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Abstract 

 

 

Beginning with Romer (1990), a first generation of endogenous R&D growth models with expanding 

variety or growing quality of intermediate inputs had a scale effect of R&D employment on productivity 

growth. C. Jones (1995) criticises this class of models on the ground that their prediction is widely at 

variance with the facts of R&D employment and productivity growth in the advanced countries over the last 

fifty years. He suggests a model which shares important features with Arrow’s (1962) seminal paper on 

learning by doing. Growth is not endogenous, but, if population is growing, per capita output may 

persistently increase as a result of purposeful research effort, due to increasing returns to scale in the output 

sector. 

More recently, a second generation of endogenous R&D growth models has appeared, in which the 

scale effect is eliminated and the simultaneous expansion of intermediate goods variety and quality occurs 

under conditions that make steady-state productivity growth depend on the ratio between intensive R&D 

employment and total employment Dinopoulos and Thompson (1998) , Peretto (1998), Howitt (1999)). 

A unifying formal classification of the different types of R&D growth models is used in this paper to 

discuss how they face with the fact that not only R&D employment, but also the R&D employment share has 

risen dramatically in the advanced countries over the last fifty years. Depending on the model at hand, 

reconciling this fact with the facts of productivity growth requires different changes in the parameters that 

describe the ‘production function of knowledge’. We try to characterise such changes and discuss their 

plausibility in the light of the literature on patents and productivity. 

 

 

                                                           
* Draft (not to be quoted) of the paper presented at the Conference: “Old and New Growth Theories: An Assessment”, 
University of Pisa, 5 – 7 October 2001. 
1 E-mail: caminati@unisi.it. Financial support from the Italian MURST is gratefully acknowledged. 
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1. Introduction 

 

The ratio between the number of scientists and engineers engaged in research and 

development (R&D) and the level of total employment has increased dramatically in the U.S.A. and 

the advanced countries more generally in the second half of the twentieth century. Let us call this 

ratio (1 − hL), where hL is the ratio between employment outside of R&D and total employment. In 

the U.S.A. (1 − hL) was nearly three time as large in 1993 than it was in 1950, with a pronounced 

upward fluctuation in the period 1960-1970 due to government-funded R&D. Jones (2000) 

estimates that from 1950 to 1993 an even larger rise of the researchers/employment ratio has been 

observed in the set of G-5 countries (France, West Germany, Japan, the United Kingdom and the 

United States). Although the numbers involved are very small (the level of the ratio is in any case 

quite close to zero), so that the time series is more exposed to indivisibility effects and measurement 

errors, the rise of (1 − hL) is highly systematic within the period and must be taken seriously. 

It is quite striking how the observed dramatic rise of R&D employment did not show up in 

the productivity figures. As is well known, the growth rate of GDP per hour tended to decline in the 

advanced countries after the ‘golden age’ 1950-1970. The decline was less pronounced in the 

U.S.A. because this country did non enjoy the outburst of productivity from technological catching 

up after the second world war. For this reason the U.S. experience  provides a more telling 

indication of the relation between R&D effort and productivity growth for a country located on the 

frontier of technological knowledge. 

With the U.S. experience in mind, we shall refer to the stylised fact (a) of a large rise of the 

researchers/employment ratio and to the stylised fact (b) of  a relatively constant (if compared to the 

rise mentioned under (a)) growth rate of GDP per hour in the second half of the twentieth century 
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(on average 0.02 from 1950 to 1993)2. In the same period, the U.S. capital/output ratio and rate of 

interest showed an approximately horizontal (again, if compared to the rise under (a)) trend. 

If we ask ourselfs how the facts (a) and (b) can be reconciled, two candidate explanations 

come to mind.  

(i) There has been a fall in the average effect of innovations on measured 

productivity. This may be at least partly due to the fact that official statistics 

underrate the qualitative changes in goods and the improvement in their service 

characteristics (Nordhaus (1997)). Alternatively, or in addition to the previous 

cause, it may be the case that the rising well being associated with the rising per-

capita income makes it increasingly difficult to produce the same proportional 

improvement in the service characteristics of goods. Hence, the productivity gain 

tends to fall in the more recent innovations. Robert Gordon (2000) compares the 

effects on well being of the ‘new economy’, to those produced by the great 

innovations during the second industrial revolution. He concludes that the effects 

of the former do not bear comparison with those of the latter.  

(ii) A different, but compatible, line of explanation is a fall in the average productivity 

of R&D labour, as measured by the number of innovations per unit of research 

effort. A fall of this kind has certainly taken place, if the number of innovations is 

measured through the number of patents, granted or applied for (Griliches (1988), 

(1990)). Measures of this type are strongly biased not only by changes in the 

‘productive capacity’ of institutional patent agencies (e. g. the U.S. Patent Office), 

but also by changes in the propensity to apply for a patent. Microeconomic studies 

(Lanjow and Schankermann (1999)) indicate that a lower fall of the productivity 

of R&D labour is obtained if the aggregate innovation output is obtained by 

weighting patents by means of indicators of their technological and economic 

importance. This is related to point (i) above. 

 

 

The question discussed in this paper is how the R&D models developed within the recent 

revival of general-equilibrium-growth theory meet with the qualitative evidence presented above3. 

A similar question was addressed in an influential paper written by C. I. Jones and published in 

1995. Jones observed how the R&D growth models developed to that date displayed a ‘scale effect’ 

                                                           
2 See, for instance, Jones (2000). 
3 We shall not consider other families of models where growth is likewise driven by innovations, even less the huge 
microeconomic literature on R&D. 
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of the number of researchers on the growth rate of GDP per-capita. These models are criticised by 

Jones because the ‘scale effect’ is in striking contrast with the evidence. In the same paper he builds 

a model, which he defines semi-endogenous, where innovations are still the outcome of purposeful 

and costly R&D effort, but the steady-state growth rate of output per capita is completely 

determined by the technological parameters and the rate of growth of population. It is therefore 

independent of the level of population, of preferences, and of policy variables that do not affect 

technology. The family of R&D growth models with these properties is called here non-

endogenous. By contrast, the endogenous R&D models of general-equilibrium growth are those 

where per-capita GDP growth depends upon preferences and/or policy variables generally. 

The basic structure of the endogenous and non-endogenous general-equilibrium models of 

economic growth is discussed in part 2, 3 and 4 of this paper. 

Partly as a reaction to Jones’ critique, a second generation of endogenous R&D growth 

models has appeared in the late 1990’s. In this second generation, beside ‘intensive’ innovations 

that increase the productivity of the intermediate good produced in their sector of application, there 

are ‘extensive’ innovations, that increase the number of intermediate goods. In steady-state 

equilibrium, the number of intermediate goods (hence of sectors) grows at the population growth 

rate n, so that, in steady state, the number of intensive-researchers per sector is constant. This 

implies that the ‘scale effect’ on the rate of growth disappears. In other words, there is a dilution of 

the ‘scale effect’ across the growing number of intermediate-good sectors. 

A moment reflection reveals that the steady-state predictions of the second-generation 

endogenous and also of the non-endogenous R&D growth models are still in striking contrast with 

the evidence presented at the beginning of this introduction. 

The dramatic long-term rise of the R&D employment share (1 − hL) reveals that the long-

term growth path of the U.S. economy can not find a theoretical approximation through the 

hypothesis that the economy has been growing in the neighbourhood of a single steady-state path4. 

Perhaps, the observed long-term rise of (1 − hL) and the approximately constant rate of productivity 

growth are more consistent with the hypothesis of a sequence of transitions between different 

steady-state equilibria induced by  a sequence of exogenous parameter changes. This issue is 

addressed in section 5.1 of part 5. Our conclusion here is that the non-endogenous model is more 

easily reconciled with the above interpretation of the evidence than the endogenous model, but the 

parameter change required to explain fact (a) above may be unplausibly large, at least in some range 

of the preference parameters. 

                                                           
4 By definition, on a steady-state path the growth rate of every variable is constant for ever. Since the employment 
shares are bounded between zero and one, their unique admissible steady-state growth rate is zero. 
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In section 5.2, which hints at possible directions for future research,  we broaden the scope 

of our view, in that the long-term rise of the R&D employment share is likened to the long-term fall 

of the agriculture employment share, or to the subsequent fall of the employment share of 

manufacturing industry in favour of services. We ask whether suitable modifications to the basic 

structure of the R&D general-equilibrium models of economic growth may move some steps 

towards a better understanding of the systematic association between growth and the composition of 

employment, hence, between growth and structural change. 

The focus of this paper is on steady state results. It is however argued that every monotonic 

transitional dynamics, so restricted to reproduce the facts (a) and (b) above, is not easily reconciled 

with the predictions of the R&D growth models and of the endogenous model in particular. Eicher 

and Turnovsky (1999a), (1999b) show that non-monotonic transitional paths may exist in the non-

endogenous growth models with two endogenously accumulating factors, knowledge A and capital 

K. In what follows the endogenously accumulating factors are capital K, intensive technical 

knowledge A and extensive technical knowledge N. To the best of my knowledge, a general 

analysis of the transition dynamics for the R&D growth models of this type is still lacking5. The 

discussion of how it may be relevant to the theme of this paper is left to future work. 

An important caveat must be added. In what follows, the rigid supply orientation of the 

general-equilibrium models of economic growth is taken for granted and is not questioned. This is 

not because the author is not aware of the biases that are introduced when co-ordination problems  

or the stability of general equilibrium in the disequilibrium dynamics are disregarded. These issues 

are simply outside the scope of this paper. Still, in reading it, it is best to bear in mind what is 

implied by the seminal work by Jacob Schmookler on innovation and growth: the interest in the 

causes of the long-term growth of GDP per capita, as distinguished from the GDP level, is at best 

only a partial justification for the rigid supply orientation of general-equilibrium growth models. 

 

 

2. A unifying representation of technology 

 

In what follows we build a framework which embeds different views of the relation between 

output growth and the generation of new inputs, as may be encountered in R&D growth models. 

This is done under a number of simplifying assumptions about technology that still enable us to 

                                                           
5 Peretto (1998) reports on the transition dynamics of an R&D growth model where the endogenously accumulating 
factors are only A and N. In the transition dynamics results of Aghion and Howitt (1998), pp. 109-115, the endogenous 
factors are A and K. 
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discuss usually neglected issues, such as the role of complementarities and the relation between 

technological compatibility and knowledge spillovers. The main simplifying assumption is that the 

service characteristics of final output Y are unchanged throughout, that Y can be either consumed or 

accumulated in the form of capital and that it is produced by means of intermediate goods and 

labour. The number of available intermediate goods Nt changes through time as a result of 

innovation activities. 

Assume the number of service-characteristics types that exist in nature is finite. An  

intermediate good is a couple (v, Av) ∈ R+
2. v is the intermediate-good variety, which identifies a 

class of functions performed by the good, that is, a composition of the associated flow of service 

characteristics. For instance, a particular oil may serve mainly as a propeller, but partly also as a 

lubricant. Av is the technological level, or generation, to which (v, Av) belongs. In principle, we 

should expect that Av has only an ordinal meaning, possibly with the further ordinal implication that 

later generations of a variety are also more productive. This is not, however, the interpretation we 

find in the new-growth literature, where Av is an index leading to a cardinal productivity measure. 

The marginal product of (v, Av) is a known time-invariant function of Av (and possibly other 

variables). This leads to a time invariant production possibility frontier, describing the productive 

potential of every possible present and future combination of intermediate goods. 

 

2.1 Production  of material goods 

 

Final output Y is produced by means of intermediate goods and labour by perfectly 

competitive firms, which, individually, face constant returns to scale. Following the R&D growth 

literature, we introduce a set of simplifying assumptions implying that at every date t only the 

highest (and latest) available technology level Av, t  of each variety v is used. This will be the case 

since the value of the productivity gain from using the latest generation of a given variety invariably 

dominates the cost differential associated with the same choice. 

The assumption is not fully realistic. Even granting that Av amounts to a productivity index, 

we should in general expect that the flow of service characteristics associated with (v, Av) depends 

upon the type and quantity of other intermediate goods with which (v, Av) co-operates within a 

production activity6. If there are strong complementarities between different intermediate goods, it 

may be the case that the best-practice technology level of variety v at t may not be the highest 

available. Compatibility constraints may in fact imply that it is inefficient to use in the same activity 

                                                           
6 If there are production externalities, this service flow may also depend upon the intermediate inputs participating in 
other production activities. 
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very distant technology levels of complementary varieties. Complementarities of his sort are simply 

ruled out in the R&D growth models. 

In fact, these models assume a particular substitutability relation between intermediate 

goods, to the effect that they enter the production function in an additively separable form. 

Recalling our simplifying assumptions, the individual production function is: 

Yt = Nt
γ LY,t

1 − α [ ∫
=

N t

v 0

Av, t xv ,t
α ∂v]         (1) 

where xv is a quantity of the intermediate-good variety v and is LY labour employment in the 

production of final output. Thus, the marginal product at t of the intermediate good (v, Av, t) is: 

Nt
γ LY,t

1 − α Av, t
υ xv ,t

α − 1   

It is independent of the inputs of the other intermediate goods, although it may depend, if γ ≠ 0 , on 

the total number of intermediate goods cooperating with it. 

 

Intermediate goods are produced by local monopolists through a different set of activities. 

The reason why firms in the intermediate-good sector can not be perfectly competitive is quite 

robust (Arrow (1987) and (1998), Romer (1990)). The right to produce a new intermediate good 

involves an innovation cost that represents a fixed cost, because once the knowledge to produce a 

unit of a new good is acquired, it can be applied to the production of an indefinite number of units. 

If intermediate-goods production is otherwise subject to constant variable costs, we are faced with a 

clear case of increasing returns. 

The input of the activity for producing one unit of (v,Av) is a quantity of  capital K which 

depends positively on the technology level Av. To fix our ideas, K units of capital invested in the 

production of good (v, Av ) give rise to K/Av
ω units of this good, where ω > 0, thus implying that 

more capital intensive methods are required to produce intermediate goods of a later generation. For 

the sake of later reference we write: 

Kv, = xv Av
ω            (2) 

Howitt (1999) adopts a similar increasing-capital-intensity assumption and claims that capital used 

in intermediate-goods production can be interpreted as human capital. The above specification 

implies that  the average and marginal cost, in terms of final output, of producing (v, Av) is r Av
ω , 

where r is the rental price of capital. Since we abstract from depreciation, r is also the rate of 

interest. 

 

The monopoly output xv, t of variety v is: 

xv, t = α2 /(1 − α) Nt
γ / (1 − α) LY,t rt

1 / (α − 1) Av, t
(1 − ω) / (1−α)       (3) 
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The monopoly profit from producing xv, t is: 

πv, t = α(1 − α) Nt
γ  LY,t

(1−α) Av, t  xv, t
 α         (4) 

 

1 > ω implies that monopoly output is positively related to the technological advance Av,t. 

Aghion and Howitt ((1998), chap. 12) and Howitt (1999) obtain a monopoly output which is 

uniform across varieties and independent of A, by imposing  ω = 1. We hold to the latter 

simplifying assumption to obtain:  

xv, t = α2 /(1 − α) Nt
γ / (1 − α) LY,t rt

1 / (α − 1) = x t        (5) 

 

In equilibrium, final output Y is then: 

 

Yt = Nt
γ  LY,t

1 − α Nt A t x,t
α = α2α /(1 − α) Nt

 (1 − α + γ) / (1 − α) LY,t rt
1 / (α − 1) A t    (6) 

 

Where A t is the average technology level across intermediate goods: 

A t = 1/Nt [ ∫
=

N t

v 0

Av, t  ∂v]          (7) 

An equivalent equilibrium expression of Yt is obtained by observing that, if hK is the capital 

share employed in material, as opposed to knowledge, production, it must be the case that, in 

equilibrium we have (hK,, t Kt) / At = Nt xt. Hence:  

Yt = Nt
γ (hL, t Lt) 1 − α Nt

1 − α At
(1 − α) (hK, t Kt)α         (8) 

It is then clear how the assumption γ = α − 1 (see, for instance, Aghion and Howitt (1998), 

chapter 12) sterilises the effects of the growing number of varieties on final output, which result 

from the additively separable way in which the single varieties enter the production function. Where 

these effects are not sterilised, because  (1 − α + γ) > 0, we observe that the production function 

corresponding to a constant technology level contains a form of increasing returns due to 

specialisation, as measured by N. The best known example along these lines is probably Romer 

(1990), which assumes γ = 0. 

 Recalling that in steady state the rate of interest is constant, and the labour and capital 

shares employed in the (final and intermediate) output sector are also constant, equation (5) yields 

the steady-state-growth equation: 

 

gY = gL + [(1 − α + γ)/(1 − α)] gN. + gA        (9) 
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where gi is the proportional instant rate of change of variable i. In particular, if following Romer 

(1990) we impose the restrictions γ = 0 and gA = 0 , the above relation boils down to gy = gL + gN , 

where it is apparent that the growth rate of per-capita output is simply the growth rate in the number 

of specialised varieties. 

 

2.2 Production of knowledge 

 

2.2.1 Intensive innovations 

 

 An intensive innovation in sector v arriving in the interval t + ∂t is the stochastic outcome of 

the innovation effort performed at t in this sector. The innovation contributes to shifting the 

technology frontier according to  

A Maxt
⋅

,
 = (δ / Nt) At Max          (10) 

and brings Av, t to the shifted frontier. Thus, access to the frontier technology level is available, but 

not costless, to every successful intensive innovator operating in sector v. The knowledge increment 

has elasticity +1 with respect to At Max and elasticity − 1 with respect to the number of sectors in the 

economy (Aghion and Howitt (1998), chap. 12). The idea is here that the higher the number of 

sectors, the lower the impact of an innovation in sector v on the technology frontier.  

The Poisson arrival rate of an intensive innovation in sector v at t is: 

φv, t = λ (uL, v, t Lt)θ (uK, v, t K t)ξ At Max
χ         (11) 

where ξ > 0, θ > 0, λ is a constant, uL, v , uK, v are the fractions of total labour and capital invested in 

intensive R&D on variety v.  

The returns offered by the investment of rival-resources in intensive R&D are constant or 

decreasing, depending on θ + ξ = 1 (Barro and Sala-I-Martin (1995), chap. 7), or θ + ξ < 1. The 

second case arises if there is a congestion effect on the returns to R&D investment (Stokey (1995), 

Howitt (1999)), with the result that the larger the rival resources invested in research, the higher the 

probability that independent innovation efforts produce the same outcome. 

The parameter χ is meant to capture how the arrival rate is affected by the frontier 

knowledge stock At Max. There are two main forces at work here and which act in opposite 

directions. Thus, we may split the parameter χ into two components:  

χ = χ1  + χ2.  

χ1 is the so called ‘complexity effect’: more advanced technology levels are progressively 

more difficult to discover as a result of the increasing complexity of the search activity. Thus, we 
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have χ1 < 0. This is the assumption we find in a number of search-theoretic models of R&D-based 

economic growth (Jovanovic and Rob (1990), Stokey (1995), Kortum (1997)). Realistic as it may 

be, the positive the correlation between the technology-frontier index and the difficulty of search 

must be simply assumed and can not find a micro foundation within a formal framework which does 

not lend itself to consider the feed-back of innovations on the complexity of the search space.  

The parameter χ2 > 0 captures the “standing on giants’ shoulders” effect7 (Caballero and 

Jaffe (1993)), which postulates that a higher frontier knowledge increases the probability of 

invention because an investment in intensive R&D creates the opportunity to exploit a knowledge 

spillover from the technology frontier to the innovators. This positive influence of knowledge on 

the innovation-success probability is distinct from and indeed adds to the influence of the stock of 

ideas on the size of the knowledge shift, which takes place if the innovation arrives (see (7) above). 

To this extent, it is unclear what are the grounds for assuming that the giants’ shoulders effect is 

positive and is close in absolute magnitude to the complexity effect. We shall see nevertheless that 

the restriction χ = χ1  + χ2 = 0 (or other equivalent condition) is characteristic of the R&D 

endogenous-growth models. 

The main simplifying hypothesis introduced with (11) is that the success probability of 

intensive R&D on variety v is independent of the distribution of the local stocks Av, t. Together with 

(7) this implies that the intensive research effort and the arrival rate are uniform across sectors. 

Other formulations (see, for instance, Barro and Sala-I.Martin (1995), chap. 7) relate the complexity 

effect and the giant’s shoulders effect for sector v to the local stock Av, t. The same property of a 

uniform equilibrium arrival rate is however imposed also in this case, by means of ad hoc 

restrictions introduced to this end. 

Since intensive R&D is performed independently by the N sectors, the aggregate rate of 

intensive innovations is deterministic and equals 

Ntφv, t = Nt λ (uL, v, t Lt)θ (uK, v, t K t)ξ At Max
χ         (12) 

Recalling (7),and the fact that the equilibrium research effort is uniform across sectors, we 

obtain that the overall shift of the technology frontier at time t  resulting from the intensive R&D in 

the N sectors is: 

A Maxt
⋅

,
 = δ λ (uL, t Lt / Nt)θ (uK, t K t / Nt)ξ At Max

χ + 1        (13) 

where uL and uK are the aggregate labour and capital shares invested in intensive R&D. 

 

 

2.2.2 Extensive innovations 
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An ‘extensive’ innovation is the introduction of a new variety v. On the assumption that 

there is an external effect such that the technical knowledge in the economy affects the technology 

level of a new variety, a-not-too-unplausible restriction is that the technology level distribution of a 

new variety corresponds to the technology level distribution across the existing varieties (Howitt 

(1999)). This implies that extensive innovations at t do not affect the average technology level in 

the economy At. An assumption to the same effect is that new varieties arriving at t have a 

deterministic technology level At (Peretto (1998)). 

We assume that the extensive innovation effort is related to the creation of new varieties by 

the deterministic law: 

N t

⋅
= β (zL, t Lt) εN t

 τ (zK, t Kt) ψAt
 ν ≡ φN, t        (14) 

β  is a constant, zL is the fraction of total labour employed in extensive R&D. We impose the 

restriction ε > 0, ψ > 0, τ ≥ 0. The case ε + ψ < 1 indicates that there are decreasing returns with 

respect to the scale of the rival resources invested in extensive search. The restriction is referred to 

as the ‘congestion hypothesis’. A positive τ bears the interpretation that a higher number of varieties 

amounts to a wider knowledge base in the economy as a whole and therefore facilitates the 

discovery of yet new varieties. If this is in itself quite plausible, far more questionable appear to be 

‘point restrictions’ such as τ = 1, or τ = 0,  as may be found, for instance, in the pure variety-

extension model of Romer (1990) and in Peretto (1998), respectively. 

The parameter ν indicates how the production of an extensive innovation flow 
⋅

N  of 

technology level A is related to the size of the average technology index A. ν = 0 (Peretto (1998)) 

states that the cost (in terms of rival resources invested in extensive R&D) of producing a given 

innovation flow 
⋅

N  with average technology level A is independent of A. If ν > 0 ( < 0) this cost 

would be decreasing (increasing) in A. The restriction ν > 0 fits with the idea that the growth of  

technical knowledge along the quality dimension goes hand in hand with a growing ‘complexity’ of 

technology, which has a positive effect on the ease with which new varieties are discovered. As 

before, since the present framework cancels from view the rising complexity of the technology 

space, the treatment of this feature can be at best evocative. 

 

 

3. Steady-growth equations 

 
                                                                                                                                                                                                 
7 Cf. Merton (1965). 
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A steady state, or balanced-growth path, is a particular constant-growth path such that the 

growth rate of every variable is constant for ever. Since the factors employment shares can not exit 

the interval [0, 1], the definition immediately implies that the growth rate of such variables is zero 

on a balanced path.  

The assumptions of section 2.2 imply that the ratio (At Max / At) converges to (1 + δ)8. 

Assuming that convergence has already taken place, (13 ) is written: 
⋅

At  = δ λ (uL, t Lt / Nt)θ (uK, t K t / Nt)ξ At 
χ + 1         (15) 

Recalling that on a constant-growth path 
⋅

At and At grow at the same rate, using (8), (14) and 

(15) we write the steady-state growth equations: 

 

 

g A  [− χ] + (ξ + θ) g N − ξ g K  = θ n           (16) 

−ν g A + (1 − τ) g N − ψ g K   = ε n         (17) 

−(1 − α) g A −  (γ + 1 − α) g N  + g K  (1 − α) =  (1 − α) n      (18) 

 

If we define the variables k ≡ K/N, l ≡ L/N, so that gK = gk + gN , n = gl + gN , (16) – (17) – 

(18) yield the following system: 

















+−−
−−−
−−

α-1α)-1(γ-α)(1
ψψ-ε-τ1ν
ξ0χ

















g
g
g

k

N

A

 = 
















− g
g
g

l

l

l

)α1(
ε
θ

       (19) 

 

 

3.1 Endogenous R&D growth 

 

Let [I − Γ] be the square matrix in the left-hand-side of (19). If [I − Γ] has a non zero 

determinant, the steady-state growth rates of A, N and K are fully determined by equations (19), 

hence by technology, given the exogenous growth rate of population. Thus Det [I − Γ] ≠ 0 states 

that preferences do not have any bearing on the speed of steady-state growth and policy measures 

by a government are equally uneffective, unless they are able to affect the technological parameters. 

It is then apparent how the crucial assumption of the endogenous R&D growth models is Det [I − Γ] 

= 0. In this case the coefficients in (19) are linearly dependent and additional equations are 

                                                           
8 Cf. Aghion and Howitt (1998), p. 412. 
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necessary to determine the steady-state growth rates of the variables. One missing equation is 

derived from the firs-order conditions associated to the utility-maximisation problem: 

tMax ec tn

t

t ∂
−

− −−
∞

=

−

∫ )(

0

1

1

1
:

ρ
σ

σ
  

subject to the flow budget constraint that per-capita consumption at t ct is not negative and is 

constrained by wage and interest income minus the accumulation of stocks at t9. ρ  is the rate of 

time preference and (1 / σ) is the constant inter-temporal elasticity of substitution. 

In particular, the proportional growth rate of ct must satisfy: 

gc(t) = (rt − ρ) / σ 

where c is per capita consumption,  Obviously enough, in steady state n + gc = gY = gK . 

 

The restriction  Det [I − Γ] = 0 may be of course introduced in a number of ways. The 

standard practice of endogenous growth models with intensive R&D is to postulate the special case: 

χ = 0 and ξ = 0 (see, for instance, Grossman and Helpman (1991), Aghion and Howitt (1992), 

Howitt (1999), Peretto (1998), Young (1998), Barro and Sala I-Martin (1995), chapter 7). This 

yields:  
⋅

At / At = δ λ (uL,, t Lt / Nt)θ           (20) 

As is also revealed by the first equation of system (19), with χ = ξ = 0, consistency with steady state 

requires gN = n, that is, gl = 0. In particular, in the models where extensive innovations are not 

contemplated, so that N is constant, it is assumed that L is also constant and there is a scale effect of 

the intensive-research employment level on the growth rates of A and Y. This occurs in the pure 

quality expansion model of Grossman and Helpman (1991), Aghion and Howitt (1992) and Barro 

and Sala-I-Martin (1995) (chapter 7). Jones (1995) draws the attention on the lack of empirical 

corroboration for the hypothesis of a scale effect on the growth rate. In models with a growing 

population, equation (20) is reconciled with the lack of any scale effect on the steady-state rate of 

growth, by introducing special assumptions which make sure that L/N is constant (Howitt (1999)), 

or at least converges to a fixed steady-sate value (Peretto (1998), Young (1998)). With a simplified 

specification of equation (14) such that ν = 0 and ψ = 0, the required restriction is: 

 τ + ε = 1.  

This implies: 

N t

⋅
/ Nt = β zL, t

ε (Lt / Nt) ε          (21) 

                                                           
9 Cf. Barro and Sala-I-Martin (1995), charter 2. 
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and using the steady-state condition  gN = n, this yields 

 m zL = (n / β)1/ε           (22) 

where m is the steady state value of L/N. 

We now look at two different sets of steady-state solutions of the endogenous model, as 

specified above, which correspond to the possibility that: (i) the costs of one additional unit of 

labour effort invested in extensive or intensive R&D are identical; (ii) these costs are not identical. 

We shall proceed under the simplifying assumption γ = α − 1 (see equation (18)), so that gK 

= gA + n. Thus: 

gc = gA = (r − ρ) / σ           (23) 

 

 

3.1.1 Identical opportunity cost of effort in extensive and intensive R&D 

 

Suppose the only cost of one additional unit of labour effort in extensive or intensive 

research is the forgone opportunity of obtaining the wage rate w by selling that unit in the labour 

market. This implies that the private instantaneous marginal returns from innovation effort in 

intensive and extensive R&D must be identical and equal to the wage rate w. With our production 

function (8) we have: 

w = (1 − α)hL
− α qαA            (24) 

where q ≡ K/AL.  

 

[φv, t / (uL, v, t Lt)] Vv, t  = λ (uL,, t L t / N t )θ − 1 V t = wt =  [φN t /(zL, , t Lt)]VN,  t = β (zL, t L t / N t) ε − 1 VN,  t  (25) 

 

where Vv, t  = V t is the expected value of a quality innovation in any sector v at time t, and VN,  t is the 

expected value of an extensive innovation at time t.  

Let v t ≡ V t / A t, Max and v N, t ≡ V N, t  / A t ; in words, v t and v N, t are the productivity adjusted 

values at time t of an intensive and extensive innovation, respectively.  

From (24) and (25): 

v t = [(1 − α) / λ(1 + δ)] hL
− α qα (uL,, t L t / N t )1 − θ       (26) 

v N, t = [(1 − α) / β] hL
− α qα (zL, t L t / N t) 1 − ε        (27) 

Moreover, one obtains the asset equations10: 

∂ v t / ∂t = [r t φ t] v t − π t          (28) 

∂ v N, t / ∂t = [r t φ t] v N, t − π t          (29) 
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where π t  is the productivity adjusted profit of a local monopolist and it is worth recalling that, 

since an extensive innovation will be displaced by an intensive innovation in the same sector, the 

expected obsolescence rate takes the same value φ t for extensive and intensive innovations. 

Differentiating (26), (27) with respect to time and imposing the steady-state restrictions gN = 

n, 0,0,0,0 ====
⋅⋅⋅⋅
qzuh LLL we obtain that ∂ v t / ∂t = ∂ v N, t / ∂t = 0. Thus, (28) and (29) imply the 

steady state condition: 

π t /v t = π t / v N, t           (30) 

which can be written v = v N , or, equivalently,. 

(1 + δ) λ uL,
 θ − 1 m θ  = β zL

ε − 1 m ε         (31) 

Using (20) and (22) we obtain: 

gA = λδ uL,
 θ  m θ =   λδ (uL, / zL,) θ (n/β)θ / ε        (32) 

From (20) and (31): 

gA =  [δ / (1+ δ)]n (uL, / zL,)          (33) 

This yields: 

(uL, / zL,) = [(1 + δ) λ n(θ − ε) / ε β− θ / ε]1 / (1 − θ)        (34) 

gA = δ [(1 + δ)θ  λ n1 − ε  β− θ / ε ] 1 / (1 − θ)        (35) 

In the special, but convenient case θ = ε (34) and (35) simplify to: 

(uL, / zL,) = [(1 + δ) λ  β− 1 ]1 / (1 − θ)                            (34’) 

gA = δ n [(1 + δ)θ  λ  β− 1] 1 / (1 − θ)                    (35’) 

Thus we reach the striking conclusion that in the endogenous model as specified above, an 

identical marginal innovation cost for intensive and extensive R&D makes (uL, / zL,) and gA depend 

only on technological parameters. Instead, the steady-state shares uL, , zL, and hL depend also on the 

preference parameters ρ and σ. In particular, for θ = ε we have : 

zL, = { [(ρ+αn) / αn]  +  [(1 + δ)λ / β]1 / (1 − θ)  [1 + (σδ + 1) / α(1 + δ) ]}− 1    (36) 

The reason why the model is still qualified to be called endogenous is that a policy variable 

such as an innovation subsidy (see Aghion and Howitt (1998), p. 419) would affect the rate of 

growth, if it exerts an asymmetric influence on the cost from one additional unit of labour effort in 

extensive and intensive R&D. To understand this point, it is worth considering the case below, 

where the cost asymmetry does not arise from a policy variable, but from a slight generalisation of 

the innovation technology considered above.  

 

 

                                                                                                                                                                                                 
10 Cf Aghion and Howitt (1998), p. 109-110. 
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3.1.2 Asymmetric innovation cost 

 

Suppose that every unit of  labour invested in R&D at time t is combined with a  quantity of 

capital At, Max TA , in the case of intensive R&D and At TN in the case of extensive R&D. In this 

section we assume  TN  ≠ TA . In other words, labour and capital are perfectly complementary inputs 

to innovation activities, intensive and extensive,  but the ratio between the two inputs is different in 

the two set of activities, even after adjustment is made for the productivity levels At, Max and At. The 

case TN  = TA yields conditions identical to those obtained in the previous section, with the 

understanding that the terms K and q must be everywhere replaced with hKK and hKq, where hK is 

the fraction of total capital employed in the output sector (to produce intermediate goods). uK and zK 

are the fractions of total capital employed in intensive and extensive R&D, respectively. With this 

notation:   

wt = (1 − α) hL, t
− α hK, t

 αqt
αA t  

rt =  α2 hL, t
1 − α hK, t

 α − 1qt
α − 1 

uK, t = (1 + δ) uL, t q t
 − 1TA 

zK, t =  zL, t q t
 − 1TN 

hK, t = 1 − uK, t − zK, t 

Condition (25) is now replaced by: 

λ (uL,, t L t / N t )θ − 1 V t = wt  + rt At, Max TA        (37) 

β (zL, t L t / N t) ε − 1 VN,  t = wt  + rt At TN        (38) 

(26) and (27) are replaced by : 

v t = [1 / λ(1 + δ)]  (uL,, t L t / N t )1 − θ hL, t
− α hK, t

 α q t
 α[(1 − α) + α2 hL, t 

 hK, t
 − 1q t

 − 1TA ]  (39) 

v N, t = [1 / β] (zL, t L t / N t) 1 − ε hL, t
− α hK, t

 α q t
 α[(1 − α) + α2 hL, t 

 hK, t
 − 1 q t

 − 1TN ]              (40) 

Recalling that in steady state v = vN, and assuming for simplicity θ = ε, we obtain: 

uL  / zL = {λ(1 + δ) [(1 − α) + α2 (r/α2)1/(1 − α) TN ]/ β [(1 − α) + α2(r/α2)1/(1 − α)TA ]} 1 / (1 − θ) 

It turns out that uL  / zL is related to the steady-state rate of interest, which depends on the 

preference parameters ρ and σ. In particular, it can be easily checked that the sign of ∂(uL  / zL) / ∂r  

is positive if TN −TA >0 and is negative if TN −TA < 0. Moreover, using the fact that (32) holds also 

in the present case, we can see how similar considerations apply to the relation between gA and the 

rate of interest. In fact, substituting for uL  / zL from (41) into (32), the resulting expression of gA is 

the function f(r, λ, δ, β, α, θ, TN, TA).  We can write: 

 

gA = (r − ρ) / σ = f (r, λ, δ, β, α, θ, TN, TA) 
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If TN −TA ≠ 0, then r is a non-redundant argument of f() and, given n, gA and r are 

simultaneously determined by technology and preferences. If  TN = TA the simultaneity collapses 

and gA is determined by (35’). 

 

3.2 Non endogenous R&D growth 

  

Referring back again to system (19), the crucial assumption of the non-endogenous R&D 

growth models is Det [I − Γ] ≠ 0. In particular, referring to the case [I − Γ]− 1 > 0, standard results of 

linear algebra lead to the following proposition which extends to the economy with expanding 

varieties and technology levels a result, similar in spirit, of Eicher and Turnovsky (1999). 

 

Proposition 3.2.1: Assume Γ ≥ 0. Assume also that, for each row, the row sum of the elements of Γ 

is positive and lower than 1. Then, for every n > 0, there exist positive values gA, gN, gK that are 

solutions to (14)-(15)-(16) and such that gl = n − gN > 0. 

 

 

 

Recalling that 0 < α < 1, a quick look at equation (18) will suffice to see that the following 

holds: 

 

Proposition 3.2.2: If, in addition to the assumptions of proposition 2.1, we have (γ + 1 − α) ≥ 0, 

then gK > n (positive per-capita-output growth). 

 

 

Remark 3.2.1: The if condition of proposition 3.2.2 amounts to the existence of increasing returns to 

scale in the output sector. The assumption of Proposition 3.2.1 implies, but is not equivalent to, 

aggregate decreasing returns to scale in extensive and intensive search. 

 

Thus, where the equations of system (19) are not linearly dependent (notably, a condition of 

full measure in the relevant parameter space) the steady-state growth rates of output, technology 

levels and varieties are completely determined by population growth and the technological 

parameters. These rates are therefore independent of preferences, and of savings rates in particular. 

The above propositions extend to a three-sector environment the formal characterisation of 

the class of two-sector non-endogenous growth models first laid down by Eicher and Turnovsky 
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(1999). From a formal view point the seminal paper of Arrow (1962), where technology 

accumulation is driven by learning rather than deliberate R&D investment, belongs to the same 

class. Within the family of R&D growth models, the best-known non-endogenous example is 

probably Jones (1995) (see also Jones (1998) and (2000)), where the author abstracts from the 

expansion of varieties, so that gN = 0 and gl = n > 0. In particular, Jones (1995) assumes ξ = 0 (no 

physical capital input in R&D) and 0 < − χ < 1, so that his two-sector version of system (19) boils 

down to 









−

=















−−−

−
n

n
g
g

K

A

α)(1
θ

α)(1α)(1
0χ

 

and the conditions of propositions 2.1, 2.2 are trivially satisfied. 

It may be worth observing how the steady-state relation gc = gA = (r − ρ) / σ continues to hold, but 

the direction of causality at work here is such that, given n, technology determines gA and r is then 

determined by gA and preferences. Instead, in the endogenous model with asymmetric cost of 

innovation effort between extensive and intensive R&D we have that technology and preferences 

simultaneously determine gA and r.  

 

 

 

 

4. Is n an upper bound for gN ? 

 

As it turns out, the available examples of endogenous and non-endogenous R&D growth 

models share the prediction that, in steady state, the expansion of varieties proceeds at a pace which 

is not faster than the pace of population growth. In particular, gN* = n in the endogenous and gN* < 

n in the non endogenous models considered above. On a closer examination, however, these 

predictions are the by-product of quite special assumptions. Both the endogenous and the non-

endogenous model admit extensions such that gN* may be larger than n. 

To see this, consider again system (19) under the simplifying restriction γ = α − 1. In this 

case, the third equation in (19 ) yields gK* = gA* + n. Since the matrix [I − Γ] reduces to 

















−−
−−−
−−

α-10α)(1
ψψ-ε-τ1ν
ξ0χ

 

we have Det([I − Γ]) = −(ξ + χ) (1 − τ − ε −ψ)(1 − α). 



 19 

We may consider a version of the endogenous model with χ = 0, ξ > 0, υ > 0, where the 

crucial restriction Det([I − Γ]) = 0 is now fulfilled by τ + ε + ψ = 1. In this case 
⋅

N / N = β zL
ε (L / N) ε Aυ 

which in steady state requires ε (n − gN) + υ gA = 0. If 0 < υ < ε, this yields  gK = gA + n > gN. Since 

from (16) gK = gN  − (θ / ξ)(n − gN) we conclude that  gN > n and gA > 0 are  consistent with a steady 

state path. 

In the non endogenous model with the matrix [I − Γ] as above, simple calculations reveal: 

gN − n = n[(τ+ε+ψ−1)(ξ+χ)−υ(ε+ξ)]/[(1−τ)(ξ+χ)−(ξ+θ)(υ+ψ)] 

gA = n[(τ+ε+ψ−1)(ξ+θ)]/[(1−τ)(ξ+χ)−(ξ+θ)(υ+ψ)] 

Thus, a sufficient condition for a steady state with gN > n and gA > 0 is: τ < 1, τ + ε + ψ > 1; ξ + χ > 

0, υ and ψ sufficiently close to zero. 

 

5. Research employment and productivity 

 

A second and deeper problem is posed to the R&D growth models by the dramatic long-

term rise of the researchers/employment ratio observed in the U.S.A. (and the advanced countries 

more generally), compared to the relatively constant performance of the U.S. per-capita GDP (and 

productivity) growth in the period 1950 – 1993 (see Jones (2000)). A reason why in this respect the 

U.S. experience may be more revealing is that it is less influenced by the transient component of 

productivity growth in 1950-1970 which is generally associated to technological catching-up.  

These stylised facts are not only at variance with the scale effect on the growth rate 

displayed by the first generation of endogenous R&D growth models and criticised by Jones (1995). 

The evidence is more generally at variance with the possibility to approximate (if at a very 

aggregate level) the long term evolution of innovation activity and productivity growth in the U.S. 

(but also in the advanced countries) through the hypothesis that this economy has been growing in 

the neighbourhood of a single steady-state path. More specifically, endogenous and non-

endogenous models alike are faced with the problem of 

(i) explaining how the rising researchers/employment ratio (1 − hL) can be reconciled with 

the behaviour of productivity growth; 

(ii) identifying the causes of the rising researchers/employment ratio. 

A first way of answering these questions is to suppose that the rise in (1 − hL) corresponds to 

a transition between different steady states with constant growth rate gA induced by exogenous 

changes in one or more technological parameters. 
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A second and more ambitious way is much in the spirit of Pasinetti (1981) and searches for 

rules of structural change that may get closer to explain the observed phenomena and above all the 

finding that growth trajectories are not well approximated by a steady state path. In the remainder of 

this paper we shall expand on these two lines of investigation. 

To this end, we shall refer to the simplified versions of system (19) that feature in ‘standard 

examples’ of endogenous and non-endogenous R&D growth models. In particular, physical capital 

is not an input to innovation activity, intensive and extensive, hence ξ = 0, ψ = 0; the productivity 

of the extensive innovation effort does not depend on  the technology level A, that is, υ = 0; the 

aggregate production function does not depend on the number of varieties N, thus γ = α − 1. 

 

 

5.1 Looking for appropriate parameter changes 

 

Referring to the U. S. experience in the second half of the twentieth century, we may 

observe how the rate of interest, the capital output ratio, and the growth rate of per capita GDP have 

been ‘relatively constant’11 over the period. Since the model structure implies σ gA + ρ = r = 

α2K/Y, we derive the restriction that α has been constant; we are also led to formulate the ‘working 

hypothesis’ that the preference parameters σ and ρ were unchanged throughout. With this situation 

in mind we consider what, if any, changes of the technological parameters of the non endogenous 

and endogenous models can answer the issues posed under (i) and (ii) above. 

 

5.1.1 Non-endogenous model 

 

With the assumptions of proposition 3.2.1 in place, in particular 0 < −χ < 1, ε + τ < 1 the 

non endogenous model yields the steady-state predictions: 

 

gY = gA + n 

gN = ε n / (1 − τ) 

gA = θ ( 1 − τ − ε) n / [ − χ (1 − τ)]  

 

Notice that ∂ gA / ∂ τ < 0; ∂ gA / ∂ χ > 0. Moreover, the growth rate of per capita output is 

independent of δ, the proportional productivity effect of quality innovations; it is also independent 

                                                           
11 At least in the sense specified in the introduction to this paper. 
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of λ and β, the parameters that, for any given innovation effort, regulate the arrival rates of 

intensive and extensive innovations, respectively. Using the condition that, in equilibrium the agent 

is indifferent between investing one extra unit of labour effort in intensive research, extensive 

research or output production, we derive the steady state value of (uL + zL). 

 

(uL + zL)−1 = 1 + 
nn

nn
χδεααετδ

ρεετρχδσδετ
−−−+

+−−−−+−−
θ)1)(1(

])1)([()1)(1(θ  

We may observe how λ and β do not affect the steady-state researchers/employment ratio. 

Moreover, simple but tedious calculations reveal: 

 

∂(uL + zL)/∂δ < 0 if σ ≥ 1 

∂(uL + zL)/∂χ > 0 if σ ≤ 1  

∂(uL + zL)/∂τ > 0 if σ ≤ 1  

 

Depending on the preference parameters, the model produces two candidate explanations for 

the observed long term rise of the researchers/employment ratio: either a fall of δ, leaving gA 

unaffected, and/or concomitant increases of χ and τ, both raising the share (uL + zL), while exerting 

mutually compensating effects on gA. The two types of parameter changes would affect the 

composition of research employment in opposite directions. 

 

zL / uL = −χεδ / [(1−τ−ε)θ(1+δ)] 

zL = 
]ρεε)τ(1)χδ[(ρε)τσδ)(1(1αχεδαε)αθτδ)(1(1

χεδα
+−−−−−−++−−−+

−
nnnn

n  

 

It can be easily checked that ∂( zL / uL) / ∂δ > 0 and ∂ zL / ∂δ > 0. A parametric fall of δ 

would unambiguously produce an absolute decline in the steady-state share of the extensive-

research employment. Instead, if gA  is to remain constant in the face of a ceteris-paribus rise of χ 

and τ, the term (1−τ−ε) / −χ  is bound to fall. Thus, in this case the model predicts a rise of zL / uL, 

hence a rise of the extensive-research employment share.  

To gain some understanding of the problems raised by this line of reasoning, it is worth 

considering the case σ ≥ 1, which is usually considered more realistic than its counterpart σ < 1. On 

a growth path with constant gA , falling δ, and the remaining parameters held constant, we have:  
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g A = [
χ

θ
−

−++
⋅⋅
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t ] 

 

 On the assumption that transition paths are monotonic, the growth in the number of 

varieties gN, t is expected to fall along the growth path, as a result of the falling share of the 

extensive-research employment. Unless θ is close to zero, the implication is that the rate of decline 

in δ must have the same order of magnitude of the growth rate of uL. In turn, this is predicted to be 

strictly higher than the growth rate of the research-employment share uL + zL. Since the latter is 

known to be, on average, large in the period 1950 – 1993, our conclusion here is that the rate of 

decline in δ which is required by this line of reasoning may be unplausibly high..  

 

5.1.2 Endogenous model 

 

In addition to the simplifying assumptions stated at the outset of section 5.1, the endogenous 

model we are considering assumes χ = 0,  ε + τ = 1 and θ = ε. The innovation technology is that 

considered in section 3.1.1 generating a symmetric cost from one additional unit of labour effort 

across extensive and intensive innovations. The fact that with this technology the steady state 

growth rate does not depend upon preferences is unconsequential here, because the present exercise 

is conducted under the ‘working hypothesis’ that the preference parameters ρ and σ and the 

technological parameter α are unchanged. In steady-state equilibrium, the growth rate of per capita 

output is: 

gA =  δ n [(1 + δ)θ  λ  β− 1] 1 / (1 − θ)  

The research employment shares are: 

 

uL  = 
δ)λ/β][(1]

δ)α(1
1δσ1[)ρ/α(1

δ)λ/β][(1
ε)1/(1

ε)1/(1

+
+
++++

+
−

−

n
 

zL = 
δ)λ/β][(1]

δ)α(1
1δσ1[)ρ/α(1

1
ε)1/(1+

+
++++ −n

 

 

It can be easily checked that  

∂ uL / ∂ (λ/β) > 0  

∂ zL / ∂ (λ/β) < 0  
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∂ (uL + zL) / ∂ (λ/β) < 0 and ∂ (uL + zL) / ∂ δ < 0  if σ > [(1 + δ)ρ − n] / δn  

∂ (uL + zL) / ∂ (λ/β) > 0 and ∂ (uL + zL) / ∂ δ > 0  if σ ≤ 1. 

 

This shows how the endogenous model can not easily reconcile the drastic rise of (uL + zL) 

with the simultaneous approximate constancy of gA. The reason is that for a wide range of the 

preference parameters, the technological parameters δ and λ/β  affect not only (uL + zL), but also gA 

in the same direction. In this range, the concomitant changes in δ and λ/β that leave gA unaffected, 

exert (at least to some extent) mutually offsetting effects on the research-employment share (uL + 

zL). In the remaining range 1 < σ ≤ [(1 + δ)ρ − n] / δn the results are ambiguous, in that they depend 

on further restrictions on parameters. 

 

5.2 Growth and structural change 

 

In section 5.1 we argued that the convenient and widespread (at least in standard 

applications of growth theory) interpretation of growth paths as trajectories in the neighbourhood 

of, or at least converging to, a steady state, may become a strait-jacket when it comes to interpret 

phenomena such as the long-term rise of (uL + zL). In this respect, R&D models have paid mostly lip 

service to the lesson of eminent scholars on economic development, such as Adam Smith, Allyn 

Young, Joseph Schumpeter and Simon Kuznets. Their idea that there are deep reasons why growth 

is systematically associated with structural change is not easily reconciled with a model structure 

which is deliberately designed in order to obtain the steady-state property. 

A recent change in this state of affairs is a paper by Sergio Rebelo and co-authors 

(Kongsamut, Rebelo and Xie (2000))  showing that the new growth theory has eventually placed 

structural change on its research agenda. In the focus of that paper is the long term employment 

shift away from agriculture in favour of services , which is so typically associated with the process 

of economic growth. Clearly, these changes have at least in part to do with changes in the 

composition of consumers’ expenditure associated with the long term rise of per-capita income. A 

tradition in economic theory, from Kuznets (1957) to Pasinetti (1981) had already emphasized this 

order of phenomena. 

One may ask whether the observed long term rise of the research-employment share may be 

similarly associated with the long-term rise of per capita income through its effects on the 

composition of consumer’s expenditure. A possible line of explanation is the following. Consider a 

non-endogenous R&D model of economic growth with differentiated consumer goods, and only 
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one intermediate good, which is used, together with labour, to produce every consumption good i 

with the production function: 

 Yt = At Ly(i),t
1 − α xt

α 

At is the productivity index associated with the best-practice quality of the intermediate good at t. 

Suppose that the rise of per-capita income makes consumers increasingly inclined to pay 

attention to the birth date of a good, even when its service characteristics are close to those of the 

old goods. That is, the rise of per-capita income produces a form of satiation with respect to the 

‘old’ goods which loose market shares in favour of the ‘new’ goods. The expected pay-off from the 

research effort to create a new consumption good would be influenced by the rising per-capita 

income in at least two ways. Ceteris paribus, the new good would enjoy a larger market share in the 

period immediately following its first introduction. At the same time, the rising per capita income 

would produce a faster economic obsolescence, that is, a more rapidly declining market share, 

during the economic life of this good. Assume conditions such that the first effect prevails and  the 

outcome is a long-term rise of the expected pay-off from the creation of a new consumption good, 

relative to creation of a quality innovation. In equilibrium, the ratio zL / uL between the extensive 

and the intensive R&D employment would increase with per capita income to make the return of 

one additional unit of labour effort identical in the two activities. Thus, equilibrium paths with a 

long term rise of the research-employment share may well be consistent with a constant growth of 

the productivity index A. 

In the remainder of this section we would like to sketch a second line of explanation which 

is more easily related to the formal structure outlined in the previous sections. The explanation rests 

upon the problem of complementarity between intermediate goods. In the new-growth literature, the 

problem of complementarity between intermediate goods has been introduced in relation to the idea 

of a sequence of general-purpose technologies (GPTs). The adoption of a GPT requires the previous 

creation of a set of intermediate goods that are specific to it. When the GPT s first appears a labour 

share is shifted from manufacturing to R&D (phase 1); next, after the intermediate goods required 

by s have been invented all employment is shifted to manufacturing until the GPT (s + 1) arrives 

(phase 2). The idea is exploited by Helpman and Trajtenberg (1994) and Aghion and Howitt (1998) 

to study the relation between growth and cycles. The notion of a steady state is correspondingly 

extended by these authors  to the effect that in an economy with a constant population “a steady-

state equilibrium is one in which people choose to do the same amount of research each time the 

economy is in phase 1 …” (Aghion and Howitt (1998), p. 248). 
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We suggest that a similar set of ideas can be conducive to phenomena of structural change 

within a framework which is borrowed, with some important variations or qualifications, from the 

R&D growth models considered in this paper. 

For the sake of simplicity, let us assume away the problem of extensive R&D by assuming 

that at every date there is an unchanging continuum of intermediate-good varieties ordered on ℜ+; 

to employ these varieties in production, their appropriate technology level must developed. [0, ΛA] 

is the set of complementary intermediate-good inputs necessary to implement the technology level 

A in the production of final output. Nt is the number of intermediate goods used at t. There is only 

one final good Y. Its production function is:  

Yt = Nt
α − 1 LY,t

1 − α [ ∫
∞

=0v

P(Av, t) xv ,t
α ∂v]        (41) 

P(Av, t) is the productivity index associated to the technology level Av, t  of variety v. with: 

P(Av, t) = A, if 0 ≤ v ≤ ΛA and Av, t = Aj, t = A for all v, j ∈ [0,  ΛA]; 

P(Av, t) = 0 otherwise.  

The above assumption formalises a strong form of incompatibility between intermediate goods of a 

different technology level. We say that technology level A has been implemented if Av, t = Aj, t = A 

for all v, j ∈ [0,  ΛA]. Variety v is necessary to the implementation of A if and only if v ∈ [0,  ΛA]. 

If technology level A(t) is implemented at time t, there is an instantaneous knowledge 

spillover such that Av, t  = A(t) for every v ∈ [0, ∞]. The implementation of a higher technology 

level is instead costly, because it requires the higher level is independently developed for every 

necessary variety as the result of a deliberate R&D effort. The number φv, t of intensive innovations 

in sector v at t evolves according to the deterministic process: 

φv, t = λ (uL, v, t Lt)θ Av, t 
χ          (42) 

If every innovation has a proportional effect δ on the technology level Av, t, we obtain: 
⋅

A tv,  = δ λ (uL, t Lt / Nt)θ Av, t
 χ + 1         (43) 

Higher technology level are of higher complexity and their implementation requires a larger 

number of necessary intermediate inputs. Assume that the number of necessary varieties evolves 

according to: 

  

ΛA(t) =  At
η     η > 0        (44) 

 

This implies that, if gΛ(t) is the proportional growth rate of ΛA(t) at time t, then: 
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gΛ(t) =  η gA(t)           (45) 

 

It goes without saying that the strong complementarities of the form we have described 

imply that the market implementation of a higher technology level will face a host of co-ordination 

problems. Here we are not concerned with this feature, however important it may be. Our aim is 

simply to show that equilibrium paths on which the productivity index At grows at a constant rate gA 

> 0 are not steady state paths and have a rising share uL of R&D employment. 

In the equilibrium at time t we have Nt = ΛA(t) . With gA constant, from (43) and (45) we 

obtain: 

 

 − χ  gA = θ (n + 
u
u

tL

tL

,

,

⋅

 − gΛ(t))         (46) 

hence: 

[η − χ] gA = θ (n + 
u
u

tL

tL

,

,

⋅

 )         (47) 

Recalling that the ‘congestion effect’ in R&D implies θ < 1, and that our considerations 

suggest χ < 0,  it is easy to see how, given n, the higher η , the higher the growth rate 
u
u

tL

tL

,

,

⋅

 required 

to elicit a given productivity growth gA . Thus, with η sufficiently large, the value gA ≈ 0.02 

prevailing in the period 1950-1993 would not have been possible in the  presence of a constant 

labour share in R&D. Indeed, a growth rate gA of the observed dimension can not be a steady-state 

growth rate and can not be sustained ‘for ever’.  

If the argument above offers a tentative explanation of how the long-term rise of the 

researchers/employment ratio can be reconciled with a constant growth rate of productivity, what is 

yet to be explained is the source of the rising researchers/employment ratio.  

Here we offer as a working hypothesis, to be explored by future work, that the preference 

structure with constant inter-temporal elasticity of substitution is replaced by a preference structure 

such that the rising per-capita consumption causes a slowly rising inter-temporal elasticity of 

substitution. It is worth observing how the required change of σ has not to be large, because a very 

small, apparently negligible, shift away from employment in manufacturing, in favour of research is 

sufficient to explain that: 

(i) 
h
h

tL

tL

,

,

⋅

 is negative but very close to zero, as in the data; 
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(ii) 
u
u

tL

tL

,

,

⋅

 is positive and significantly large, as in the data. 

Of course, the consistency between (i) and (ii) has to do with the fact that hL is quite close to 

1 and uL is close to zero12.  

                                                           
12 The U.S. researchers/employment ratio was 0.008 in 1993. See Jones (2000), p. 16.  
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