our assumption 

A4, of non-increasing returns in the educational technology. 

 Let us recapitulate. One of the major foci of discussion in egalitarian theory of the 

last thirty years has been the nature of the equalisandum. The main participants in the 

discussion have moved away from taking welfare as that equalisandum, although it is 

important to note that Arneson (1989) has argued for choosing opportunity for welfare as the 

equalisandum. (‘Opportunity for welfare’ is, in general, quite different from ‘welfare’ as an 

equalisandum. That difference is due to differential effort, which in the present article, does 

not appear.) However, this debate has been carried out within the confines of a static 

environment, a ‘model’ with a single generation. Here, we have maintained that equality of 

opportunity, for whatever kind of condition, is an ethically viable conception in a multi-

generation world, and that in such a context, it calls for equalizing opportunities across all 

types of adult, where an adult’s type is characterized by the date at which he is born and the 

SES of the family in which he grew up. It is beyond this article’s scope to argue that justice 

requires that a person fare no better than another simply by virtue of being born at a different 

date16. An asymmetric version of this principle is familiar in discussions of sustainable 

development and environmental preservation: we should leave to future generations a world 

as bountiful as the one left to us by our ancestors. But the other part is, we believe, just as 

compelling: we are under no ethical mandate to leave our descendents a world more 

bountiful than our own, although we may decide to do so if that increases our welfare by 

contemplating the happiness it will bring our children, and their children… 

 In studying the multi-generation world, we have learned that, if we choose what we 

call an objectivist equalisandum - we have taken ‘functioning’ as an appealing one - then 

equality of opportunity for that condition implies there will be no further human 

development, where human development is conceived of not as an increase in human 

welfare, but rather in human capacities to function. Thus, two major characteristics of what 

comprises the good society, as it has been conceived of by egalitarians for several hundred 

years, are incompatible. We showed that if we equalize opportunities for welfare, where an 

                                                 
16 This is contestable. Some argue that equality of condition among living persons is all that an 

egalitarian ethic requires. One rationale is that self-esteem is affected by comparing one’s condition to 

those of contemporaries, not to the dead, or to those not yet born. 
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adult’s welfare depends upon her own level of functioning and the functioning levels of a 

finite stream of her descendents, the unpleasant inconsistency continues to hold. If, however, 

we choose a thorough-going kind of welfare as the condition for which opportunities should 

be equalized - one which declares that an individual’s welfare depends not just on his 

capacities and the capacities of his children, but rather on his own capacities and his child’s 

welfare - then human development and equality of opportunity are mutually consistent.  

 The most appealing solution to the unpleasant inconsistency is, we believe, to drop 

the objectivist requirement.17 It is opportunities for welfare that we should advocate 

equalizing. This, incidentally, conforms to Arneson’s (1989) recommendation, although the 

reasons brought to bear here are entirely different from those he presents. But we must add 

that this escape from the unpleasant inconsistency is predicated upon a psychological 

premise - that adults care about their own functioning, and the welfare of their children.  

                                                 
17 Before agreeing with us, however, the reader should consult Silvestre (in press), who works with a 

different economic environment from ours, in which, he shows, an increase in welfare over time and 

egalitarianism are consistent, even when adults do not care about the welfare of their children. 
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APPENDIX. 

Appendix 1: Proof that τt = βc1/[(1 - γ)(1 - βc2) + βc2], ∀ t, is optimal. 

First of all, let us prove: 

Lemma A.1: If c1 + c2 ≤ 1 then Φ(wt, wt+1) is strictly concave. 
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Let Di denote the principal minor of order i of the Hessian: D1 > 0, ∀c1, c2: 0 < c1, 

c2 < 1. On the other hand, D2 ≥ 0 ⇔ 0
)(

)(

)(

)()1(
4

1

2
2

4
1

2121 ≥−
+−

c

c

c

cccc . Hence, if c1 + c2 ≤ 1, J 

is convex and Φ is strictly concave.� 

We can now prove: 

Proposition A.1: Let A1’, A2’, A4 hold. In the solution to (5.5) it will be τt = τ* ≡ 

βc1/[(1 - γ)(1 - βc2) + βc2], ∀ t. 

Proof. Consider now the Euler equations (E.A1) for SP: 
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or, expressing (E.A1) and (T.A1) in terms of the controls, 
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and since τt = τ*, ∀ t, satisfies (E.A1’) and (T.A1’), by L.A1, the result follows. � 

P.A1 implies that w k wt c t c* ( *) ( * )+ =1 1 2τ  is optimal for program (5.5), as 

claimed in P3. Actually, this result provides another way to derive v*(w0). In fact,  
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and therefore v*(w0) = φ + 1/(1 - βc2) log w0, where φ is given by (5.7). 

 

Appendix 2: Proof that v0(wL
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Appendix 3: Analysis of Bellman’s equation. 

Firstly, we show that there exists an interval ],( 10 ρρ  such that if ρ0 ∈ ],( 10 ρρ , it 

is optimal to set ],1[ 0
1 ρρ ∈ , and ρj = 1, j ≥ 2. 

A necessary condition for ρ ρ1
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 Substituting for ∂v0(wL
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where π0(ρ1) is the optimal level of ρ2, given ],1[ 0
1 ρρ ∈  (it can be derived from r0(ρ1)) 
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i.e. we conjecture that h1(ρ1) is the initial wage ratio, ρ0, that makes it optimal to choose 

ρ1, ],1[ 0
1 ρρ ∈ . It is possible to express h1 explicitly: 
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As shown in App.5, h1 is differentiable and dh1(ρ1)/dρ1 > 1, ∀ ],1[ 0
1 ρρ ∈ , and 

thus we can define )( 011 ρρ h= , with 01 ρρ >  and ρ ρ ρ1 0 0 1− ≥ − . Next, let 
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π0 and π1 one obtains an increasing and continuous function. The optimal control 

functions are τ ρ ρ1 0 1 0 1:( , ] [ , ]→ , and r1 0 1: ( , ]ρ ρ → R+, where τ1(ρ0) = τ* and r1(ρ0) can be 

derived from π1. Thus, if ],( 10
0 ρρρ ∈ , define R→':1 Wv , by 

))],(),,(()1log()1(]log[)1(log[),( 00
,1

00
,101

00000
1 HLHHLLHHLLLHL wwwwvwfwfwwwv ϖϖβτγγγ +−−++−+=  

where ϖ1,L: W’ → R+ and ϖ1,H: W’ → R+ denote the optimal wage functions, for 

],( 10
0 ρρρ ∈ , which can be derived from τ1 and r1. 



 26 

 Notice that v1 is continuous and, as shown in App. 4, strictly concave. Moreover, 

if ρ ρ0
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Since v1(wL
0, wH

0) solves FE on ],( 10
0 ρρρ ∈ , we can proceed as above to show 

that there exists a value 2ρ : ρ0 ∈ ( , ]ρ ρ1 2 , in the optimum ],( 10
1 ρρρ ∈ , and ρt = 1, t ≥ 2. 

In general, proceed by induction and consider the k + 1-th stage, k ≥ 1. Let 
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where ϖk,L: W’ → R+ and ϖk,H: W’ → R+ denote the optimal wage functions, for 
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where πk(ρ1) gives the optimal level of ρ2, given ],( 1
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As shown in App.5, hk+1 is differentiable and dhk+1(ρ1)/dρ1 ≥ 1 ∀ρ ρ ρ1 1∈ −( , ]k k . 
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increasing and continuous function. From πk+1 it is immediate to derive the optimal rL
0 
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where ϖk+1,L: W’ → R+ and ϖk+1,H: W’ → R+ denote the optimal wage functions, for 

ρ ρ ρ0
1∈ +( , ]k k , which can be derived from τk+1 and rk+1. If ρ ρ0 = k , vk+1(wL

0, wH
0) = 

vk(wL
0, wH

0) and the two functions can be patched together. Moreover, vk+1 is clearly 
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continuous and as for v1, it is possible to show that it is strictly concave and continuously 

differentiable for ρ ρ ρ0
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 We can now define a function v: W’→ R such that if ρ ρ ρ0
1∈ −( , ]k k  v(wL

0, wH
0) 

= vk(wL
0, wH

0), k ≥ 0 (if k = 0, ρk − =1 1). Given the properties of the vk’s, v is strictly 

increasing and continuously differentiable in both variables and strictly concave. 

Moreover, v solves Bellman’s FE by construction.  

 

Appendix 4. Proof of the concavity of v1(wL
0, wH

0). 

Definition. Let wt ∈ W’ and �wt  ∈ W’ and let wt+1 ∈ Γ(wt), �wt+1  ∈ Γ( �wt ). The feasibility 

correspondence Γ is convex if and only if ∀ θ ∈ (0, 1) 

θ wt+1 + (1 -θ) �wt+1  ∈ Γ(θ wt + (1 - θ) �wt ) 

 First of all, let us prove  
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Clearly, D1 < 0, while D c c c c c c2 1 2 1 2 1 21 1 0 1= − − − ≥ ⇔ + ≤( )( ) . And a similar condition 

holds for the other constraint, proving the convexity of Γ.� 

Proof. Consider w0 ∈ W’ and �w0  ∈ W’. Let w1 ∈ Γ(w0), �w1  ∈ Γ( �w0 ) be the 

corresponding optimal policies. Let w1(θ) ≡ θ w1 + (1 - θ) �w1  and w0(θ) ≡ θ w0 + (1 - 

θ) �w0 . By L.A2, w1(θ) ∈ Γ(w0(θ)). Moreover 
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where the inequalities derive from the fact that w1(θ) is not necessarily optimal and from 

the strict concavity of Φ and v0, and the last equality is true since w1 and �w1  are 

optimal.� 

 

Appendix 5. Proof that dhk+1(ρ1)/dρ1 > 1, ∀k ≥ 0. 

Proof. From the formula in App. 3 
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Grouping the different terms according to the exponents of ρ1 
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 All terms in the formula of dhk+1(ρ1)/dρ1 apart from the last three are strictly 

positive. However, a sufficient condition for dhk+1(ρ1)/dρ1 > 0 is that 
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1∈ −[ , ]k k , the above condition is equivalent to 
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or, simplifying and rearranging terms, 
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 The right hand side of this expression can be written as 
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 Subtracting the latter expression from {Ak –  Bk - Ck}: 
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and again all terms in the latter formula, apart from the last three, are strictly positive. In 

order to prove that dhk(ρ)/dρ > 1, ∀k ≥ 1, we prove by induction that 
dh
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ρ
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ρ
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≥ 1, 
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∀k ≥ 1, ∀ρ ρ ρ∈ − −[ , ]k k2 1 . Firstly, let k = 1. Since, π ρ0 1( ) =  and 
d

d

π ρ
ρ

0 0
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= , ∀ρ ρ∈[ , ]1 0 , 

from the above formulas it follows that dh1(ρ)/dρ > 0 and 
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≥ , ∀ρ ρ∈[ , ]1 0 . 

Therefore, since h1 01( ) = ρ , we can define )( 011 ρρ h= , 01 ρρ > , and it follows that 

ρ/h1(ρ) < 1, and thus dh1(ρ)/dρ > 1, ∀ρ ρ∈[ , ]1 0 . 

 Consider now the induction step. Assume 
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∀ ρ ρ ρ∈ − −[ , ]k k2 1 . From the above formulas dhk+1(ρ)/dρ > 0 and dh
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Therefore, since hk k k+ − =1 1( )ρ ρ , we can define hk k k+ +=1 1( )ρ ρ , ρ ρk k+ >1 , and it follows 

that ρ/hk+1(ρ) < 1 and thus dhk+1(ρ)/dρ > 1, ∀ρ ρ ρ∈ −[ , ]k k1 . 


