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Abstract - Egdlitarian theorists, since Rawls, have in the main advocated
equalizing some objective measure of individual well-being, such as primary
goods, functioning, or resources, rather than subjective welfare. This discussion,
however, has assumed, implicitly, a static environment. By analyzing a society
that survives for many generations, we demonstrate that equality of opportunity
for some objective condition is incompatible with human development over time.
We argue that this incompatibility can be resolved by equalizing opportunities for
welfare. Thus, ‘subjectivism’ seems necessary if we are to hope for a society
which can both equalize opportunities and support the development of human
capacity over time.
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1. Introduction.

Egalitarians - and more specificaly, socialists - have long cherished two ideals: that
that society is best which promotes human devel opment over time, and equality of condition
among members of society.! More recently, since Rawls's rejuvenation of egalitarian studies,
several qualifications have been put forth as to what the equalisandum should be. Most,
although not al, participants in the discussion have advocated what we call an objectivist
view, that the equalisandum should be something which is measurable independently of the
views of the individuals who have it - primary goods, functionings, or resources (Rawls
(1971), Sen (1980), and Dworkin (1981), respectively). The principal non-objectivist
equalisandum is, of course, welfare or utility, which can only be measured knowing the
utility function of the individual in question, and can only be compared interpersonaly if an
interpersonally comparable unit scale exists. None of the major writers advocates equality of
welfare as an ethic.

Moreover, in recent years, various theories of equal opportunity have been proposed
including Arneson (1989), Cohen (1989), and Roemer (1998), and we would say that
Dworkin’s (1981) equality-of-resources is indeed an equal-opportunity theory as well. So we
might well say that egalitarians advocate, as well as human development, equality of
opportunity for some condition. That condition could be something objective like
functionings or primary goods, or the subjective welfare.

What we argue in this article is that the three desiderata

1. protracted human development;

2. equality of opportunity for some condition;

3. the condition be an objective characteristic of the individual;
are inconsistent. Because the first desideratum makes sense only in a dynamic context,
equality of condition, or equality of opportunity for some condition, becomes equality (of

opportunity) among al adults who ever live. Our claim says that if the equalisandum is

* Socialists have said (before consciousness about gender-neutral language) that, in the good society
there will be ‘self-realization of man’ and ‘self-realization of men.” The latter means that, over the
course of alife, a person becomes self-realized, in the sense of developing her capacities. The former
means that, over generations, human beings become more knowledgeable and developed. Here, we

take human development to mean * self-realization of man.’



objective - something like functioning - then achieving such equality will imply the absence
of human development over time. It is only by taking the equalisandum to be welfare of a
particular kind, a non-objectivist concept, that equality of opportunity is consistent with
human devel opment.

If our claimed inconsistency is correct, then egalitarians are faced with a choice:
either dropping their advocacy of equality (of opportunity), or of human development, or of
objectivist equalisanda. We think that the most attractive choice is to drop the objectivist
view.

In other words, we claim to show that, if we move away from the static thought
experiments imagined by Rawls and the objectivist writers heretofore, then objectivism
ceases to be attractive (if it ever was). We must say, however, that our inquiry does not show
that justice requires that we endorse subjectivism (the view that welfare is what must count
for an egalitarian). For we advocate dropping objectivism because of its inconsistency with
equality of opportunity and human development; and while the equality-of-opportunity part
of that compound phrase refers to a state of justice, the ‘human development’ part does not.
That is, we do not claim that justice requires human development, or even, more weakly, that
justice requires human development in an environment where it is possible. Human
development over timeiis, for us, an obvious good, but we do not know what to call the state
of a society which has it, the way a society with equality of opportunity is in a state of

justice.

2. The dynamic environment.

We will model the problem in astark way. There is a society that exists for many (an
infinite) number of generations. At each generation there are adults and children. Each adult
has one child, and so the population size is constant. Adults, at least at the beginning date
zero (0), have different wage rates - indeed, we shall seek simplicity by declaring that only
two wage rates exist at date 0. Taxation of adult income is used to finance education of that
generation’s children, as well as to redistribute income among adults.

We suppose that an adult’s wage is a measure of her family’ s socio-economic status

(SES), where SES has an impact on the docility® of children. More specifically, the economic

?In the classical sense -- educability.



outcome of educating a child is the wage she will earn as an adult, and it takes more
educational resources to bring alow SES child up to a given (adult) wage rate than it does a
high SES child. We take the view that all children have identical inborn talent, and that the
wage a child eventually earns as an adult is afunction of her talent, the educational resources
invested in her, and the SES status of her parent, our summary of the environmental factor.
To be specific, we suppose there are two functions 2: R, — R_and g: R, — R_ such that a
child of a parent who has a wage of w will, as an adult, earn a wage of h(x)g(w), if x isthe
fraction of GNP per capita that is invested in her through the educational process. We

assume:

Assumption 1: 4 and g are continuous and strictly increasing. Moreover, h(0) = 0 and g(0) =
0.

Our economic environment dispenses with two important aspects of reality - that
children are differentialy talented, and that children expend differential effort’ - since we
think they are unnecessary to expose the problem we want to concentrate upon. Capital and
natural resources exist only implicitly in this model.

At each generation, adults must tax themselves, and the tax revenues, in the form of
educational finance, must be distributed between the two types of child, those from low
wage parents and those from high wage parents. The result of that education will be adults at
the next date who have (perhaps) two wage levels, and the problem repeats itself. All
children of a given SES receive the same educational investment, and hence have the same
wage as adults.

We shall suppose that taxation takes the following form. First, all adult incomes are
pooled, and each adult receives the average income. Then each adult pays the same fraction
of her income as a tax. At date 0, a fraction f, of the adults earn the low wage w,°, and
fraction £, earn the high wage, w,”. Thus, £, + f, = 1, and we define mean income at date 0 as

W=fw’+f,w’ If thetax rateis 7, then the after-tax income of every adult is (1 - 7) 1".

° Oneis, of course, free to interpret the difficulty in educating low SES children as due to their lower
talent. Thisis formally eguivalent to our model, yet might lead to different ethics. (Some would say
that it's alright for low talent people to earn less than high talent people, athough it's not alright for
kids from disadvantaged backgrounds to earn less than equally talented kids from advantaged

backgrounds.)



We wish to abstract from incentive problems; in particular, taxation does not alter
labor supply, nor does anticipation of their future after-tax income affect how hard children
work in school. These would be poor assumptions if we were interested in advising policy-
makers, but our investigation here is of a different kind. We are interested in exposing
certain logical inconsistencies in a conception of ‘the good society’, and it is appropriate for
this inquiry to assume that individual citizens are ailmost perfectly cooperative. We limit
their cooperative spirit only by assuming that private incentives would come into play if we
redistributed adult income so that low wage earners ended up with more income that high
wage earners. (The best we can do isto equalize all after-tax incomes.)

In the theory of equal opportunity (see Roemer [1998]), it is assumed that
individuals have different circumstances and exert different efforts. Here, we abstract away
from differential effort. A person’s circumstances -- those characteristics beyond her control
that influence her outcome -- are two in number, the SES (wage) of her parent, and the date
at which she is born. We shall take children as adults-in-formation, and are concerned with
equalizing opportunities among adults for some condition X, which we shall call ‘welfare.’
The instruments we have available are the tax rates and the distribution of educational
finance among child types at each date. Since effort is nugatory, the theory of equal
opportunity expounded in Roemer (1998) says that our objective is to maximize the minimal
level of ‘welfare’ among all adults across types, where an adult’s type is a pair (w, 1), w
being her parent’s wage, and r being the date at which she is born. Informally speaking, the
SES of a child’'s parents and the date at which she is born are circumstances beyond her
control, and equality of opportunity requires that we equalize, so far as possible, the welfare
of individuals with such different circumstances.

Thus, our problem is to maximize the least level of ‘welfare’ across all adults who
ever live. To be specific, at each date we must choose a tax rate of adult income, 7, and, if
there are adults with two wage levels (there are never more than two), an alocation of
educational finance (r,, r,) among children of the two types, wheref, r, + f, r, = 1. A child
from an L family will receive educational investment in the amount zur, and a child from an
H family will receive tur,. Thus, if w, and w, were the parents’ wages, then the children will

earn, asadults, a(t r,)g(w,) and h(zr,)g(w,).



We next define the notion of functioning. We say that an adult’s level of functioning
is afunction F(w, y) of her wage, w, and her consumption (after-tax income), y - F: R, X R,
— R’, where R’ represents the extended real line. We attempt to capture A. Sen’s (1980)
idea of functioning, which G. A. Cohen (1993) has characterized as ‘midfare,’ something
midway between consumption and welfare. To wit, we imagine that a person’s wage is a
measure of her level of human capital and individuals derive welfare directly from their
human capital. Functioning involves a degree of self-esteem and self-realization, and these,
we propose, depend positively on an individual’s level of human capital. Human capital, in
turn, is reflected in the wage.

Let F* = inf F(w, y). In what follows we will assume:

Assumption 2: F is continuous and monotone increasing in both arguments. Furthermore,

|i}rTO]F(w, y) = F*, for al y, and |ir’g]F(w, y) = F*, for all w.
In section 5, we shall assume:

Assumption 2°: F(w, y) = ylogw + (1- 7) log y, where0 < y< 1.

We define human development as an increase in functioning level of adults over
time. We believe this is consistent with the standard concept of human development, which
is not an increase in welfare as such, but rather an increase in human capacity. Capacity, in
our stark model, is a function of consumption and the wage, or more directly, of
consumption, self-esteem, and self-realization. The wage is important as the reflection of
education; in addition, it can be argued that self-esteem is a capacity enhancer, and that, too,
is captured by the wage. Children embody the knowledge of past generations, through the
educational process, and we have attempted to capture this in our specification of the
educational technology.

This model has similarities to Arrow (1973) and Dasgupta (1974), in which the
maximin criterion was examined in a dynamic framework. The main substantive difference
is that we posit two types of individual, at least at the early dates, while Arrow and Dasgupta
work with a representative agent. Thus, we are interested in what intergenerational equality
requires with respect to intra-generational wage differentials, a question that neither Arrow

nor Dasgupta posed.



3. Equality of opportunity for functioning: Model I.

Our first exercise is to take the ‘welfare’ of an adult to be her functioning level.
Thus, our problem becomes to

SupInf[F° F'F'F/..], (3.1
where F, is the functioning level of adults in the ‘J dynasty’ at date r. The ‘low dynasty’ is
the set of persons consisting of the low wage adults at date 0 and al their descendants;
= {TO , rLO,

7, r,',...}, where we note that r,’ is determined by r," viathe accounting identity £, r, + £, r, =

likewise for the *high dynasty.” The instruments of the optimization are {7, r,'} , |
1. The level of functioning of J adults at date 7 is F, = F(w,, (1 - 7)u), where i’ is mean
income at date ¢, and the wages are given recursively by w, = h(7" r/*)g(w,™), Vt > 0, J = H,

L. Hence,
w) = h(T ' g h(T7r,) 22 g{h(7 %) )% g w1 3L Vi, J= L H. (3.2)

It is important to note that, at some date, the wages of the two adult types may be
equalized, and if that is the case, then we stipulate that, thereafter, since there is only one
type of child, there is no longer any decision concerning how to allocate educational finance
- al children receive the same investment. We need not consider the possibility that a child
in the H dynasty has a wage lower than one in the L dynasty at a given date, for that will
never be an aspect of an optimal solution. It thus follows that at any date, the functioning
level of L adults will be less than or equal to the functioning level of H adults (where L and
H refer to the dynasties, not to the wages of particular adults), because the two types have
same consumption. Consequently, the equality-of-opportunity program takes the form:

SupInf [F° F}...] (3.1)

st.w, 2w/, 1=1,2, ...

We immediately observe:
Proposition 1. Let A1, A2 hold. At the solutionto (3.1'), F,°= F, V1.

Proof: 1. Clearly, 0< 7 < 1, V¢, since limF,' = F*, and if 7" — O then, by (3.2), F,' — F*,

T -l

V't > ¢t’, which by A2 are certainly not optimal.
2. Suppose F,” > F,", some t’ > 0. Then it is possible to increase 7° alittle and leave all other
variables the same, so that F,” is till above the minimum, while, by (3.2) w,', and thus F,,

increase V> 0.



3. Suppose F, > F°, + > 0. By part 1, decrease 7, ..., 7" so that consumption and therefore
the levels of F,' increase Vr < 1’-1. Next, increase 7 enough so that w,, J = L, H, t >t + 1
increase. We have now increased F,', Vt # +* and we can make all these changes in tax rates

small enough so that F," is not the smallest functioning level.E

Pl establishes that equality of opportunity for functioning is inconsistent with
human development, in the sense that a fraction f, of adults at every date remain at the (low)
level of functioning of date O L adults. If, as is reasonable, f, > .5, then the mgjority of all
adults are held to alow level of human capacity.

Do the H adults get reduced, over time, to this same low level of functioning? Not
necessarily. Let, eg., A2 hold: if yis sufficiently close to 0, then consumption is very
important in functioning, and it may pay to keep the wages of the H adults above the L
adults' wagesin order to bring about arelatively high mean income.

The maximin social welfare function is sometimes criticized for spending huge
amounts of resources to raise the level of welfare of a very small group of individuals who
are very poor welfare producing machines. Let us note this criticism does not apply here.
Nobody is extremely handicapped in our environment - there are no terribly inefficient
‘welfare’ -creating individuals. It is true, however, that L adults at date O comprise an
arbitrarily small fraction of the adults who have lived up to date 7, as T becomes large, and
al L adults are held to their level of functioning. This is surely a form of ‘extremism’ of
maximin, although it has a different character from the form of extremism we referred to in
the first sentence of this paragraph. If we contemplate sacrificing the L adults at date 0, we
are led to ask, why do they have less than an equal right to welfare than those at later dates?
The answer ‘Because it is too costly to their descendents nor to sacrifice them’ invites
sacrificing the L adults, or indeed all adults, at any finite number of dates beginning at date
0. After all, this group, too, constitutes an arbitrarily small fraction of all adults who shall

ever live,

4. Equality of opportunity for welfare: Model II.
We now suppose that adults care about the functioning levels of their children, as
well as their own. We define the utility of an adult of dynasty J at date  asu, = u(F,, F,™),

where F' is her own functioning level, F,™ is the functioning level of her child, and u is



monotone increasing in both arguments and continuous. Hence, if u* = inf u(F,, F,™), with a
slight abuse in notation, we may write u(F', F') = u*. We will also rule out an extreme form

of atruism by assuming

Assumption 3: u(X, F) > u(F', X).!
Our equal-opportunity program now becomes
Sup Inf [u,°, u’,...]
st. w, >w,/, Vi, (4.1)

where the requirement w,' > w/, Vt, is surely superfluous. We now have:

Proposition 2. Let A1, A2, A3 hold. Let m denote the value of program (4.1). At the
solution to (4.1), u,° = m. Furthermore, there are no two consecutive dates ¢ and ¢ + 1 such
that u,'>uand u,™ > u".
Proof. 1. Clearly, in the optimum 7 > 0, V¢. Similarly, 7 — 1 and 7" — 1imply that u," —
u*, therefore it must be either 7 < 1, or 7** < 1, or both.

2. Suppose u,” > m. Assume that F is defined at 7= 1. Case 1. If ° < 1, increase ©° alittle.
This raises u,’, V¢ > 0, and does not lower u,° to m. Case 2. Let 7° = 1, and thus u,° = u(F*,
X), u(F*, X) > m. By A3 it follows that u,* > m, V1, 7. Hence, by part 1, increase 7* alittle:
both u,° and u,* remain above m, while u,’ increases, V > 2.

3. Suppose u," > m and u,* > m. (The same argument holds for any two consecutive u," and
u,**, t > 1) Then decrease 7 alittle, which increases u,” above m. Assume that F is defined
at=1 Casel. If 7<1,increase 7 so that both w,*and w,’ (and thusw, and u,, Vt > 3, J =
L, H) are at least as high as before the perturbations.” Since »," and u,* were initially greater
than m, they till are. Hence, by part 2, it follows that «," and u,” cannot be both greater than
m. Case 2. Let 7 = 1 and thus u,” = u(F*, X), u(F*, X) > m. By A3, u,® >m, V ©°, 7. Hence,

* A3 shortens the proof of P2 considerably, however none of the main results changes if A3 is
dropped. Notice that if A2’ holds and F* — F* implies u(F, F*") — u* (e.g. if u is additive), then 7 <
1, V¢ (cf. L1 below), and P2 immediately follows.

*If m(7r) = k(z'rf), and g(w)) = (w!), J = L, H, it is not difficult to show that, given r, r,""

constant, if d7™'/d7 = - ¢,7/7, then w," and w,,™, remain unchanged, V¢ > 0, Vi > 2.



by part 1, increase 7° alittle, so that »,*, u,” and u,® remain above m, while u," increases, V¢ >
3.

If Fisnot definedin 7 =1, let 7 — 1 and notice that u," — u(F*, X), with u(F*, X) >
m. Then by A3 al arguments in parts 2 and 3 above follow.E

If each adult cares about her child’s and her grandchild's level of functioning, then
the same argument shows that no raree consecutive utilities can be greater than the value of
the program, which is achieved at date 0. Thus, allowing parents to care about the
functioning levels of a finite sequence of their descendents does not enable us to escape the
conclusion that protracted human development fails to occur. For it is clear that if the utility
level of the L dynasty returnsto u,” periodically, then the functioning level of one generation
must return, periodically, to F,° or F,* or lower, by »’s monotonicity. In this society, history
repeats itself, condemning every n" generation to the level of human development of the
primeval ancestor.

It is worth noting that u can be any continuous monotonic utility function. In
particular, an adult may well prefer that her child functions at a higher level than she, in the
sense that, for al X and small §> 0, u(X - §, X + &) > u(X, X).° This is perhaps somewhat
surprising: even if adults want their children to function at a higher level than themselves,

there is no protracted human devel opment in the optimum.

5. Equality of opportunity for welfare: Model II1.

We now suppose that adults care about their own level of functioning and their
child’ s uriliry. Suppose there is a concept of utility such that

u/=F+Pu™ Vt20,J=LH (5.1)

Hence, we can write u,’ recursively as
N
ul =Y (B)F +(B)"* u)** forany N; J= L, H
t=0
Suppose that the discounted sum of functioning levels of this dynasty is bounded

above, i.e, iﬁ’F; is bounded above for every feasible sequence {w'y, w';}=012..., given
=0

® Notice that this limited form of atruism is consistent with A3.



(W%, w°), and therefore B < 1. Hence, without loss of generality, we can assume

lim 8" = 0, and the utility of any adult born in period i > Oiis:

N— oo

oo

u, =Y B, Vi>0;J=L H (5.2)

=i

Thus, the utility of any adult is the discounted sum of her dynasty’s levels of
functioning. Caring about the welfare of your child forces you, implicitly, to care about the
functioning of your descendents, all the way down. It is reasonable to suppose that this
formulation is psychologically accurate. Are we parents content if our children are
functioning well, or does our contentment depend upon their happiness, where their
happiness derives from the happiness of their children?

Our equa-opportunity-for-welfare program is stated again as (4.1), where the
notation now refers to the new concept of utility. Again, the value of program (4.1) is
achieved at the date O utility. (If it weren't, increase 7, which will increase F,', and thus u',
Vi > 1.) Consequently, program (4.1) is equivalent to the program:

sup u,’
stw, 2w/, Vr (5.3)

Clearly, at the solution to (5.3), we have u,° < u,', Vt. Assume:
Assumption 1’: h(x) = kx*, g(w) =w"*,wherek>0,0<c, ¢, <1

Moreover, let A2’ hold. The sequence problem (SP) can be written as

v (w!w) =sup S B fylogw, + (L= 1) 10g(—") + (L= 7)logLf,w, + £, w1}
st = k(@) ()" ()"
1
(f.)"

w, =k(T) ()" (w,)” =k(r')" A= fr) (w,)”
w, 2wVt
As we will show, the solution to SP will depend on the initial wage ratio, p° =

w,’Iw". Therefore, let usfirst solve the single-wage SP, i.e. the SPfor p° = 1.

"In what follows, by A1’ and A4, F is bounded above so that such a condition is satisfied.
®In L1 below we prove that if F isbounded above, in the solution to (4.1), it will be 7° < 1.

10



v (w') = supgﬁ’[logw’ +(1-7)log-7")]

stw™ =k(T)*(w')”

(5.4)

where the only instruments are tax rates - al children receive an equal per capita share of
educational investment - and v* denotes the supremum function.

In order to analyze the single-wage SP, let W < R, denote the state space and let I':
W — W denote the feasibility correspondence, where T'(w)=[0,k(w)], and thus
I'(w) #3, Vw. Next, let A = {(w, y) € WX W|y e T'(w)} bethe graph of T". The one period
return function at date ¢ isafunction ®: A — R’ whose valueis F(w,, (1 - 7')u) but where 7
is expressed as a function of (w', w™). By substituting for 7, ®Ww, w") =

1 (Wt+1)1/ o

kl/cl (Wt)czlcl

logw' +(1—7) Iog[l— ) and SP can be written as

AP _ 1wyt
p* (w )_sup;ﬁ [Iogw +(1 7)'09[1 Ve (Wt)Czlcl ):| (5.5)
Wt+1e [O,k(Wt)CZ]

1

By Al', w= k= isthe highest sustainable value of w, and therefore, without |oss of

1

generality, werestrict the analysisto asubset, W c W, W ={we Wlw<w’, w' > kE}, w’
finite’ Hence, ® is bounded above by ®(w’, 0) and for al w’ € W’ and al feasible

sequences {w'} _,

N
im ) B'd(w',w'™) existsin R U {-eo} and (5.5) is well defined.
N —oo =0
Moreover, as shown in Appendix 1, if ¢, + ¢, < 1, ® is strictly concave. Thus, we henceforth
assume:
Assumption 4: ¢, + ¢, < 1.

Bellman's functional equation (FE) can be written as

v(w®)=  sup [Iog w?+(1-7) Iog(l— ﬁ) + ﬂv(wl)} (5.6)

e 0\ c,/e
Whe[0,k (w°)°2 ] k7 (wo)ea

°If ¢, = 1, the state space is not bounded. However, by A3, ¢, = 1 implies ¢; = 0: education plays no

role, the optimal tax rateis zero and, actually, there is no genuine dynamic decision.

11



where v(w) denotes the solution to FE. We now prove that the function v(w) = ¢ + wlog w,

where ¢ and w are unknown constants to be determined, solves (5.6):

(Wl)]Jcl

kljcl (M}O)czlc1

v(w®) = sup [Iogw°+(1—y)log(1— )+ﬁ¢+ﬁwlogwl]

whe[0,k (w0)2]
Thefirst order condition for this problem is

-7 ™ g @ ()" )

¢ kljcl (WO)cZ/cl - - kl/c1 (M}O)czlc1

and therefore

Wl — ﬁu/cl )Cl WO [
4a—w+mwl( )

The postul ated function solves FE if

o _ 0 _ (1_ /J/) ﬁlllc1
¢+ylogw’ = B¢+ (1+ Byc,)logw’ + (1-7) |097(1_ 1)+ B, + By logk + Byc, log @=7)+ Be,
or, by the method of undetermined coefficients,
= 1

(1-Be,)
6= -, og (A-1QA-pBc,) + B logk Be Be, (5.7)

- : |
(A= B) D A-7)a-Be)+fe, | A-B)A-fe) O (@-B)A-Be) A-7)A-fe)+ fr,
We now have:™
Proposition 3. Let A1', A2, A4 hold. Let w,’ = w,’ = w’, then v¥(w’) = ¢ + [1/(1 - Bc,)]log
w’ solves (5.5), where ¢ is given by (5.7). The optimal policy is given by

wrt =k ﬁc1 ) (W*’)"2
(A-7)A- Be,) + Be,

Proof. 1. Notice that lim sup.. § v(w) = lim sup... B {¢ + [1/(1 - Bc,)]log w'}. Clearly,
lim_,.. 8 ¢ = 0. Moreover, [1/(1 - fc,)] limsup,_... B logw' < [1/(1 - Bc,)] lim .. B (log k'w")
= [1(1 - Bc,)] lim_.. B [logk' + logw"]. Given that lim ... Bt logk = 0, it follows that lim

sup ... B v(w') =0, for all feasible sequences {w'}

=01,....

 An alternative proof of P3 is provided in App.1, based on the Euler equations.

12



Next, as shown in App.1, the sequence {w*} is such that (a) for every feasible

=01,...7

sequence {w'}_,, , D, B'®W*" ,w**) > B'd(w',w*) and (b) lim_.. B v(w*) = 0
t=0 t=0

Hence, by the theorems on dynamic optimization (see e.g. Stokey and Lucas, 1989, pp.72-5),

v(w°) = v¥(u).

2. The second part of the proposition is an immediate consequence of the first.2
As concerns the relationship between equality and growth:™

Corollary 1. Let A1', A2’, A4 hold. In an egdlitarian economy with w;° = w;°, the optimal

N 1-c,
wage eventually convergesto i = (k 1c2( Pes )
B e Ty

We now proceed to study the program (5.4) when w,° # w;°, i.e. p°> 1. Let now W ¢
R” denote the state space, with generic element w = (w,, w,) and let I': W — W denote the

feasibility correspondence, where now
T(w)={W e W[F0< T <1,3(r, 1, ): fury + fury = L, <k(1r,)5 (w,)% oy < k(Tr,)% (wyy) }
sothat I'(w) # &, Vw. The one-period return function ®(w,, w,’, w,"", w,™) is

141\ 1/ ¢ 41\ 1/ ¢;
LRI g
(w,)*" (w,)*"

and if v¥(w,’, w,’) denotes the supremum function, we can write SP as

ylogw, + (1—y)log(1— = [fH D+(1—y)log[nw; v o]

v (wo,wh) =sup Y Brd(w! W, witwit
= (5.8)
t+1 t+1

(Wi wy ) e T(wi,wy)

Again, define a vector w’ = (wL’, w,’), with w,> and w,’ finite and such that

’ 1/(1-c5) and ’
w 1 /(1-c2) ( ) WL Z Nt

! (f ) (f. )
the analysis to the subset W’ = {w € W|w < w’}. Hence, ® is bounded above by ®(w,’, w

5 (k)" Without loss of generality, we restrict

0, 00 and for al w’ e W and al feasible sequences {w'},

= 0 1 L

I ¢, = 1 we get unbounded growth (provided k > 1). However, as argued in fn. 9, this case can be

ruled out.
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N
limy_. Y B'@(w,wi,,wi™, wii') exists in R U {-} and (5.8) is well defined.

=0
Moreover, @ isdifferentiable in all arguments and, by A4, strictly concave.

We now prove:

Proposition 4. v¥(w,’, w,’) isincreasing in both arguments. Moreover,

e, (w9)=" (w) ="

(= Bcr) OLFL W)+ £, (wE) ]

v¥(wiwy) 2 ¢+ylogw] +(A=y)loglfw) + fwy ]+

L logw?
w
(- Bc,) "

v (wl o wh) <o+
where ¢ is given by (5.7).

Proof. 1. Let {w,/, w,'}_, denote afeasible path of the states, given initial conditions (w,°,

=0,1,...

w,”). If theinitial conditions are (w’,°, w,’), w’,° > w,’, the path {w’,, w’,/

HJr=01,...

such that w”,’

= w, V ¢t =21 w,/)2 = w, V ¢t > 0, is clealy feasble with

L H H'

N Bt wht wh, w2 Y, Bre(wl, witw, wit), and since thisis true for every
=0 t=0

feasible path, v*(w' °, w,) =v*(w,°, w,”).
2. Firstly, notice that, by P3 and the monotonicity of v*, it follows that v*(w,’, w,’) = ¢ +
(1 - Be,) log w,” > v*(w,’, w,”). Secondly, notice that it is always feasible to equalize the

wagesinz=1,i.e. toset o _ (wp)*'™ _. Hence, by P3,
E L) fy ()
v* (wi,wy) 2 sup ylogw; +(1-y)log(l-7°) + (1~ )/)|Og[f,,Wf+wag]+ﬁ¢+1 ﬁﬁ logk
7%€[0,] — pPC,
Be, 0 Be, (WZ )? o Be, 0
+ logz™ + log — ——+ logw
1- e, 1-Be,  fulwp) s+ fywD) ™' 1= fe, "

and maximizing the right hand side with respect to 7° the result follows.
As concerns the optimal path of the controls, we now prove
Lemma 1. Let A1, A2’ hold. For any finitet, in the optimum, r,'>0and 0< 7' < 1.

Proof. By A2', [im F(w,, (1- )[f, w, +f,w,]) = -, V7' € [0, 1], while, by A1’", r/=0o0r
wi—0

7=0imply w/ =0, Vj>t+ 1, and hence in the optimum r,' > 0 and 7 > 0. Given the

boundedness of F, asimilar argument can be used to prove that 7 < 1.2
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Our strategy to solve (5.8) will be to recursively construct a function v(w,’, w,’) that
solves FE; then we will prove that v(w,’, w,”) = v¥(w,’, w,’). As afirst step, consider the
Euler equations. Given the inequality constraint on wages, it is more convenient to write the
one-period return as afunction ¥ of w, and the wageratio p = (w,/w,).” Thus, ¥(w,, p', w,™

1+1

p) can bewritten as

logw! +(1—7)log| 1- 1 (W? ) [f,, (p ) +f,_] +@A-y)loglf, + f,p']
K (wy) (p')

Thus, in an interior solution, the Euler Equations and can be written as

(1_ ,y) (W2+1)ﬂc1 f[-/ (pm-l)l/cl B (WtL+1 Vey fH (pt+1)1/cl
o kl/c1 (WZ)CZ/Cl [ (pt)cz/c1 + fL:|/[l kl/c1 (m}tL)czlc1 (pt)cz/c1 + fL

ﬂ N ﬁ(l_ ,y)cz (th+2 ey fH (pr+2)l/f1 . f - (th+2 Uey fH (pr+2)1/g1 . f
a kll"l(wt;l cpley (pt+1)(-zlf1 JL kllfl(wfl)‘\zl"l (pt+1)t‘z/t‘1 fL

1wy [f,, (" ] / [1_ ()" [f,,m'“)”“l y H
¢ kllc1 (M}Z)cz/c1 (pr)czlc1 kl/c1 (M}tL)czlc1 (pr)cz/c1 L

ﬁfiﬁ_'_& (WrL+2 Ve, fa (pwrz)y(-1 . (WtL+2 Ve, fﬂ(pwz)l/g1 iy
Futfap™ T K[ (o) e T EI

Actualy, the Euler equations can be re-written, and made more intelligible, in terms

of the controls 7' and r,".

t 1+1

T

A=7)f = e+ fe, -1 (59)
-7 1-7

C o Bl £) () e

e I ey e gy (py e T B

Consider t = 0. Giventhat p°=1 = p'=1, V ¢ > 0, we conjecture that there exists a
number 5, >1 such that if p°®e[1,p,] thenin the optimum p' =1, and thusp'=1, vV ¢ > 1.
From the dynamic constraints it is possible to express r," as a function of p' and p™. Thus,
substituting for r,° and r," in (5.10) and setting p" = p* = 1, anecessary condition for, p'= 1 to

be optimal is

* The FOCs deriving from the maximization of ¥(w,’, w,"", ¢, p™) + B ¥ (w,”, w,”%, p™, p") subject
to p™ > 1 are the same as the FOCs deriving from the maximization of ®(w,’, w,”, w,/, w,”™) + B

q)(WLHl, WLNZI WHrvl, WHHZ) SJb] eCt tO WH;+1 2 wLﬁ-l.
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2 S £, <0 510
1Tf+f(p) + Be.f, ﬁC (5.10)

Next, by P3, if p'=1theninthe optimum 7" = 7 = B¢ /[(1- (1 - Bc,) + Be,]. Hence,
by (5.9) 7 = 7 and (5.10') becomes:
' < 7= pe.) +1]é =P, (5.10")
P [fL(l— Be,)d-v) + Be, &

Given the parameter restrictions, p, > 1, moreover p, is higher, the higher yand the

lower £, B, and c,. We can now prove:*
Proposition 5. Let A1, A2, A4 hold. If p°e[1,p,] thenin the optimum 7' = 7* = Bc /[(1 -
NA-Pec)+Pel,Ve,andp' =1, V=1

Proof. Let A denote the difference between the objective function evaluated at {w*/,

W*H’} =01,...7 -

feasible path. Let @ , (w,, w,, w,”, w,™) =0®/ow,, J= L, H, i =1,1 + 1. By the concavity
of ®
=lim, | 2/3 [D(w*, w* e w* W ) =D (w!, w™, w,wi)]>

Iimhmgﬁ’[@wi (w* ,w* 2 w* w* ) (w* —w’L)+d>“_?1(w*’uw*’+1 w* w* ) (w* —w’”)]+

L1 H! L H L

L H

|im7__>m iﬁr[@ , (W*'L’W*Hl W*’ W*;l)(w*;l _ )+(I) (W *r+1 *1 *r+1)( *r+1 _ r+1)]
=0 WH

In the proposed solution
*1+1 *1+1 *1+1 *1+2 *1+1 *1+2
r+1(w LIW L ,W le )+ﬁ¢ r+1(w L ,W L ,W H ,W H )>O

*+1 *1+1 *+1 *1+2 *+1 *1+2
f+1(W LWE wE W H)+/3(I) z+1(W LwE wEwrT) <0

q) (W *r+1 * 1 *r+1)+ﬁq) (W*Hl *r+2 W*Zl,w*zz) —
_(Dwgl(w L,W*L+1, *r *r+1) ﬂ(b (W*Hl *r+2 W*Zl,w*zz)

andw," =w,", Vt. Thereforesincew,* =w " w, = w,’,

 We adapt the proof of Thm.4.15 (Stokey and L ucas, 1989, p.98) to the case of a corner solution.
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A 2 IimT_)m iﬁr[@ B (W*IL,W*ILH,W *1+1) + ﬁ@ ,I(W*Hl * 1+2 *[+1 *1+2)k 1 [+1
=0 Wi

L W L W
H T *T * T+1 * T+1 * T+1 T+1
+lim,__B QL (w L w* W w T ) w T —wy

+ IimT_)m ﬁT@WITI*1 (W*Z,W*Z+1,W H,W*T+l)(w*:+l _WT+1)

H

[+1

Hence, given w, ™ > , Vt, the first term on the right hand side is non-negative.

Moreover, since @ ., (wZ,wZ”,wH Wit <0,J=L, Hand
' J

*T+1 _ ﬁ

O L (wr W wE W W = fkajﬁaj
(I) (W*T W*T+1 W W*T+1)W*T+1 =_f ﬁ
LT " (@-pe)

it follows thet,
|imT_)w ﬂT(I)w,T‘ﬂ(W L’W*ZH,W H’W*Tﬂ)(W*ZH _Wzﬂ) 2
Iimrﬁw ﬂT(D“_Tﬂ(W L’W*Zﬂ’w H,W*Tﬂ)w*?l :0

lim ﬂTCI)wFl(w EowET R wE Y (W —w ) 2

lim, ﬂTq)wLﬂ(w LW wE owE w* T =0

H

and therefore, A > 0.

Hence, if p°e[L p,], definev;: W — Ras

By g Om) ()
1-Be, £, )+ £, ()

where ¢ is given by (5.7). Moreover, let 7,:[1,p,] = [0,1] and 7, :[1,p,] = R, denote the

vo(wi,wy) = 9+ logw; +(1-y)log(f,w] + fywy) +

optimal control functions, where 7,(p’) = v, while ()= (P)"™" _ and therefore the
O e

optimal redistributive policy depends only on the wage ratio, p°.*
Asregardsv,, it is continuously differentiable in both variables with

Mo(wp wg) _ ¥ A-n/.

==
M, wi - Lfowl + fuwa
(1-7)e, fo[@o, (wWh Wi L Sl @, Wi’ ful@,,, (wy, wi)T'
+ 0 Vey 0\caley 1- Ve 0y\coley + 0ycoley
wLG k (WL) k (WH) (WL)

* Notice that r, isthe optimal r,°. The optimal r,’ can be derived from the constraint f,r, + f,r,’ = 1.
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Ko(wp, wy) _ (=7 fx

8W101 - [fLWg""fHWZ]
A-7)e, ful@ou (W], wi)]" 1 1 ful@yu w2, w)I' i@y, (we, wi)l'
M7 T S W (D)

where @,,: W — R _and @,,: W’ — R_ are the optimal wage functions, if p°<[1p,] (they

can be derived from 7, and r,), and thus @,,(w,", w,’) and @, (w,’, w,’) denote the optimal

values of w," and w,", respectively. More explicitly,

M:l+ aA-nr. n B, i I (Wg)cz/q
W T S A e W LR )
8\/0 (WE ’ WIOJ) _ (1_ )/)fH + ﬂcz i fH (W?)(.z ey

3W101 [fLW2+fHWSI] 1_&2 WSI fL(W)CL)I)CZ/C1 +fH(W2)CZ/CI
Hence, v, is dtrictly increasing in both variables and, as shown in Appendix 2,

strictly concave. Moreover, it is straightforward to show that if p°e[1,5,] v, Solves”
Vol ) = max [@(wp iy, wi ) + Bro(y, i)
at the corner solution p" = 1, and 7' = 7*. Assuming v, to be the value function if p°<[1,5,],
in Appendix 3 we prove that there exists an interval (p,, p,] such that if p° e (p,,p,]. itis
optimal to set p*e[1,p,], and therefore p' = 1, j > 2. Thus, if p°e (p,,p,], where @,,: W’
— R, and @,,; W’ — R, denote the optimal wage functions, and define v, :W'— R as
vi(wi,wy) = ylogw] +(1=y)log(f,w; + fywy) + (A= 1)109(1—7,) + Bro(@, , (wy, Wy ). @,y Wy, W)
and continue the iterative procedure, assuming that v, is the value functionon p°e (p,, p,]1
and verifying that there exists a p, such that, if p° € (p,,p,], it is optimal to set
pte (P, ], P2 elLp,] and p =1, > 3. In genera, in App. 3, we prove that in the
solution to FE, there exist derive an infinite sequence of intervals (p,_,,p,] such that, if p° e
(PP ] then =1 k>0(ifk=0, p,_, =1).
We can now prove:

Theorem 1. Let A1’, A2', A4 hold. Consider an inegalitarian economy in which w;° # wy’.

Let p' = wy/lw,. For any finite p°, in the solution to the program (5.3), equality is reached in a

* We henceforth use the “max” notation because, as we shall see, the supremum is actually attained.
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finite number of periods. Once equality is reached wages grow forever as described in P3 and

converge in the limit to the steady state w in CL.

Proof. We need to show that the increasing function v(w,’, w,’) solving Bellman's FE,
obtained in Appendix 3 is the value function.

Firstly, by the monotonicity of v, v(w,, w,) < v(w,”, w,’), V (w,, w,) € W’. Hence,
lim sup.. B v(w,, w,) <lim_. B v(w,’, w,’) =0. Next, by L1 and P5, the optimal sequence
{w*/, w3

is bounded away from zero. Hence, by the monotonicity of v, lim_,.. §

t=0,1...

0

v(w*', w* ) = 0, and, by the theorems on recursive dynamic optimization, v(w,’, w,’) =

v¥(w,’, w,”) and the policies derived from v in App. 3 are indeed optimal.2

In other words, the optimal path involves equating the wages of the contemporaneous

members of the two dynasties in a finite number of periods: if p° e (p._,» P, ], convergence

occursin k + 1 periods. Once equality is reached, human devel opment continues forever.

5. Conclusion.

Earlier, we remarked on the similarity between the present paper, Arrow (1973) and
Dasgupta (1974) (A-D, henceforth). The main differences between A-D’s models and ours
are: (1) A-D have a representative agent each period, and so the only issue is to maximin
welfare of that agent’s descendents across time, whereas in the present model, there is an
issue of infragenerational as well as intergenerational justice; (2) in A-D, agents care only
about consumption, not about functioning (i.e., not about the wage per se); (3) in A-D,
investment is modeled as capita investment, rather than educational investment.
Mathematically, the main difference is that the planner has only one instrument each period
in A-D, whereas in our model, she has two instruments. (Thisis, of course, due to difference
(1) above) Nevertheless, A-D’s results are qualitatively similar to ours. an increase in
consumption over time is compatible with maximin only if the equalisandum is welfare, in
which case parents care about the consumption stream of their entire dynasty. Thus, the
present paper may be considered an intellectual descendent of Arrow (1973) and Dasgupta
(1974).

Our concern with intragenerational inequality, not expressed in the earlier literature,
led us to deduce that, as long as individuals value their human capital as well as their

consumption, then the maximin program will eventually egqualize the levels of human capital
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of al individuals. We remark, however, that this result may well depend on our assumption
A4, of non-increasing returns in the educational technology.

Let us recapitulate. One of the mgjor foci of discussion in egalitarian theory of the
last thirty years has been the nature of the equalisandum. The main participants in the
discussion have moved away from taking welfare as that equalisandum, although it is
important to note that Arneson (1989) has argued for choosing opportunity for welfare asthe
equalisandum. (‘ Opportunity for welfare' is, in general, quite different from ‘welfare’ as an
equalisandum. That difference is due to differential effort, which in the present article, does
not appear.) However, this debate has been carried out within the confines of a static
environment, a ‘model’ with a single generation. Here, we have maintained that equality of
opportunity, for whatever kind of condition, is an ethically viable conception in a multi-
generation world, and that in such a context, it calls for equalizing opportunities across all
types of adult, where an adult’ s type is characterized by the date at which he is born and the
SES of the family in which he grew up. It is beyond this article’s scope to argue that justice
requires that a person fare no better than another simply by virtue of being born at a different
date”®. An asymmetric version of this principle is familiar in discussions of sustainable
development and environmental preservation: we should leave to future generations a world
as bountiful as the one left to us by our ancestors. But the other part is, we believe, just as
compelling: we are under no ethical mandate to leave our descendents a world more
bountiful than our own, although we may decide to do so if that increases our welfare by
contemplating the happiness it will bring our children, and their children...

In studying the multi-generation world, we have learned that, if we choose what we
call an objectivist equalisandum - we have taken ‘functioning’ as an appealing one - then
equality of opportunity for that condition implies there will be no further human
development, where human development is conceived of not as an increase in human
welfare, but rather in human capacities to function. Thus, two major characteristics of what
comprises the good society, as it has been conceived of by egalitarians for several hundred

years, are incompatible. We showed that if we equalize opportunities for welfare, where an

* This is contestable. Some argue that equality of condition among living persons is all that an
egalitarian ethic requires. One rationale is that self-esteem is affected by comparing one's condition to

those of contemporaries, not to the dead, or to those not yet born.
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adult’s welfare depends upon her own level of functioning and the functioning levels of a
finite stream of her descendents, the unpleasant inconsistency continues to hold. If, however,
we choose a thorough-going kind of welfare as the condition for which opportunities should
be equalized - one which declares that an individual’s welfare depends not just on his
capacities and the capacities of his children, but rather on his own capacities and his child's
welfare - then human devel opment and equality of opportunity are mutually consistent.

The most appealing solution to the unpleasant inconsistency is, we believe, to drop
the objectivist requirement.” It is opportunities for welfare that we should advocate
equalizing. This, incidentally, conforms to Arneson’s (1989) recommendation, athough the
reasons brought to bear here are entirely different from those he presents. But we must add
that this escape from the unpleasant inconsistency is predicated upon a psychological

premise - that adults care about their own functioning, and the welfare of their children.

" Before agreeing with us, however, the reader should consult Silvestre (in press), who works with a
different economic environment from ours, in which, he shows, an increase in welfare over time and

egalitarianism are consistent, even when adults do not care about the welfare of their children.
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APPENDIX.
Appendix 1: Proof that 7 = SBci/[(1 - P(1 - Bea) + Bea], V ¢, isoptimal.

First of all, let us prove:

Lemma A.1: If ¢; + ¢, < 1 then ®(w', w™*") is strictly concave.

1+ ¢ ) t+1\1-c;/ ¢y
Proof. Consider the function J = ()" Since ¥ _ 1™

tyeolep ’ 1+1 tye /e and
() W e (W)

t+1\1/ ¢y . ) 2 _ t+1\1-2¢;/ ¢;
W _ 160 | The entries of the Hessian are _ 27 _1-a (W)

8Wt W’ Cl (wt)z'2101 8(WH—1)2 - (C1)2 (Wt)czlcl

a 2J c, (C2 + Cl) 1 (Wz+1)1/cl a 2] a ZJ c, 1 (WH—l)l—cl/cl
=4 y = = —_— .
8(W1)2 (cl)z (Wx)z (Wt)z-21c1 3W18Wt+1 8W1+18Wi (cl)z W’ (wt)czll'l
Let D; denote the principal minor of order i of the Hessian: D1 > 0, V¢, ¢2: 0< ¢y,

2
;< 1. Ontheother hand, D, > 0« @) (e )  (c5)" 0. Hence, if c; + ¢, <1,J

(cr)” (cr)”

isconvex and @ is gtrictly concave.E
We can now prove:

Proposition A.1: Let A1l', A2, A4 hold. In the solution to (5.5) it will be 7 = 7* =
Bed[(L- DL - Bez) + Bea], VY .
Proof. Consider now the Euler equations (E.A1) for SP:
(1_ y)(wt+1)1/cl (M}Hl)l/c1 ﬁ(l_ ,y)cz (M}HZ)l/c1 (wt+2)l/c1

1/ ¢, t\colc l_ 1/ ¢ AN :ﬂ+ e t+1\ ¢,/ c 1_ 1/ ¢ t+1\ ¢,/ c
Clk 1(w)21 k1(w)21 klcl (W )21 kl(w )21
and the transversality condition

t+1\1/ ¢y t+1\1/ ¢y
Iim,ﬁwﬁ’[%+(l—y) 1 (W)/w’(l 1 (W)wa:o (T.AL)

kl/cl (Wt)czlcl _k1/c1 (Wt)czlcl

or, expressing (E.A1) and (T.A1) in terms of the contrals,

A1) = ey + fe, ) (EAT)
1-7 1-7
lim,__ ﬂ’[1+ 1-7) 1;, ] -0 (T.AL)

and since 7 = t*, V 1, satisfies (E.A1') and (T.A1"), by L.A1, the result follows.
P.A1l implies that w*"** =k(t*)*(w*') is optimal for program (5.5), as

claimed in P3. Actually, this result provides another way to derive v* (w°). In fact,
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v*(wo)zi[)”[logw*’+(1—y)|og(1—f ] ((1 ;glogl r*)+2[)’ [Iogw*’]

and sinceby P.A1

1-(cz)' all-(c)']

-1
w*' = k(1) (W*tfl)fz — (WO)(L'z)' H(k)(cz)‘ (T*)cl(fz)‘ =(k) I-c, (7*) I-c; (WO)(Q)'
i=0

V't > 1, the supremum function is

8: };; log(1-17*) +§ﬂ’(cz)’ logw® +gﬂ’ 11__(6622)|ogk +g‘ﬂt ‘1[11:(;22)]|Ogr*

and therefore v¢(w°) = ¢ + 1/(1 - Bc,) log w°, where ¢ is given by (5.7).

v (w) =

Appendix 2: Proof that vo(w;°, wy’) is strictly concave.

0ycoley coley . .
Proof. It suffices to prove that A —joq (wy )™ " (wy) is concave. Since
Fowa)=' o+ fy (W)=’
2N _ G JCL("VZI)CZ/F1 and JA _& fH(W )2/ , then:

M ey wRLF W)+ iy (WD) '] sy co walf, (wh) e+ (wl)He]

cle coley caley
oa o OO T ()

R W)L f, (wh) " +fH(wL)L2“1]

A fH( L)CZ/CI[ fL (WH)CZ/C1 +fu (WL)czlcl]
8(W2)2 Cl (WL) [fL (WH)CZ/C1 + fy (WL)”Z/Q]

J°A 92A (C_zjz fa (wg)“Z’“ fL(WO )62/61
a(wg)8(wL) a(WL)Q(WH) w wH[fL (WH)Cz/ll +fy (WL)zzlcl]

€1
If D; is the principal minor of order i of the Hessian: D; < O, while D, > 0

ate ate

[fo (i)' + ===, D) =2 fo(w) = + fu (W)= ] > ( 2) Fu(w8)= £yt

G

Appendix 3: Analysis of Bellman's equation.
Firstly, we show that there exists an interval (p,, p,] suchthat if p°e (p,,p,], it

isoptimal toset p*e[1,p,],andp/ =1,j>2.

A necessary condition for p* e (1, p,) to beoptimal is

@9 1, )" ), ) | i)
W ek (wf)‘“‘l/ [1 e (f owiy e T ey H‘ﬁ ov;

L

R NN N PR (S N 0 K| P T
1- + = gL W)
w, ek (wz)‘z"l/ [ e (f" (w3) " fﬁ(wf)%“lﬂ g
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Substituting for dve(w.*, wy)ow," and ovo(w.', wy')lowy", expressing the FOCs

in terms of the controls and the wage ratio and summing them:

7, 0 _ ok — ﬂcl
1t ° TS Ao+ pe

while taking the FOC corresponding to wy;* and substituting for the optimal °:
@=Nfup® ,  Pe,

0

T
1-7°

1-7) = fc, + Be,(1-7)

1

1- LLO = 1-f, 0 !
@ pey) T T 0] T oy O )
or, equivalently,
1 fu(pH)Y _@=Nfup”,  Be fu (@ ()Y

A=Be) £ (pO) ' + £ (PHY ] [fu+ fup™l A=Be) [f (PN + £y (T (p*) ]
where m(p") is the optimal level of p? given p*e[1, p,] (it can be derived from ro(p")

and we know that mo(p") = 1. Hence, define i,: (1 p,) — R+ as

1 fu(ph)"e _A=Nfupt | P fa
(A= Beo) [f (e (PN + fu (P21 [fu+ fup™] A=Beo) [f(pY) ' + £y]

i.e. we conjecture that 71(p") is the initial wage ratio, p°, that makes it optimal to choose

P, pte[l p,]- Itispossible to express iy explicitly:

1

(pl)”fz{ Lfo+fup LA () + £ ] e
(f)4 [ @=Be)A=7)p £ (P + ful+Beslf + fup'] "

Clearly, h is continuous and 4(p*) > 0. Moreover, if p* = 1, then

h(p) =

Y- pe)d-7) | 1} .
F1 (= Bey)(A=7)+ Bey ’

As shown in App.5, &, is differentiable and dhy(p')/dp* > 1, V pe[1, p,], and

hl(l)=[

thus we can define p, =n(p,) ,» With p,>p, and p,—-p,>p,—1 . Next, let
m,=h*(p,, 0] — (L,p,]. From the properties of £y, it follows that m is continuous,
differentiable and strictly increasing, with z, (p,) = 7, (p,) =1. Hence, patching together
M and m one obtains an increasing and continuous function. The optimal control
functions are z,:(p,, 5,] - [0], and r,: (5, 5,] — R+, where 7(p°%) = 7* and r4(p°) can be
derived from m. Thus, if p°e (p,, p,], define v, :W'— R, by

vi(wi,wy) =[ylogw; +(@=p)loglf,w; + fwy 1+ @=7)109A~7,) + o (@, (W, Wy ), @1y (W, wy )]
where @, W — R, and @5: W — R, denote the optimal wage functions, for

p°e (p,, p,], which can be derived from 7, and r;.
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Notice that v is continuous and, as shown in App. 4, strictly concave. Moreover,
if p°=p,, viwi’, wi®) = vo(w.’, wi°), and the two functions can be patched together.
Finally, from the differentiability of v, it follows that v it is continuously differentiable
on p° e (p,,p,] With

8V1(W21W2)_l+ (1_V)fL

8"‘}2 WE [fLWS+fHW[(~)]]
A-7)c, fuldy, (W) wy)l'e 1 f (@, (W, wi )] ny [@,, (w), wg )"
WEC]_ kl/c1 (W?)cz/cl kl/c1 H (W,(_),)czlcl L (Wg)czlcl

MmODwh) _ (=N
&WZ [fLWS+fHWg]
(L=1)c, [ul@u (07wl /[1 1 ( B R w1 H

wl(-)lcl kl/c1 (W](.)[)CZICl - kl/c1 (WE] )czlc1 +fL (W?)cz/cl

and if p°=ﬁ, a"l(Wg!WEI):&Vo(ngWZ) and &Vl(W21WZ)=8V0(W2!WEI)_
T o) o} o, oy,

Since vi(w,°, wy°) solves FE on p°e (,, p,], We can proceed as above to show
that there existsavalue p,: p° € (p,,p,], intheoptimum p'e (p,,p,], andp' =1,1> 2.
In general, proceed by induction and consider the £ + 1-th stage, k¥ = 1. Let
h,:(P._,.P..] — R. denote a differentiable function such that i,(p") represents the value
of p° that makes it optimal to choose p* e (p,_,, 5,1 (if k=1, p_,=1). Let di(p")/dp*
> 1, Vpre(p,, p] ad define g =n(g_) and n, =, (g .0 1> (Pis. Pra] - If
p°e(Q .01, definevi: W— R as
v (Wi, wy) =[ylogw; + (1= 7)log(f,w] + fuwy) + (1= 1)10g(L— 1) + By o (B, (W], wiy) @y (W], Wp))]
where @, W — R, and @2 W — R, denote the optimal wage functions, for
p° e (p,.p.], given the controls z,:(p, ,,p,]1 >[04, % = v* and r.:(p, ,,p,] — Ru.
L et v, be strictly concave and continuously differentiableon p° e (p, ,,p, ] With

R ) WA o Y

o, wi  [fowl + fuwi]
A-7)e, ful@, (Wi wi)l™ 1 (fal@a Wiowil™ ful@,, (wi,wi)l™™
+ WOC kl/cl (WO)czlcl 1- kl/c1 (WO )02/4,‘1 + (Wo)‘72/01
w (Wi, wy) _ A-7)fu
Wy U s
1-7)c, fﬁ[wkﬂ(""g!W[(ir)]ljc1 1 fH[wk,H(Wg’WEI)]:UCl fL[wk,L(WE!W:r)]ﬂc1
+ WO c kl/cl (WO )02/01 1- kl/cl (WO )cz/c1 + (WO)CZ/Cl
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and if pozp— , &Vk(WE-WIC;) zakal(WE-Wg) and avk(ngWg) Zg"kfl(WEng)_
o ow? w? wS, w?

We conjecture that there exists a p,,,: if p° € (p,,p,.,], in the optimum

p’ €(Py_;+Pi_ 1) »J 2 1. A necessary condition for p* € (p,_,,p,) to beoptimal is
- ()" [ (i) (wi)”fl) PLAUAD)
Y ) Ry ) S O EERRY ) R | R ™)

A=1fa i) 1 ( P S U ] PACATA
WI]:Ikl/Cl Cl(WZ)czlcl kl/cl H ( H)czlcl L (Wg)czlcl 3W11,
M anipulating the two FOCs as above one obtains

70 = Pes
(1-7)A-Bc,) + Be,

S (pl)ﬂc1 _ (- Y)fypl + ﬂcsz (7, (pl))ﬂc1
L= Be ) fL(P) " + f (P [fu+FfuP’] Q= Be)fL (P + fr (7 (p*) ]

where m(p") gives the optimal level of p?, given pte(p,., p,].- Hence, as above, define

.1 (P,_1,P.) — R, as the function that gives the value of p° that makes it optimal to
choose p*e (p, ,,p,]. Therefore:

h (o= P [ Lfo+ fuP I (P + fu (T (p) ] 4T
o (f)2" [ @~ Be,)A=1P'Lf () + fo (7 (0N 1+ Bel o + fup W (0T 7"
Clearly, Iy+1 is continuous and /+1(p") > 0. Moreover, if p'=p,,, then
_ (™ Lo+ fuPedd o)™ + fu(Pra)™] B 5 =
Fealpra) = (fL)'e [(1— Be) A= 1)l FL(Pe) ™ + fu(Pe2) "1+ Besl o+ fuPial (Pe2)™ f”] P

As shown in App.5, A is differentiable and diy.(p")/dp* > 1V p, € (p,_,, 5, ] -
Hence, let p,.,=h.,(p,) » With p_.>p , and p . -p =2p, —-p., - Let
T =i Py s Proa]l = (91,0, ]+ Ten is clearly continuous, differentiable and strictly
increasing, with . (p,) ==, (p,)- Thus, patching together m.. and 7, one obtains an
increasing and continuous function. From m. it is immediate to derive the optimal 0
and therefore we can write the optimal control functions z,_,:(p, ,p,,,] = [01] , Ts1 = T,
and r_,:(p, ,P,.,] = R« Thus,if p°e(p,,p,.,] define v, ;W' >R, by
Via(wiwy) = [y1ogw] + (A=) 1og(f,w] + f,w5) + (L= 11091~ T 1) + By (@0, (W] W5, B0 (W] W5))]
where @.1; W — R, and @40 W — R, denote the optimal wage functions, for
p° € (P, .P..,], Which can be derived from 7.1 and ria. If p°=p, , via(w.’, wi) =

viw:®, w®) and the two functions can be patched together. Moreover, vy is clearly
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continuous and as for vy, it is possible to show that it is strictly concave and continuously
differentiable for p° e (p, ,p,.,) With

P ea(wi,wy) 7 A-7/.

) L+ fuwi]
+(1—2/)cz fL[kaLL(WS,WE,)]”q/ll_ 1 (fﬂ[wm,ﬁ(wg,w,‘f,)]””l £G4 WO ﬂ
whe, kY (wp)e Pz (w9) ()
Fia W wy) __ A=1s
M} [fow)+ fawi]
+(1—07/)c2 fH[afkj,H(vzﬁva?,)]ﬂﬁ /{ ) 3 ( fH[a,M’HO(Wg/,Wg)]UQ FBns gwg/,w,o,)]””l ﬂ
W€ k2 (wy) = kYa (w0 )/ ()

a"kﬂ(Wg-WI(-)I) _ &Vk(WEvW;}) and &Vkﬂ(WEvWEI) _ avk(WQ-WI?I) .

and if po = p_k ! &WO 8WO &WO &WO

We can now define a function v: W'— R suchthatif p®e (g ., 1 vw’, wi')
= v, wi), k> 0 (if k = 0, 5 _,=1). Given the properties of the v;’s, v is strictly

increasing and continuously differentiable in both variables and strictly concave.

Moreover, v solves Bellman’'s FE by construction.

Appendix 4. Proof of the concavity of vy(w;°, w°).
Definition. Let w'e W’ and W' € W’ andlet w** e T(w'), w'*" e T(W'). Thefeasibility
correspondence I' is convex if and only if V 6 € (0, 1)
oW+ (1L-OW™ e T(OW +(1-6) W)
First of all, let us prove

Lemma A.2: if c;+ 2 <1, T isconvex.

Proof. If ' e T(w'), then w,"*" < wy* and

0<wi™t <k(r))*(w))e

1+ 1 rycy t Co

OSWHlSk(fH)Cl A= for)* (wy)
and likewise for Ww'*'. Hence, let us prove that A =k(r/)*(w!)" is concave. Since
aA I\ 1\ Co— 8A ty - t C
EY key(ry) (wi) =™ and a—rL,=kcl(VL) THwy) , then

BZA tyc t\Ccr— azA ryc— ryc
Wzkcz(cz_l)(’l)l(WL)2 2 s W=kcl(c‘l—l)(rL)1 2(wL)2 and

2

% = keye, (rl) o (wh )t Let D denote the principa minor of order i of the Hessian.

Lo
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Clearly, D; < 0, while D, = (¢, —1)(c, —1) —¢,c, 20& ¢, +¢, <1. And asimilar condition

holds for the other constraint, proving the convexity of I'.E

Proof. Consider w’ ¢ W’ and w° € W'. Let w' € T(W"), W' e T(W°) be the
corresponding optimal policies. Let w'(6) = 6 w* + (1 - ) W and w®(6) = 0 w° + (1 -
6) w°. By L.A2, w'(6) € T'(w%(6)). Moreover

v (W7(6)) 2 D(w°(8), w'(8)) + Bro(w'(6)) > 6D(w", w') + (1~ O)@(W°, ") + Bry(w'(6)) >
00(w’, w') + (1= 0)@(W°, ") + Bovy(w') + B(L= O)vy(W') = By (w°) + (1~ O) v, (W)

where the inequalities derive from the fact that w'(6) is not necessarily optimal and from

the strict concavity of ® and vo, and the last equality is true since w' and W' are
optimal .E

Appendix 5. Proof that di.1(p")/dp" > 1, Vk > 0.

Proof. From the formulain App. 3

dh (0 _ (0 { £, + FuP'LFL PV + £ (7 (P ] - }
dpl Cz(fL)l]/va (1_ﬁcz)(l_’J/)pl[fL(pl)cz/cl + fﬁ(ﬂ:k (pl))lhl] + ﬁcz[fL + fﬂpl](”A (pl))lhl "
1

(@ Be) =P Lr () + £y (r (0N 1+ Besl £, + £up 'l ()

{Ak+1 Bk+l - Ck+1}

where al terms but {A;+; — Bi+1 — Ci+1} a@e clearly positive and

1 ”x(p) o

A =[1+ Cz)(fL)Z(pl)rzhl +(1+ Cl)(fu)zpl(ﬂx (pl))m1 (1t + Cz)fou(pl):Jr +fifup T (P ne

+ Ll (PN + ()2 (P dﬂk (p ) m(p* )) [(1— Be)A=V)PTf. (0" + fu(m (P N1+ Pesl fo + fup l(m (0 ]

A= G- fo)i- y)(fL>3(p1)2%”+(1+c2>(1 Be,)(1- Y)f},(fL)z(Pl)%ﬂ(m(pl))‘i+(1+cz)ﬁcz(ff(pl)%(ﬂk(Pl))i
@ DBty (£ (P () (L ) () e y)(p)l (m(p )+

e ) o)) fﬁ(m o Be et ) fH(p)l (o >)1+

+ e (Lt ¢+ e)(f,)’ fL(pw (AT ("1 0- Be)i= () AL )LD -
+ e (£,) f (0 ))1+Bcsz(fH)zpl(7Tk(P D+ (e )L NI () (m () +

(L)) A Beda= 1P (5 (01 + (L et ()" (o D (0 B )0 @ )

(0 B fo (1) \

2 77:& (P ) o2
L dm (p")
dp*

) )+ (A e P () ”k;")( )y

+Beaf (f2) nk(pl))? P+ 2Berfu(f)’ ”553 ) 0y +

2 m(p)

+ (1= Be)A=7) [ (fu) (m (P)) (1)1+3Jr[(l—ﬁcz)(l—i/)+1362](fﬂ)3 ﬂ‘(p)( (P)) o
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“dm (")

By =[(1- Be,)(A- J/)(Cl+cz)fL(p) + (1= Be)A=1)enfu (m (PN + ey (m (0N + (L= Ber) A= 7) P (m (0" )) dp*

A(P)
dp*

T 7. (p")

+ B, f, (m, (pl)) + ey fu 0 (m, (0" )) dpl D (102D ()22 (m (0N + [ fup (m (0 NV + fofu 0

By = (- fe)(A—7)(e + &) F)(0Y) 0+ o)L= p)er + e faF (0D
+(1- Be,)(1- y)(cl+c2>fL(fH)2(nk(pl)f(pl)ﬁz+(1 Bey)(1- y)(zcl+c2>fH(fL)z(nk(pl»T(plf”

+ (1= fe;)(1- J/)leL(fH) (ﬂk(P )) (P)1 +[(1 ﬂcz)(l )+ Belenf (f) (m (0" )) p +(1 Be)A-1)e(fy) (7 (0" )) ("
+ e fu(£)2(m (p1) (P ) - +C1ﬂcz(fH) (. (p" )) (012 + Besesf, (f)2(m (p)* (P ) .

1A Be)(1-7) + 2Be,)(f,)? f,,d”*(p)( O o)+ (1 Be)l- D) de”"(p)( o
1 Be)(L-7) +2B6,)(/2) deﬂk(p)( O O I el 7) + Bl "”k(p LACI IR
+Bes(f)? ”;(f) o) ) st (1) ( D (o) 0t + st () "(1 2

p dp

Cos = L[ Be) A= DIPT £ (0" + £ (0N 1+ Besl £, + fup 1 (0 ]

Con = (1= Be) (- 1) £ (F20) 4201 Bey) (A= DA Be) A7) + Bl fu (f) 2 (0 (05
+2(1- Bey) A= 1) Bes () fu (e (0 (0D +1(A Ben)A=7) + Be,lP(f)(m (02)° ()2

2

+2Bc[(1- Be,) (A7) + Besl (Fu) £ (70, (0 0+ (Be,)*(fL)? fu (e (0)

Grouping the different terms according to the exponents of p*

s B G = (0= Bl Pl1- (1= )= V7 ) +(1—61)(1—1362)(1—V)(fL)3(p1)2%+l

L Bl (0" (o) + 2(0m )l Ber)(L7) + (L4 )~ (1 1P ) o)
2 B =20 o) () 2ol e 1) (L el (1) () ()
)L o)1) + 28es = 2Bes(= )L 7) Bl 1) P (o )

A Be)(L) - B (A Bed1=7) + Bl (P (0 ) Bl e )
—Bert, () d”"(p ) "”*(p ) o) o) = Bt "”*(p )

(m (p* )) (pl)z = 2B, fy(f1)° (m (o' ))1 (p)

All terms in the formula of di.(p")/dp" apart from the last three are strictly

dr, (p) p'

positive. However, a sufficient condition for di.1(p")/dp" > 0 is that . -
dp-  m(p’)

<1l

Since &, =h (g 1.7 1= (P, Pr,] @d it represents the optimal value of p?, given
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dh,(p*) p°

p'€[p,,,p.], the above condition is equivalent to >1, i.e. (we omit the

dp*  h(p*)
superscript of p° to simplify notation):
0, { Lo+ FuPILFLP)™' + fiu(ms(p))*"] _f }
Cz(f[,)(l/(2 (1_ ﬁcz)(l_ Y)p[fl‘(p)%/(l + fH”k71(p))1/L1] + ﬁcz[fl, + fMp]ﬂ'k71(/)))1/(1 f
L *{Ak - Bk - Ck}

(A= Be)@=7)PLL(P)H " + Fum (PN 1+ Besl s + fupl o (P))

*(p) @ (f,) * {

Lf, + FupILf ()" + £ (s (P))"] ; } .1
A= Be)A=V)pLfL(P) 2 + fume s (P) 1+ Besl fo + fuplma(o)Y "]

or, simplifying and rearranging terms,

{A.-B -C}2

Cz*[(l— ﬁcz)(l_ ]/)p[fL(p)"Z“‘ + fﬂﬂk—l(p))ll‘j] + ﬁcz[fL + fﬁp]ﬂ:k—l(p))l“1 ]*

UL+ FuPFL(0)2 + fy (e ()] = ful@= Be) A= V)L (P) ' + fuma (P 1+ Besl £, + Fuplmy(p) Y1}

The right hand side of this expression can be written as

1 1

(1= Be,)(1- ?’)(fL) (p) a +2¢2(1 Beo)A=7) o (f1)? (P)l (ﬂk L(P))" +czﬁcz(fL) (P) (ﬂk )k
+2¢,Bc, fu (f1)? (P) - (ﬂx 1(/3)) +2¢,f,(f)* (1= Be,)(1~ Y)(P) - (ﬂk 1(P)) :

2

+¢Bey(f)* fL(p) - (m 1(/3)) +¢f1 () 1A= Be)(1~ 7)+2ﬁcz]P(ﬂk (o)

+ ey (£ fr (. 1(P)) +Cz(fH)3[(1 Be,)(A-7) + Be,1(p)* (m, 1(p)) +6,(1= Be) A= 7)(f,)? fH(P) “
= 6(1= Ber)* A=)’ fu (1) (P) —262(1 ﬁcz)(l A= Be)A=7) + Pe) o () (i 1(/3)) (P)
— 26,(1- Be))(1= 1) Bey ()7 F (1 (P))* (P) _Cz[(l Pe,)A-7) + el (f,;) (ﬂkfl(/?)) (p)*

2

26, Be, (1 Bey) (L= 7) + Be) (fi) 2 o a(P)) P = ca(Ben) (£)7 fia (T2 (D)
Subtracting the latter expression from {A; — B, - Ci}:

(1-¢)1- Bcz)(l 71~ (1 Be)A=1I(f.)* fH(P) o +(1—61—62)(1—1362)(1—7/)(&)3(/7)2?1

1

+ B, (f1)° (P) (ﬂk 1(13)) +2[(1- ¢, = ;) (1= B, ) (1= 1) + P, = (1= ¢;) Be, (1= By ) A=) fu (f)? (P) (7TH(P))Z
+[2(1= ¢,)(1- Be,) (1= 1) + Pe, — 2(1- ¢,) (1= Be,)* (1= 7)? = 2(1= ¢,) Be, (1= Be, ) A=) £ (fu)? (P) (7Tk71(13))71
(1=, — )1~ Bcz)(l y)+2(1- Cz)Bcz 2(1- Cz)ﬁcz((l ﬁcz)(l 7)+Bcz)]fL(fH) p(ﬂ:k—l(p))

2

+(1=6)[(1= Be,)(1- 7)+Bcz][1 ((1 Bcz)(l—J/)+ﬁcz)](fy)3(P)2(7fk 1(P))Z+(1—Cz)ﬁcz(l—ﬁcz)(fL)sz(ﬂk 1(/3))7

~Beof, () 2 O 2B (1) G r ) o) Bt 2rialp) o e

and again all termsin the latter formula, apart from the last three, are strictly positive. In

order to prove that dh(p)/dp > 1, Yk > 1, we prove by induction that Z.(P) P,

dp  h.(p)
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Vk=1,Vpelp,,,p.,]- Firdly, letk=1. Since, n,(p) =1 and dﬂd"—(p)zo, Vpellp,]s
p

dh,(p) P
h,(p)

Therefore, since h, (1) =p,, we can define p, =h,(p,), p, >p, . ad it follows that

from the above formulas it follows that di(p)/dp > 0 and >1, Vpel[lp,]-

plhi(p) < 1, and thus dhy(p)/dp > 1, V p €[1, p,] -

dhk_(p)L>1 k> 1

Consider now the induction step. Assume >
dp  h(p)

Vpelp,, 0] From the above formulas dh.1(p)/dp > 0 and dh.\(p) _ P >1.
dp h..(p)

Therefore, since h,,(p,_,) = p,, We can define i, (p,)=p,.,» P.., > P, » and it follows

that p/h.a(p) < 1 and thus diwa(p)/dp > 1, Vpe[p, ,,p,]-
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