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1 Introduction

In the last few decades, several attempts have been made at modelling ‘freedom’-
related notions such as ‘freedom of choice’, ‘opportunity’, or ‘liberty rights’. Two
main strands of literature can be distinguished, namely works focussing on mu-
tual consistency of individual liberty rights in a social choice setting, and works
addressing the issue of ranking opportunity sets in terms of freedom of choice,
with its attendant problems. Clearly enough, the proximate sources of both
these strands can be traced back to some well-known seminal contributions by
Amartya Sen on Pareto efficiency under liberty rights and on modelling free-
dom in terms of capability, respectively (Sen (1970,1985,1988): see also Laslier
et al.(1998) for more recent developments). However, such a dual perspective on
freedom-modelling is arguably somehow connected to a much older debate be-
tween advocates of a so-called ‘negative’ notion of freedom as lack of interference
from other agents or institutions, and proponents of a so-called ‘positive’ notion
of freedom as the effective opportunity to choose or to achieve. Of course, such
a debate has quite a few dimensions, and nuances, that would be inappropriate
to review or discuss here. Rather, we shall limit ourselves to one tentative sug-
gestion in that connection, namely that an important source of that opposition
of ‘negative’ vs. ‘positive’ freedom might lie in the contrast between an implicit
emphasis on an interactive vs. non-interactive setting. The possibly significant
import of that aspect is exceedingly clear from a casual inspection of the models
on Pareto efficiency under minimal liberty rights and on freedom as capability
as mentioned above. Indeed, the former models—whatever their degree of game-
theoretic sophistication— are mainly concerned with the joint exercise of liberty
rights hence with a definitely interactive environment, whereas the latter are
typically conceived of as an extension of (the consumer fragment of) standard
general competitive analysis i.e. the prototypical non-interactive setting. How-
ever, it seems to me that there is no intrinsic obstacle to the joint modelling of
‘positive’ and ‘negative’ dimensions of freedom: such a task can be accomplished
by embedding the opportunity-ranking issue into an interactive environment.
Be it as it may, the present paper suggests one way to model ‘positive’ free-

dom of choice in an interactive setting. This is done by regarding opportunities
as those outcome (sub)sets of a strategic game form G which the relevant agent
is enabled to enforce under G.But then, under any possible game form G with
fixed outcome set X and player set N , the opportunities open to a given player
in N amount to a certain superset-closed family of outcome subsets i.e. an
order filter of the poset (℘(X),⊇) of inclusion-ordered outcome subsets. Since
such order filters -when ordered themselves w.r.t. inclusion- constitute a (non-
Boolean) distributive lattice L∗(X) ⊆ ℘(℘(X)), the present proposal to model
freedom of choice in an interactive setting boils down to focusing on preordered
sets of type (L∗(X),<) rather than (℘(X),<).The rest of this paper is mainly
devoted to a study of the cardinality-based ranking on L∗(X).
Of course, the cardinality-based preorder of opportunity sets is widely re-

garded as a quite trivial rule for assessing freedom of choice, and I concur with
this view. However, there are at least two reasons for taking interest into the
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cardinality-based ranking. First, while the general consensus is that cardinal-
ity provides at best only part of the relevant information for the assessment
of freedom of choice, some authors are prepared to consider it as one of the
significant criteria, to be amalgamated with others (see e.g. Dutta,Sen(1996)).
Second, given the fact that cardinality embodies some relevant information but
just about everyone is willing to reject the cardinality-based ranking, knowledge
of several different characterizations of such ranking rule is particularly valuable
in that the latter are likely to provide useful suggestions about promising alter-
native criteria. In that vein, the present paper offers a simple characterization
of the cardinality-based opportunity ranking in the ‘interactive’ setting men-
tioned above, relying on so-called valuations on lattices. Then, it is observed
that the foregoing characterization of the cardinality-based ranking can be eas-
ily extended to the general case of an arbitrary lattice of sets. The relationship
between our valuation-based approach and the Pattanaik-Xu’s characterization
of the cardinality preorder is also discussed.

2 Model and results

Let X the finite basic outcome set, with #X = m ≥ 2. We also implicitly fix
a certain player i out of a finite set N of players. We shall be concerned with
the problem of ranking opportunity sets for i under all possible game forms on
(N,X).
To begin with consider any strategic game form on (N,X), namely G =

(N,X, (Si)i∈N , h) where h :
Q
i∈N Si → X denotes the (surjective) outcome

function.In order to represent in a most succinct manner the decision power
accruing to each coalition under the interaction structure represented by G,the
effectivity function(s) attached to G can be aptly introduced.
Generally speaking, an effectivity function (EF) on (N,X) is a function

E : P (N)→ P (P (X)) such that :
EF1) E(N) ⊇ P (X)\ {∅} ; EF2) E(∅) = ∅; EF3) X ∈ E(S) for any S,

∅ 6= S ⊆ N ;
EF4) ∅ /∈ E(S) for any S , ∅ ⊂ S ⊆ N .
Finally, an EF E on (N,X) is monotonic if for any S, T ⊆ N and any

A,B ⊆ X
[A ∈ E(S) and S ⊆ T entail A ∈ E(T )] and
[A ∈ E(S) and A ⊆ B entail B ∈ E(S)] .

In what follows we shall confine ourselves to monotonic EFs.
At least two monotonic well-behaved EFs may be attached to any strategic

game form, according to two different specifications of apriori decision power
among coalitions.
The allocation of “guaranteeing power” under strategic game form G is

suitably represented by the α−EF of G - denoted by Eα(G)- as defined by the
following rule: for any non-empty S ⊆ N ,
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(Eα(G))(S) =


A ⊆ X: a tS ∈Qi∈S Si exists such that (t

S , sN\S) ∈ D and
G(tS , sN\S) ⊆ A

for any sN\S ∈Qi∈N\S Si,

.
Conversely, the allocation of “counteracting power” under strategic game

form G is more aptly represented by the β − EF of G, denoted by Eβ(G) and
defined as follows :
for any non-empty S ⊆ N

(Eβ(G))(S) =


A ⊆ X : for any sN\S ∈Qi∈N\S Si some t

S ∈Qi∈S Si
exists such that (tS , sN\S) ∈ D

and G(tS , sN\S) ⊆ A

.
In any case, and for any given, EF the apriori decision power of each player

or coalition turns out to represented by an order filter of the set-inclusion poset
(℘(X),⊇) as defined below.
An order filter of (℘(X),⊇) is a set F ⊆ ℘(X) such that for any A,B ⊆ X,

if A ∈ F and B ⊇ A then B ∈ F.We recall that a lattice (L,≥) may be regarded
as an antisymmetric preordered set —or poset— that is both a join-semilattice
—i.e. for any a, b ∈ L there exists a ≥ −least upper bound a∨ b ∈ L— and a meet-
semilattice i.e. for any a, b ∈ L there exists a ≥ −greatest lower bound a∧b ∈ L.
A lattice is distributive if a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for any a, b, c ∈ L.It is
well-known that the set of order filters of any poset is a distributive lattice (see
e.g. Klain,Rota(1997)).
Let (L∗(X),∪,∩) be the distributive lattice of order filters of (℘(X),⊇). For

any A ⊆ X we shall denote by A ↑ the principal order filter of (℘(X),⊇) gen-
erated by A i.e. A ↑= {B ⊆ A : B ⊇ A}.The cardinality-based preorder <#on
L∗(X) is defined in the obvious way namely for any F1, F2 ∈ L∗(X), F1 <# F2
if and only if #F1 ≥ #F2.
A valuation on L∗(X) is a real-valued function v : L∗(X)→ R
such that v(F ∪G) = v(F )+v(G)− v(F ∩G) for any F,G ∈ L∗(X),

and v(∅) = 0.
Thus, a valuation essentially preserves the structure of the relevant lattice

within the natural order of real numbers.
Moreover, a valuation v on L∗(X) is isotonic if for any F,G ∈ L∗(X),

F ⊇ G entails v(F ) ≥ v(G), and invariant if for any permutation π : X → X,
and any F ∈ L∗(X), v(π[F ]) = v(F ), where, with slight abuse of notation,
π[F ] = {π(A) : A ∈ F} = {{π(x) : x ∈ A} : A ∈ F}.
We recall the following basic

Proposition 1 (see e.g. Klain,Rota(1997)): A valuation v : L∗(X)→ R ex-
tends uniquely to a valuation v∗ : ℘(℘(X))→ R on the entire lattice (℘(℘(X)),∪,∩)
of subsets of ℘(X).In particular, for any A ⊆ X,
v∗({A}) = v(A ↑)− v(S{Fi : Bi ↑= Fi ⊂ A ↑, for some Bi ⊆ X and for no

C ⊆ X, Fi ⊂ C ↑⊂ A ↑}.

As a consequence of the foregoing Proposition the following requirements on
valuations can also be introduced.
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A valuation v on L∗(X) is said to satisfy Singleton-Uniformity (SU) if there
exists k ∈ R such that v∗({A}) = k for any A ⊆ X, and Positive Singleton-
Uniformity (PSU) if in particular k > 0. Similarly, a valuation v satisfies
Singleton-Quasi-Uniformity (SQU) if there exist k ∈ R and A0 ⊆ X such that
v∗({A}) = k for any A ⊆ X such that A 6= A0, and Positive Singleton-Quasi-
Uniformity (PSQU) if in particular k > 0. Moreover, a valuation v on L∗(X)
will be said to be {X}-Normalized if v({X}) = 0.
It should be remarked that the foregoing properties are not mutually inde-

pendent. In particular, the following holds

Claim 2 Let v : L∗(X) → R be a SU valuation or a {X}-Normalized SQU
valuation. Then, v is also invariant.

Proof. Let F = {A1, .., Ah} ∈ L∗(X), and π : X → X a permutation
such that v(π[F ]) 6= v(F ).If v is a SU valuation then in particular v({Ai}) =
v({π(Ai)}) for any i = 1, .., h, whence v(F ) = v(π[F ]) (since obviously, for
any A,B ⊆ X, {A} ∩ {B} = {A} = {B} if A = B, and ∅ otherwise). More-
over, π(X) = X, hence {X} ∈ F if and only if {X} ∈ π[F ].Thus, if v is a
{X}-Normalized SQU valuation, then v(F ) = v∗(F ) =

P
A∈F\{X} v

∗({A}) =P
A∈π[F ]\{X} v

∗({A}) = v∗(π[F ]) = v(π[F ]), a contradiction.

Let us then consider the following requirements for a binary relation < on
L∗(X) :
Valuation Consistency (VC): A relational system (L∗(X),<) is said to be

(strictly) valuation-consistent iff there exists a valuation v : L∗(X) → R that
(strictly) reflects < i.e. for any F,G ∈ L∗(X), v(F ) ≥ v(G) entails F < G (and
v(F ) > v(G) entails F Â G).

Positive Singleton-Uniform Valuation-Consistency (PSU-VC) A relational
system (L∗(X),<) is said to be (strictly) PSU-valuation consistent iff there
exists a positive singleton-uniform -hence invariant- valuation v : L∗(X) → R
that (strictly) reflects < i.e. such that for any F,G ∈ L∗(X), v(F ) ≥ v(G)
entails F < G (and v(A) > v(B) entails A Â B).
It should be noticed here that while valuation-consistency of a binary rela-

tional system clearly entails that it is a totally preordered set, the converse is
not true. To see this, consider the following example:

Example 3 A preordered set (℘(X),<) is a filtral extension of (℘(X),⊇) -or
a set-inclusion filtral preorder (see Vannucci (1999))- if and only if there exists
an order filter F of (℘(X),⊇) such that for any A,B ⊆ X : A < B if and only if
A ⊇ B or B /∈ F.Now, consider the height function h of (℘(X),<), namely for
any A ⊆ X, h(A) = max{#C : C is a <-chain such that A ∈ C and A Â B for
any B ∈ C \ {A}}. Next, consider a principal filter F = {A ⊆ X : A ⊇ C} with
C ⊆ X such that #C ≥ 2, and take the total extension (℘(X),<h) of (℘(X),<)
induced by h, i.e. for any A,B ⊆ X : A <h B if and only if h(A) ≥ h(B). Let
us then suppose that there exists a valuation v that strictly reflects (℘(X),<h),
and let A,B ⊆ X , such that A 6= ∅ 6= B,A ∩B = ∅, C = A ∪B. It follows that
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v(C) = v(A ∪ B) = v(A) + v(B).However, by definition, A ∼ B ∼ ∅, whence
h(A) = h(B) = h(∅) = 0, and therefore A ∼h B ∼h ∅.Moreover, by definition of
<, C Â ∅, hence in particular C Âh ∅.Since -by our hypothesis- v strictly reflects
(℘(X),<h), it must be the case that v(A) = v(B) = v(∅) = 0,and v(C) ≥ 0.As
a result, we have 0 ≤ v(C) = v(A) + v(B) = 0, i.e. v(C) = 0 = v(∅) whence
∅ <h C,a contradiction.

We are now ready to state the main result of this paper, namely

Theorem 4 Let (L∗(X),<) be a binary relational system. Then <=<#i.e. <
is the cardinality-based total preorder on L∗(X) if and only if (L∗(X),<) is
strictly PSU-valuation-consistent.

Proof. Let ı(.)be the natural embedding of the natural numbers into the
reals, and #(.) the cardinality function on L∗(X). Then, it is easily checked
that the composition ı(#(.)) is indeed a positive singleton-uniform valuation on
L∗(X) that strictly reflects <#.
Conversely, let v : L∗(X)→ R be a positive singleton-uniform valuation such

that F < G whenever v(F ) ≥ v(G), and v(F ) > v(G) whenever A Â B . Hence,
in particular, there exists k ∈ R, k > 0 such that for any A ⊆ X : v∗({A}) = k.
It is then immediately checked by an easy induction on the cardinality of

H ⊆ ℘(X), that for any H ⊆ ℘(X) :
(∗) v∗(H) = k · ı(#H).

Indeed,
let (∗) hold true for any H ⊆ ℘(X) such that #H ≤ m− 1.
and let H 0 ⊆ ℘(X) be such that #H 0 = m.
Then obviously for any B ∈ H 0

H 0 = H 00 ∪ {B} where H 00 = H 0 \ {B}
Also, by the induction hypothesis

v∗(H 00) = k · ı(#H 00)
whence
v∗(H 0) = v∗(H 00 ∪ {B}) = v∗(H 00) + v∗({B})− v∗(∅) = k · ı(#H 00) + k =

= k · ı(#H 0).

It should be remarked that the foregoing Theorem is indeed tight. To check
this, let us consider the following examples.
To begin with, we provide a preordered set that is indeed strictly-valuation-

consistent with respect to an invariant singleton uniform valuation, but is not
PSU-valuation consistent.

Example 5 Indeed, take the preordered set (L∗(X),<0) defined as follows: for
any F,G ∈ L∗(X), F <0 G if and only if #G ≥ #F. Then, take v0 : L∗(X)→ R
as defined by the following rule: v0(F ) = −ı(#(F )).Clearly, v0 is a valuation that
strictly reflects <0 .Also, v0is obviously invariant and uniform (with k = −1).
Now, let us assume that v : L∗(X)→ R is a positive singleton-uniform valuation
that reflects <0 .Then, for any G ∈ L∗(X) such that {X} ⊂ G, v(G) = v∗(G \
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{X})+v({X}) =PA∈G\{X} v
∗({A}) +v({X}) > v({X}) = k while {X} Â0 G,

a contradiction.

Next, we define a preordered set that is strictly-valuation-consistent with
respect to an invariant PSQU valuation, but is not strictly PSU-valuation con-
sistent.

Example 6 Let us consider the preordered set (L∗(X),<◦) where <◦is defined
as follows: for any F,G ∈ L(X), F <◦ G if and only if [#(F ∩ (℘(X) \ {X})) ≥
#(G ∩ (℘(X) \ {X}))]. It is easily checked that <◦is strictly reflected by the
PSQU (hence in particular invariant) valuation µ =

Pm
i=1 µi on L

∗(X) where
µi(F ) = #{A ⊆ X : A ∈ F ∩ ℘(X),#A = m − i}, i = 1, ..,m. Indeed, by
definition, µ({X}) = Pm

i=1 µi({X}) = 0 hence µ is not PSU (rather, v is a
{X}-Normalized PSQU valuation) . Let us now suppose that <◦is also strictly
reflected by a PSU valuation v1 on L

∗(X).It follows that v1({X}) > 0 = v1(∅),
hence {X} Â◦ ∅, a contradiction since, by definition, {X} ∼◦ ∅.

Finally, we give an example of a preordered set that is PSU-valuation-
consistent but not strictly PSU-valuation-consistent.

Example 7 Let us consider the preordered set (L∗(X),<00) as defined by the
following rule: for any F,G ∈ L∗(X), F <00 G if and only if [#F ≥ #G or
#F ≥ k], where 0 < k < 2m.Now, it is easily checked that <00 is reflected
by the PSU valuation v(.) = ı(#(.)): indeed v(F ) ≥ v(G) implies #F ≥ #G
hence F <00 G. However, if F ∈ L∗(X) is such that #F = k and v is a PSU
valuation that strictly reflects <00then v(℘(X)) > v(F ) whence ℘(X) Â00 F , a
contradiction since F ∼00 ℘(X) .

According to the focus of the present paper on an interactive setting, the
characterization theorem provided above concerns the lattice L∗(X) of order
filters of (℘(X),⊇). However, our result extends readily to the lattice of sets
(℘(X),∪,∩), provided that the notion of positive singleton-uniformity is suit-
ably reformulated as follows:

Definition 8 A valuation v on ℘(X) is said to satisfy Singleton-Uniformity
(SU) if there exists k ∈ R such that v({x}) = k for any x ∈ X, and Positive
Singleton-Uniformity (PSU) if in particular k > 0.Moreover, a relational system
(℘(X),<) is said to be (strictly) PSU-valuation-consistent if and only if there
exists a PSU-valuation v : ℘(X) → R such that v(A) ≥ v(B) entails A < B
(and v(A) > v(B) entails A Â B).
Theorem 9 Let (℘(X),<) be a binary relational system. Then, <=<#i.e. <
is the cardinality-based total preorder on ℘(X) if and only if < is strictly PSU-
valuation-consistent.

Proof. Same as the proof of Theorem 4 above.
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3 Discussion and concluding remarks

A well-known alternative characterization of the cardinality-based total preorder
of non-empty opportunity sets on a finite set X is provided in Pattanaik and
Xu(1990). Thus a comparison between the Pattanaik-Xu’s theorem and our
own result is in order here.
The Pattanaik-Xu’s characterization concerns preorders and relies on the

following three conditions:
Indifference between Singletons (IS): {x} ∼ {y}for any x, y ∈ X,
Independence (IND): for any A,B ⊆ X,A 6= ∅ 6= B, and any x ∈ X\(A∪B),

A < B if and only if A ∪ {x} < B ∪ {x},
Strict Monotonicity (SM): for any x, y ∈ X, if x 6= y then {x, y} Â {y}.
A first point to be observed is that removal of the implicit domain restriction

adopted by Pattanaik and Xu, namely the exclusion of the empty set from the
relevant domain of opportunity sets, requires a slight adjustment of the axioms.
To see this, consider the following

Example 10 Let (℘(X),<∗) be defined by the following rule: for any A,B ⊆
X, A <∗ B if and only if [either A = ∅ or A 6= ∅ 6= B and #A ≥ #B].
It is easily checked that <∗is indeed a total preorder, if arguably a somehow
schizofrenic one. Moreover, <∗clearly satisfies IS, IND and SM. Therefore, a
characterization of (℘(X),<#) requires the following strenghtened version of
IND, with the non-emptiness restriction removed, namely:
(IND∗): for any A,B ⊆ X, and any x ∈ X \A∪B, A < B entails A∪{x} <

B ∪ {x}.

It should also be remarked that both IS and SM as formulated above have
no bite as far as L∗(X) is concerned because F ∈ L∗(X) is a singleton only if
F = {X}. However, once IS and SM are suitably reformulated as Indifference
between Join-Irreducibles and Extended Strict Monotonicity (see the definitions
below) in order to cover in a non-trivial way any lattice of sets, it transpires
that neither of them is implied by strict valuation-consistency as such.
To make this precise, consider the following definitions:

Indifference between Join-Irreducibles (IJ):Let (L,∪,∩) a lattice of sets,
with L ⊆ ℘(℘(X));then, a preordered set (L,<) satisfies IJ if A ∼ B and
for any pairA,B ∈ L of distinct join-irreducibles of L (recall that C ∈ L is
join-irreducible if does not exist {C1, .., Ck} ⊆ L \ {C} such that C =

Sk
i=1Ci).

Extended Strict Monotonicity (ESM): Let (L,∪,∩) a lattice of sets, with
L ⊆ ℘(℘(X));then, a preordered set (L,<) satisfies ESM if A∪B Â B, for any
two join-irreducibles A,B ∈ L such that ∅ 6= A 6= B.

Thus, we may introduce the next example, namely:

7



Example 11 Let us consider the preordered set (L∗(X),<0) defined as fol-
lows: for any F,G ∈ L∗(X), F <0 G if and only if µ0(F ) ≥ µ0(G), where
µ0 is the discrete (dual) Euler characteristic i.e. for all F ∈ L∗(X), µ0(F ) =Pm

i=1(−1)i+1µi(F ) (with µi, i = 1, ..,m as defined previously under Example
6). It is easily checked that µ0 is indeed an invariant valuation (see Klain,Rota
(1997) for an extensive discussion of the discrete Euler characteristic). More-
over, µ0(F ) > µ0(G) entails F Â0 G,because otherwise it must be the case
that F ∼0 G, which in turn entails µ0(G) ≥ µ0(F ), a contradiction: hence
(L∗(X),<0) satisfies strict valuation-consistency. However, generally speak-
ing (L∗(X),<0) does not satisfy ESM. To see this, take X = {x, y, z}, and
consider for instance the (join-irreducible) order filters F = {X, {x, y}}, G =
{X, {x, y}, {x, z}, {x}} ∈ L∗(X).Obviously F ∪G = G. By definition of µ0, how-
ever, µ0(F ) = µ0(G) = 1, whence F ∪ G = G ∼0 F.Furthermore,µ0({X}) = 0
hence F Â0 {X} and G Â0 {X} which both contradict IJ since {X} is also a
join-irreducible element of L∗(X).

In fact, it is the requirement that the relevant valuation be positively singleton-
uniform that forces Extended Strict Monotonicity of (L∗(X),<) in our own
characterization. All in all, and perhaps unsurprisingly, the valuation-based
and the Pattanaik-Xu’s characterizations exhibit some significant similarities
among obvious differences. However, an advantage of the valuation-based ap-
proach is that it immediately offers a characterization of the cardinality-based
ranking which can be contrasted against a background of ‘similar’ structures.
Indeed, as mentioned above, positively singleton-uniform valuations are in par-
ticular invariant : this fact suggests that the cardinality-based preorder can be
interpreted as an opportunity ranking which arises from a particular choice of an
invariant valuation. Moreover, the valuation-approach to the cardinality rank-
ing is amenable to a quite natural extension to Euclidean opportunity spaces,
thus providing a simple characterization of the volume-induced preorder (see
Klain,Rota(1997) for a thorough discussion of the parallel between the finite and
the Euclidean cases, and Xu(1999) for an alternative characterization of the Eu-
clidean volume-induced preorder which relies on strict monotonicity). Finally,
valuations on lattices of sets can be regarded as (essentially) additive real-valued
functions on coalition spaces hence as additive coalitional TU-games in charac-
teristic function form. Since a prominent property of such additive games is
their core-stability, a further interpretation of the cardinality-based ranking as
an opportunity ranking arising from a special class of core-stable TU-games in
characteristic function form is suggested by our results. Whether and to what
extent such analogies might prove to be fruitful is however left as a topic for
further research.
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