
   

      Università degli Studi di Siena 

      DIPARTIMENTO DI ECONOMIA   POLITICA 

  
        MASSIMO A. DE FRANCESCO 
         
         
 
 
 
 
 
 

             The Competitive Outcome of the Entry-Capacity  
        and Pricing Game in a Large Market 

 

          
 

            

                

                

               n. 376 –   Dicembre  2002 

 
 

 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 Abstract - We model long-run price competition as a two-stage entry-capacity and pricing 
 game among many potential entrants. Each solution of the game is found to reproduce a  
 long-run competitive equilibrium provided the latter is characterized by a sufficiently large 
 market.This result extends to the long run the oligopolistic foundation of perfect competition 
 provided for the short run by Allen and Hellwig (1986a, 1986b) and Vives (1986a). 
  
 JEL classification: D43, D44, L13 
 Keywords: Oligopoly, entry, Bertrand competition 
  
     
    
     Massimo A. De Francesco, Dipartimento di Economia Politica, Università di Siena 



1 Introduction1

Since Bertrand critique to Cournot the relation between perfectly competitive
equilibria and equilibria with price-setting sellers of an homogeneous com-
modity has attracted considerable interest among economists. In contrast
with the popular view that “two is enough for competition”, the considera-
tion of capacity constraints has clarified that the outcome of price competi-
tion depends on the degree of industry concentration: short-run analyses of a
single market have shown that it is in a large economy - where the size of each
firm is sufficiently small relative to the whole market - that the equilibrium
of the pricing game tends to reproduce the competitive outcome (see Allen
and Hellwig, 1986a, 1986b, and Vives, 1986a). The present paper pushes this
oligopolistic foundation of perfect competition a step further. We provide a
stylized model of price competition under free entry, which extends the above
result to the long run where the number and the capacity of active firms are
endogenously determined.
Some remarks are in order to clarify how our analysis departs from re-

cent models also addressing the entry and pricing decisions of firms in a
single market. Models have been proposed with potential entrants facing
a simultaneous entry-pricing decision (Sharkey and Sibley, 1993; Marquez,
1997) as well as two-stage models of perfect information where entry takes
place first and price setting subsequently (Elberfeld and Wolfstetter, 1999,
Thomas, 2002). Both types of models have focussed on the impact of a fixed
(and sunk) cost of entry while neglecting capacity constraints - active firms
are taken to produce any quantity that is demanded at constant marginal
costs. Leaving aside the case where production does not require any capital
equipment, the notion of no capacity constraints can be rationalized if the
firms are “in the long run” when setting prices. Assume long-run constant
returns and short-run constant returns up to full capacity utilization. If the
firms first choose prices and then, based on resulting buyers’ decisions, ca-
pacities, lowest-priced firms would clearly undertake the capacity decisions
enabling them to meet the entire demand. Consequently, higher-priced firms
would have no residual demand left, as in classic Bertrand models.
Unlike the aforementioned works, the present paper takes the firms as

capacity constrained when setting prices while neglecting any fixed cost of

1Thanks are due to Andrea Mangani and Fabio Petri for their helpful comments. The
usual disclaimer applies.
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entry. We analyse a dynamic game of perfect information where potential
entrants make simultaneous entry-capacity decisions in the first stage and
active firms set prices in the second stage. A distinctive feature of the model
is capital indivisibility, which makes the firm capacity choice set a discrete
one.
Section 2 analyzes a two-stage entry-capacity and quantity game among

firms acting as price takers at the stage of quantity decisions. The “long-
run competitive equilibria” thus determined will serve as a benchmark to
evaluate the outcome of the entry-capacity and pricing game. Then Section
3 analyses the pricing subgame and Section 4 solves the entire entry-capacity
and pricing game. Each solution of the entire game is found to yield a
long-run competitive equilibrium so long as, at the latter, the firm size is
sufficiently small relative to the whole market.

2 Long-run competitive equilibria

We consider a single market of an homogeneous product. Let D(p) and
P (Q) ≡ D−1(Q) denote market demand and the inverse demand, respec-
tively, p being the price and Q the total quantity. For the sake of simplicity,
a linear demand curve will be assumed throughout, i.e., P (Q) ≡ a − bQ
(where a, b > 0). Z = {1, ..., i, ..., z} ⊂ I denotes the set of potential en-
trants, where I ≡ {1, 2, ...} is the set of positive integers.
A single technique, employing capital goods and other inputs, is assumed

to be available at the time of investment decisions. Though extreme in
many cases, this assumption permits to capture capacity indivisibility, a
fact arising from the indivisibility of capital equipment and the absence of
a continuum of techniques. The decision problem faced by any i ∈ Z in
the first stage is whether or not to enter and, if entering, the size of capital
equipment, which in turn determines the capacity qi at its disposal in the
second stage. To incorporate capital indivisibility, the capacity choice set is
taken to be I, where we have normalized to 1 the minimum feasible capacity.
Given qi, the firm produces at cost ci(qi) = rqi any quantity qi ≤ qi, r
being the (sunk) unit cost of capacity. (We might as well have assumed a
(constant) positive marginal cost for any qi ≤ q). Long-run average cost is
thus constant at r under full capacity utilization while decreasing over any
range of output (f, f + 1] (where f ∈ I) between two adjoining capacities.
Incidentally, 1 is the minimum efficient output, i.e., the minimum output
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attaining minimum average cost. Each potential entrant aims at maximizing
its profit πi = piqi − rqi, where pi is the price of i’s output.
Let qo ≡ (qo1, ..., q

o
i , ..., q

o
z) and Q

o ≡ Pz
i=1 q

o
i denote, respectively, the

vector of capacities (hereafter, the “industry configuration”) and the total
capacity resulting from the entry-capacity decisions made in the first stage.
At any qo, qo−i stands for the vector of capacities by firm i’s rivals, g for any
of the firms with the largest capacity, A◦ ≡ {i : qoi > 0} and no ≡ #Ao for
the set and the number of active firms, respectively. In the second stage
everyone is informed on qo.
We first characterize “long run” competitive equilibria (LRCE). They are

defined as subgame perfect equilibria of an entry-capacity game in which
active firms are price takers and the price is at the market-clearing level.2

Let pw(qo) and Qw(qo) denote, respectively, price and aggregate output at
the market-clearing equilibrium corresponding to any qo. It is immediately
checked that pw(qo) = P (Q

o
) and Qw(qo) = Q

o
if Q

o ≤ D(0), whereas
pw(qo) = 0 and Qw(qo) = D(0) if Q

o ≥ D(0). Denote Q
c
the largest Q

yielding nonnegative profits under market clearing and pc ≡ P (Qc) the cor-
responding market-clearing price; clearly, Q

c ∈ I : D(r) − 1 < Qc ≤ D(r).
Further, denote {q∗} the set of the least concentrated industry configurations
consistent with a total capacity of Q

c
. At any q∗, #A∗ ≡ n∗ = Q∗ = Qc. To

guarantee feasibility of any q∗, a large number of potential entrants will be
assumed throughout (z ≥ n∗).
In the following, πwi (q

o) ≡ (pw(qo)− r)qoi will denote firm i’s profit at the
market-clearing equilibrium corresponding to any qo; also, for any given qo−i,
πwi (qi, q

o
−i) ≡ (pw(qi, q

o
−i) − r)qi will denote firm i’s market-clearing profit

as a function of qi, with qi viewed as a continuous variable. Concavity of
πwi (qi, q

o
−i) follows straightforwardly from D00(p) ≤ 0; under our assumption

of a linear demand curve, ∂2πwi (qi, q
o
−i)/∂q

2
i = −2b so long as qi +

P
j 6=i q

o
j <

D(r).
The following proposition establishes that the set of competitive industry

configurations coincides with {q∗}.

Proposition 1 (i) At a LRCE it can be neither qo : Q
o 6= Q

c
nor (ii)

qo : Q
o
= Q

c
;no < n∗.

(iii) Any q∗, involving pw(q∗) = pc and Qw(q∗) = Q
c
, is part of a LRCE.

2Thus, similarly as in Vives (1986b), price taking occurs at the stage of quantity deci-
sions whereas, in the first stage, each firm recognizes the impact of its capacity decision
on the market-clearing price.
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Proof. (i) At qo : Q
o
> Q

c
, πwi (q

o) < 0 for any i ∈ Ao. At qo :
Q
o
< Q

c − 1, any firm u /∈ Ao would gain from entering with qu = 1 since
P (Q

o
+1) > r. This holds at Q

o
= Q

c−1 too so long as D(r) /∈ I, since then
P (Q

c
) > r. In the special cases where D(r) ∈ I, implying P (Qc) = r, the

event of qo : Q
o
= Q

c − 1 at a LRCE is discarded if, at zero profit, entering
is slightly preferred to not entering.
(ii) The claim is obvious in the special cases where D(r) ∈ I. Then

πwi (q
o) = 0 for any i ∈ Ao, whereas any g would earn πwg (qg = q

o
g − 1, qo−g) =

(P (Q
c− 1)− r)qg > 0 by deviating to qg = qog − 1. In the more general cases

where D(r) /∈ I , it still holds true that qog − 1 is a better response to qo−g
than qog. Let q

0
i ≡ argmaxqi πwi (qi, qo−i). So long as

P
j 6=i q

o
j ≤ D(r), it turns

out that q0i = 0.5
³
D(r)−Pj 6=i q

o
j

´
= 0.5(qoi + α), where α ≡ D(r) − Qo.

Expanding πwi (qi, q
o
−i) in Taylor series around πwi (q

0
i, q

o
−i) yields π

w
i (qi, q

o
−i)−

πwi (q
0
i, q

o
−i) = (1/2)

£
∂2πwi (qi, q

o
−i)/∂q

2
i

¤
qi=q

0
i
(qi− q0i)2 = −b(qi− q0i)2. So what

is left is to show that qg = q
o
g−1 is closer to q0g than qog is. This is immediate

if qog > 2, for then q
0
g < q

o
g − 1 < qog. If qog = 2, then q0g − (qog − 1) = 0.5α; this

is less than qog − q0g = 1− 0.5α since α < 1 when Qo = Qc.
(iii) At any q∗, a unilateral deviation to qi > q

∗
i by any i ∈ A∗ or u /∈ A∗

results in a loss.

3 The pricing subgame

In the second stage of the entry-capacity and pricing game, each i ∈ Ao
sets pi to maximize πi, and hence quasi rent piqi, given the strategy profile
p−i expected on the part of rivals. Denote di(pi, p−i) the demand facing
i at (pi, p−i). With firms producing on demand qi = min {di(pi, p−i), qoi}.
Whenever relevant, the efficient rationing rule is assumed, hence di(pi, p−i) =

max
n
0, D(pi)−

P
j 6=i q

o
j

o
when i alone sets the highest price.

For any i ∈ Z :Pj 6=i q
o
j ≤ D(0), let epoi = epi(Pj 6=i q

o
j) ≡ argmaxpi pi(D(pi)−P

j 6=i q
o
j). It is 0 < epoi ≤ P (Pj 6=i q

o
j); also, maxi epoi = epog as ep 0i (Pj 6=i qj) < 0

for
P

j 6=i qj < D(0). Next, let eqoi = eqi(Pj 6=i q
o
j) ≡ argmaxqi P (qi+

P
j 6=i q

o
j)qi.

With eqoi ≤ qoi , eqoi represents i’s Cournot (short-run) best response to an ag-
gregate output of

P
j 6=i q

o
j .
3 Clearly, epoi = P (eqoi +Pj 6=i q

o
j).

3eqoi can also be interpreted as Cournot long-run best response under costless capacity
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It must preliminarily be emphasized that any qo : Q
o 6= D(c) involving

market clearing at an equilibrium of the pricing subgame (PS) is character-
ized by a large market. More specifically, what is required is a sufficiently
small level of qog/Q

o
, the one-firm concentration ratio.

Lemma 1A small qog/Q
o
is necessary and sufficient (i) for pi = pw(qo) =

0 ∀i ∈ Ao to be an equilibrium of the PS at Q
o
> D(0), and (ii) for

pi = p
w(qo) = P (Q

o
) ∀i ∈ Ao to be the equilibrium of the PS at Q

o
< D(0).

Proof. (i) Each firm charging a zero price is an equilibrium if and only
if
P

j 6=i q
o
j ≥ D(0) ∀i ∈ Ao, 4 i.e., if and only if

P
j 6=g q

o
j ≥ D(0). The latter

inequality, also written qog/Q
o ≤ 1 − D(0)/Qo, is implied by Qo > D(0) if

qog/Q
o
is small enough.

(ii) From concavity of pi(D(pi) −
P

j 6=i q
o
j), each firm charging P (Q

o
) is

an equilibrium if and only if·
∂(pi(D(pi)−

P
j 6=i q

o
j)

∂pi

¸
pi=P (Q

o
)

=

qoi + P (Q
o
) [D0(p)]p=P (Qo) ≤ 0 ∀i ∈ Ao, (1)

i.e., if and only if qog ≤ −P (Qo) [D0(p)]p=P (Qo). This in turn can be written

qog/Q
o ≤ ηp=P (Qo), (2)

where ηp denotes absolute elasticity of D(p) at p. Uniqueness of equilibrium
can be established similarly as in Kreps and Sheinkman (1983).

On reflection, (1) (and hence (2)) is equivalent to P (Q
o
) ≥ epog, a fact to

be used later.
A pure-strategy equilibrium of the PS does not exist at qo : Q

o ≥
D(0);

P
j 6=g q

o
j < D(0) nor does it at qo : Q

o
< D(0); epog > P (Q

o
). Then

existence of a mixed-strategy equilibrium follows from Theorem 5 of Das-
gupta and Maskin (1986). In the following we make use of the fact that, at a
mixed-strategy equilibrium, the largest firm’s payoff equals the Stackelberg
profit.

building (r = 0).
4Remaining equilibria have sufficiently many firms charging a zero price so thatP
j 6=i:pj=0 q

o
j ≥ D(0) for any i : pi = 0.
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Lemma 2 At any qo for which no pure-strategy equilibrium exists, denote
poi the supremum of the support of i’s equilibrium strategy and let po ≡
maxi∈Ao {poi}. It is po = epog and g’s equilibrium expected profit is πg(q

o) =epogeqog − rqog.
Remark. For the proof of this property, see Kreps and Scheinkman

(1983) for duopoly, Vives (1986a) for symmetric oligopoly, Boccard andWau-
thy (2000) and De Francesco (2003) for asymmetric oligopoly.5 Incidentally,
in view of epoi = P (eqoi +Pj 6=i q

o
i ) and (P (eqoi +Pj 6=i q

o
i ) − r)qoi = πwi (eqoi , qo−i),

one can write g’s equilibrium expected profit as πg(qo) = epogeqog − rqog= (epog −
r)eqog − r(qog − eqog) = πwg (qg = eqog, qo−g)− r(qog − eqog). ¤

At a later stage use will be made of the following property.

Lemma 3 At any qo : Q
o
= Q

c
,
£
∂πwi (qi, q

o
−i)/∂qi

¤
qi=q

o
i
< 0 for any

i ∈ Ao.
Proof. At qo : Q

o
= Q

c
,
£
∂πwi (qi, q

o
−i)/∂qi

¤
qi=q

o
i
= −bqoi +pc−r. Expand-

ing pc in Taylor series around P (D(r)) = r yields pc = r+[P 0(Q)]Q=D(r) (Q
c−

D(r)) = r−b(Qc−D(r)). Thus £∂πwi (qi, qo−i)/∂qi¤qi=qoi = b £D(r)−Qc − qoi ¤ ;
this is less than zero if and only if qoi > D(r)−Qc, which is actually the case
given that D(r)−Qc < 1.

4 The entry-capacity and pricing game

We have just seen that in a sufficiently unconcentrated industry price com-
petition yields the short-run competitive equilibrium. A similar result will
be achieved in this section for the long run where the industry configuration
is endogenously determined by the entry-capacity decisions of the potential
entrants: the long-run competitive outcome obtains in so far as it is char-
acterized by a sufficiently large market. More specifically, the nature of the
solution of the entry-capacity and pricing game (ECPG) will be found to
depend on whether or not the following condition holds.

5De Francesco (2003) provides an alternative proof for oligopoly in the face of a non-
trivial error in the proof by Boccard and Wauthy.
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Condition 1 (a) Equilibrium prices are pw(q∗) ≡ pc in the PS associated
to any q∗. (b) Similarly, at any qo : no = Q

o
= Q

c
+ 1 equilibrium prices

are pw(qo) = P (Q
o
) or, alternatively, expected profit is negative at the mixed-

strategy equilibrium.

Remark. Let us see what is involved into the above condition. As to
part (a), applying (2) to any q∗ yields 1/n∗ ≤ ηp=pc . By the same token,
1/(n∗ + 1) ≤ ηp=P (Qc+1) under the first variant of (b). When the second
variant of (b) holds, at qo : no = Q

o
= Q

c
+ 1 the margin of epoi over r is

sufficiently small for it to be πoi = epoi eqoi − r < 0. Whatever the case may
be, Condition 1 is met in so far as the minimum efficient output (i.e., 1)
is sufficiently small relative to the long-run competitive aggregate output
(Q

c
= n∗).6 In view of this, an industry which meets Condition 1 is one in

which there is a “large market” at a long-run competitive equilibrium. ¤

Our first task is to solve the ECPG when Condition 1 holds.

Proposition 2 Let Condition 1 hold. Then: (i) any q∗, which involves
firms charging pc, is part of an equilibrium of the ECPG; (ii) at an equilibrium
of the ECPG, it can be neither qo : Q

o 6= Qc nor (iii) qo : Qo = Qc;no < n∗.

Proof. (i) By Condition 1(a), at q∗ each i ∈ A∗ charges pc and earns
πci = πwi (q

∗) = pc − r at the equilibrium of the PS. No matter whetherep∗i T P (Q
c
+ 1), any i ∈ A∗ has made a best response to q∗−i by choosing

the minimum capacity. If ep∗i > P (Q
c
+ 1), a mixed-strategy equilibrium

obtains when any i ∈ A∗ deviates to qi = 2, resulting in an expected profit
of ep∗i eq∗i − 2r = (ep∗i − r)eq∗i − r(2 − eq∗i ) = πwi (qi = eq∗i , q∗−i) − r(2 − eq∗i ). Thus
it follows immediately from Lemma 3 that even (ep∗i − r)eq∗i < πci . If ep∗i ≤
P (Q

c
+ 1), a unilateral deviation to qi = 2 by any i ∈ A∗ leads to a pure-

strategy equilibrium, and hence to the negative profit 2
¡
P (Q

c
+ 1)− r¢. A

fortiori i would suffer a loss if choosing any qi > 2 entailing a pure-strategy
equilibrium. If choosing qi > 2 leading to a mixed strategy equilibrium, i’s
expected profit ep∗i eq∗i − rqi would be negative as ep∗i ≤ P (Q

c
+ 1) < r andeq∗i < qi. Consider now any u /∈ A∗. By Condition 1(b), with u deviating

to qu = 1 either a pure-strategy equilibrium obtains - resulting in a loss -

6That a large n∗ also underlies the second variant of Condition 1(b) follows fromep0i(Pj 6=i qj) < 0 and the fact that, at qo : no = Q
o
= Q

c
+ 1,

P
j 6=i q

o
j = Q

c
= n∗

for any i ∈ Ao.
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or expected profit is negative at the mixed-strategy equilibrium. A fortiori
entering with qu > 1 would lead to a loss.
(ii) As regards any qo : Q

o
< Q

c
, the argument in the proof of Proposition

1(i) still applies since any u /∈ Ao might enter with qu = 1 and then guarantee
itself full capacity utilization by charging P (Q

o
+ 1). At industry configura-

tions qo : Q
o
> Q

c
entailing a pure-strategy equilibrium, active firms make

losses given that P (Q
o
) < r. It remains to analyze the region of qo : Q

o
> Q

c

entailing a mixed-strategy equilibrium. Consider first the subregion where
Q
o
> Q

c
+ 1. In this subregion, industry configurations qo : no = Q

o
are

immediately dismissed, for active firms earn a negative expected profit as a
consequence of Condition 1(b).7 So we can turn to qo : Q

o
> Q

c
+ 1; qog > 1.

If epog > P (Qo − 1), by deviating to qg = qog − 1 firm g will earn no less thanepogeqog − r(qog − 1) at the new mixed-strategy equilibrium,8 hence more than at
qo. If epog ≤ P (Qo − 1), epog < r as P (Qo − 1) < r when Qo > Qc + 1. This
reveals that g’s expected profit epogeqog − rqog at qo is negative. Finally we must
analyze the subregion where Q

o
= Q

c
+1. If qog = 1, by the second variant of

Condition 1(b) expected profit is negative for each active firm. If qog > 1, a
unilateral deviation to qg = q

o
g − 1 will raise g’s payoff. This is shown by the

same argument as above if epog > P (Qo − 1). If epog ≤ P (Qo − 1) a deviation
to qg = q

o
g − 1 results in a profit of πwg (qg = qog − 1, qo−g) since a pure-strategy

equilibrium now obtains. On the other hand, g’s expected profit at qo isepogeqog − rqog = πwg (qg = eqog, qo−g) − r(qog − eqog). Then it follows from Lemma 3
that even the term (epog − r)eqog is less than πwg (qg = q

o
g − 1, qo−g).

(iii) At any such qo a unilateral deviation to qg = q
o
g−1 will raise g’s profit.

The proof is much the same as that of Proposition 1(ii) when equilibrium
prices are pc at qo. If not, g’s expected profit is epogeqog − rqog at qo. Then, ifepog > P (Qc−1), a deviation to qg = qog−1 would raise g’s expected profit to no
less than epogeqog− r(qog−1). This applies as well with epog = P (Qc−1), in which
case a pure-strategy equilibrium obtains at qg = q

o
g − 1. If epog < P (Qc − 1),

equilibrium prices are P (Q
c − 1) at qg = qog − 1. Then the move from qog to

7Holding the first variant of Condition 1(b), epi(Pj 6=i qj) < P (Q
c
+1) < r at

P
j 6=i qj =

Q
c
. Consequently, at any qo : no = Q

o
> Q

c
+ 1, a fortiori epoi < r for any i ∈ Ao, given

that
P
j 6=i q

o
j ≥ Q

c
+ 1. If the second variant of Condition 1(b) holds, expected profit is

negative at any qo : no = Q
o
> Q

c
+ 1 because expected quasi rent is the same as at

qo : no = Q
o
= Q

c
+ 1, whereas capacity cost is higher.

8Since rivals produce
P
j 6=g q

o
j at most, firm g would sell no less than eqog = D(epog) −P

j 6=g q
o
j when charging epog.
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qog − 1 can be decomposed in two virtual steps, a reduction of capacity from
qog to eqog and then from eqog to qog−1. The first step would raise g’s equilibrium
profit to (epog − r)eqog. The second step would add further to g’s profit; this
follows from πwg (qg, q

o
−g) = πwg (q

0
g, q

o
−g) − b(qg − q0g)2 when it is recalled that

q0g < q
o
g − 1 at qo : Qo = Qc; qog ≥ 2.

The analysis has so far been concerned with a market that is sufficiently
large at a LRCE. It remains to characterize equilibria of the ECPG when
Condition 1 is violated.

Proposition 3 (i) If Condition 1(a) does not hold, then at any equilibrium
of the ECPG the industry configuration lies in the set {q∗} and each active
firm earns an expected profit of ep∗i eq∗i − r > 0.
(ii) If Condition 1(a) holds but Condition 1(b) does not, then at any

equilibrium of the ECPG it is qo : no = Q
o
= Q

c
+ 1 and each active firm

earns an expected profit of epoi eqoi − r > 0.
Proof. (i) Failing Condition 1(a), a mixed equilibrium obtains at q∗,

with each active firm earning ep∗i eq∗i − r > pc − r ≥ 0. (This follows from ep∗i
being a better response than pc to p−i = (pc, ..., pc).) As regards any i ∈ A∗,
deviating to qi > 1 results in expected profit falling to ep∗i eq∗i − rqi. As to any
u /∈ A∗, a loss is expected if deviating to qu = 1. In fact, entering with qu = 1
yields u the same expected profit epoi eqoi −r = (epoi −r)eqoi −r(1−eqoi ) now earned
by any i ∈ A∗. We can prove that even epoi − r < 0. By the envelope theorem,
"
dπwi (qi = eqi(Pj 6=i qj), q−i)

d
P

j 6=i qj

#
q−i=qo−i

=

"
∂πwi (qi = eqoi , q−i)

∂
P

j 6=i qj

#
q−i=qo−i

= −beqoi ,
for any qo−i. Since (epoi − r)eqoi = πwi (qi = eqoi , qo−i), one can thus write

(epoi − r)eqoi = πwi (qi = eq∗i , q∗−i) +"
dπwi (qi = eqi(Pj 6=i qj), q−i)

d
P

j 6=i qj

#
q−i=q∗−i

∆
X
j 6=i
qj = (ep∗i − r)eq∗i − beq∗i , (3)

where ∆
P

j 6=i qj ≡
P

j 6=i q
o
j −

P
j 6=i q

∗
j = 1 is the change in the aggregate
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capacity of rivals faced by any i ∈ A∗ when u deviates to qu = 1. Note that

ep∗i = P (eq∗i +X
j 6=i
q∗j) = r + [P

0(Q)]Q=D(r) (eq∗i +X
j 6=i
q∗j −D(r))

= r − b(eq∗i +X
j 6=i
q∗j −D(r)). (4)

Replacing (4) into (3) leads to (epoi − r)eqoi = beq∗i hD(r)− (eq∗i +Pj 6=i q
∗
j)− 1

i
,

a negative magnitude as (D(r)− (eq∗i +Pj 6=i q
∗
j) < 1.

(ii) When Condition 1(b) does not hold, at qo : no = Q
o
= Q

c
+ 1 active

firms earn a positive expected profit. Arguing much the same as above one
can see that qoi is a best response to q

o
−i for any i ∈ Z.

5 Conclusion

We have modelled long-run price competition as a two-stage entry-capacity
and pricing game among a large number of potential entrants. It turned out
that each equilibrium exhibits long-run competitive features - active firms
selling at the market-clearing price the minimum efficient output, in a number
which is the largest consistent with nonnegative profits -; this, on condition
that the minimum efficient output is sufficiently small relative to the long-run
competive total output.
It is worth bearing in mind that several complications have been avoided

by assuming linearity of the demand curve and the existence of a single
technique. Dealing with the more complex case of a strictly concave demand
curve and a plurality of techniques is a task we leave for future research.9
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