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ABSTRACT. Single-factor interest rate models with constant coefficients are not consistent
with arbitrary initial term structures. An extension which allows both arbitrary initial term
structure and analytical tractability has been provided only in the Gaussian case.

In this paper, within the context of the HIM methodology, we provide an extension of the
CIR model which admits arbitrary initial term structure. We show how to calculate bond
prices via a perturbative approach, and we provide closed formulas at every order. Since the
parameter we select for the expansion is typically estimated to be small, the perturbative
approach turns out to be adequate to our purpose. Using results on affine models, we
estimate the extended CIR model via maximum likelihood on a time series of daily interest
rate yields. Our results show that the CIR model has to be rejected with respect to the
proposed extension, and point out that the extended CIR model provides a more flexible

characterization of the link between risk neutral and natural probability.
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1. INTRODUCTION

It is well known that, in spite of their popularity, single-factor interest rate models with
constant coefficients are not consistent with arbitrary initial term structures. To tackle this
problem, Hull and White (1990, 1993) showed that an extension of the Vasicek (1977) model
allowing for arbitrary initial term structure can be provided and dealt with analytically.
Following these results, they outlined a possible way to overcome this difficulty for a larger
class of models, including the square-root diffusion of the CIR model (Cox et al., 1985a,b):
namely they suggested to modify the drift of the spot rate dynamics in order to include
time depending terms accounting for the initial term structure. Due to the mathematical
complexity of the approach, the Authors proved only the feasibility of the extension, but
they did not give any information about neither the analytical features of the dynamics of
the spot rate, nor the bond pricing problem.

In this paper we discuss, in the context of the Heath-Jarrow-Morton (HJM) method-
ology (Heath et al., 1990, 1992), an extension of the CIR model which is consistent with
arbitrary initial term structures.

In the first part we provide a complete characterization of the model by specifying
the dynamics of the bond prices and of the spot rate. We discuss the solution of the bond
pricing problem and we show that the analytical form of the pricing formula depends on the
solution of a Volterra integral equation of the first kind.

The dynamics of the spot rate is also derived; to fit any observable term structure,
the drift term cannot be arbitrary, but it must depend on the initial term structure. It will
be shown how to include the initial term structure into the drift term, thus obtaining the
analytical form of the spot rate dynamics. It is characterized by a mean reverting diffusion
process with time-dependent reversion level and constant mean reversion rate, and it still
belongs to the affine class of Duffie and Kan (1996).

The solution of the Volterra equation affects both the dynamics of the spot rate and
the bond pricing formula. Exact solutions are not straightforward and we solve the Volterra
equation following a perturbative approach in which the volatility coefficient of the spot rate
dynamics is used as perturbation parameter, thus providing closed formulas at every order.

Since the parameter we select for the expansion is typically estimated to be small for interest
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rate data, the perturbative approach, and in particular the first order solution, is supposed
to be adequate for practical purposes.

In the second part of the paper, borrowing from affine process theory, we estimate the
extended CIR model via maximum likelihood on a time series of daily zero-coupon yields,
namely the three-month Euribor. Our results show that the CIR model with constant
coefficients has to be rejected with respect to the extension, pointing out that the extended
CIR model provides a more reliable characterization of time series data, as well as a more
flexible characterization of the link between risk neutral and natural probability.

The remainder of the paper is organized as follows. After a brief description in Section
2 of the theoretical framework and of the main results which will be used in our work, in
Section 3 we illustrate in some details the perturbation method used to solve the Volterra
equation and to derive the spot rate dynamics. The model is estimated in Section 4. Finally,

some comments conclude the paper.

2. SOME BASIC RESULTS

In this Section, we start by recalling some basic results. We work in a HJM framework

and we denote by,

(2.1) P(r(t), :T) = exp (- /tTf(r(t),t, u)du) ,

the price at time ¢ of a T-maturing pure discount bond. We denote by f(r(t),t,7) the
forward rate curve, and r(t) = f(r(t),t,t) the spot rate.
We assume that P(r(t),t;T), or equivalently f(r(t),t,T), are smooth functions of their
arguments’.
The model we propose is described by the following Cauchy problem,
dP
(2.2) P
P(r(0),0;T) = P*(0,T),

(r(t),t; T) = r(t)dt — \/kr(t)B(t, T)dw(t)

!The term smooth is used here to mean that the discount function P(r,#;T) or equivalently the forward

rate f(r,t;T), are continuous and twice differentiable with respect to all their arguments.
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which defines the dynamics of zero-coupon bonds prices under the risk-neutral measure.

P*(0,T) is the initial term structure?, k is a parameter, and w(t) a Wiener process. B(t,T)

is given by

ed(T—t) -1
2.3 B(t,T) =
where

(2.4) ¢:%P+¢¥?ﬂy

It is easy to verify that the volatility structure of zero-coupon bond returns,
(2.5) op(r(), ;) = V/Er (O B(L,T),

coincides with the CIR volatility structure.
It has been shown (Jeffrey, 1995; Mari, 2002) that the above model is consistent with

any initial term structure P*(0,7), and that the spot rate follows a well defined Markov

process. Furthermore, a closed form characterization of the term structure can be given. In

fact, if the volatility structure of zero-coupon bond returns satisfies the CIR condition, the

solution of the Cauchy problem is,

P*(0,T)

P(r(t),t;T) =P 0,0

exp [f*((],t)B(t, T) +
> H(u)B(u,T)du— = [ f*(0,u)B*(u, T)du|e " WBET)
- TR |

where H (t) satisfies the following Volterra integral equation of the first kind,

(2.7) /0 H(u)B(u, t)du = G(t),

with
(2.8) Glt) = —g /0 F(0,u) B2(u, £)du,

and f*(0,7) is the initial forward rate curve (Mari, 2002).
As it is easy to verify by posing ¢ = 0, the functional form (2.6) of the bond pricing
formula is consistent with any observable term structure. It also depends on the solution of

an associated Volterra integral equation of the first kind. In general exact solutions are not

2P*(0,T) is also assumed to be continuous and twice differentiable with respect to maturity.
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straightforward and numerical methods are to be used. We propose in the following Section
a perturbative solution of the Volterra equation which can be very useful for applications.
As we pointed out above, the dynamics of the spot rate can be derived from the bond

pricing formula (2.6) and is described by the Markov process given below,

(2.9) dr(t) = [a(t) — (2¢ — d)r(t)]dt + /kr(t)dw(t
where

af(0, 1)

(2.10) alt) = =—

+ (29 — d) f*(0,t) — H(t).

The dynamics of r(t) is characterized by a mean reverting Markov process in which both the
drift and the diffusion coefficients are affine in the spot rate. Since the model is consistent
with arbitrary initial term structures, the drift coefficient cannot be time independent but
it must related to the market data via equation (2.10). The drift is still characterized by a
time-dependent reversion level. The mean reversion rate 2¢ — d, is constant and coincides
with the CIR mean reversion rate parameter. The solution of the Volterra equation affects
both the bond pricing formula and the spot rate dynamics. In the following Section we solve
the Volterra equation following a perturbative approach in which k, the volatility coefficient

of the spot rate dynamics, is used as perturbation parameter.

3. THE SOLUTION OF THE VOLTERRA EQUATION

Under the CIR volatility assumption, we will prove in this Section that the Volterra
equation can be solved by using perturbation methods. Let us assume that H(t) can be

expanded in a power series in the volatility parameter k& around the value £ = 0 as follows,
(3.1) H(t) = Ho(t) + Hy(t)k + Ho(t) ZH

The expansion of B(¢,T) can be easily obtained getting,

Bi(t.T), . BA(LT)+dBi,7)

(3.2) B(t,T) = By(t,T) + 2d Ad3

k2+...’
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where
1
(3.3) By(t,T) = y [1— e 4T-0]

The higher order coefficients are also polynomials in By. Substituting (3.1), (3.2) into (2.7),

and equating the coefficients order by order in the expansion, we get,

t
(3.4) /lﬁ@ﬂ%@iﬂu:Gﬂﬁ i=0,1,2, .
0
It can be easily verified that since Go(t) = 0, then Hy(t) = 0, so that the first two terms are
given by,
1 t
(35) Gilt) == [ 10,0 B w0y
0

1 t

(3.6) Go(t) = ~54 [f*((), u)Bo(u,t) + Hy(u)| By (u,t)du.
0

The higher order terms can be determined in a similar way.

All equations (3.4) are characterized by the same analytical structure. At any order
in the perturbative expansion, the right hand side, G;(t) is a known function, depending
on By, f*(0,t) and on the solutions of the previous equations H;(t) i = 0,1,2,---,5 — 1.
Although (3.4) are Volterra integral equations of the first kind, in this case the solutions
can be calculated exactly by differentiating twice with respect to ¢ both members of any

equation. Since By(t,t) = 0, after the first differentiation we get,

t
(3.7) ‘AM&MM=W@W J=0,1,2,,
and after the second we obtain the final result,
(38) Hy(t) = dGy(0) + GJ(H), 5 =0.1,2,
Up to the second order in k£ the solutions are given by,

(3.9) Ho(t) =0,

t
(3.10) H(t) = —ezdt/ e £*(0,u)du,
0
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and
(3.11) Hy(t) = ——— /Ot 2 [Sf*(O,u)Bo(u, t) + Hy(u) |du.

The higher order solutions can be found in a similar way.

We then provided closed form solution, iteratively calculated, for any order of the
perturbative expansion. Typical estimates of the volatility parameter £ on interest rate data
are small, e.g. Chan et al. (1992) find an annualized value of k£ = 0.073. Thus, we are quite
confident that high order solutions affect pricing negligibly. In the following Section, we

estimate the model at the first order of the perturbation scheme.

4. ESTIMATING THE MODEL

In this Section we propose an estimate of the extended CIR model up to the first order
in the perturbative expansion, and we determine the parameters of the spot rate process.

We assume that the market price of risk is of the following form (Cox et al., 1985a,b),

(4.1) q(r(t)) = NG r(t),

so that the standard CIR model under the natural probability reads,
(4.2) dr(t) = [a — (2¢ — d + m)r(t)] dt + /kr(t)dw* (1),
where

(4.3) ¢:%[d+ Vid? — 2k].

Four parameters are to be determined: d, k, m and a. On the other side, the extended

version of the CIR model (up to the first order in the perturbative expansion) is given by,

(4.4) dr(t) = [a(t) — (26 — d + m)r(t)]dt + /kr(t)dw* (1),
where
(4.5) atty = 20D o ayp0,0 - H),

ot
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and
t

(4.6) H(t) = —ke‘z’”/ ™ £*(0, u)du.
0

In this case three parameters (d, k, and 7) must be determined in addition to the initial
forward rate curve f*(0,t).

It is important to point out in what sense we mean that the initial term structure can
be arbitrary. Indeed, Jeffrey (1995) shows that, denoting by ~(r,¢,T") the derivative of the

bond volatility structure o, with respect to the maturity T,

Ooy,(r,t,T)
4.7 t.T) =22 22"/
( ) ’Y(’r’ ) ) aT b
the initial term structure can be cast in the following form,
"(s,0,T)
4.8 fr(r,0,T :/ ————=ds+n(T),
) "0 =) 0.0 D

where 77(0) = 0. The arbitrariness of the initial term structure is all contained in the function
n(T). In our case, since o, (r,t,T) = \/kr(t)B(t,T), we have,

dedT/?
oet — 1)

Actually, not all the choices of n(T") provide economic significance to the initial term struc-

(4.9) £(r,0,T) = [ - drr—i—n(T).

ture; for example, it is reasonable to conjecture that, Tlim f(0,T) exists and it is finite,
—+00

and that
400

(4.10) (0, s)ds = +o0,
0

which ensures that one dollar to be received at infinite time to maturity is worth nothing
today. Following the above considerations, we introduce a parametric form for the initial
term structure in the spirit of Nelson and Siegel (1987) specifying it as,

dedT/2 2
e
We clearly have f*(0,0) = r(0), and TETOO f7(0,T) = ny. In this sense we can interpret 7,

(4.11) £7(0,7) =r(0) [ +m (1 —e ") +mTe .

as the infinite maturity yield. The parameter & calibrates the velocity at which the yield
curve tends to its limit 7;, while 7, allows for convexity change in the initial term structure.

The need for at least three factors can be motivated by the earlier findings of Litterman and
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Scheinkman (1991), who analyzed by principal components a huge number of yield curves,
and concluded that three factors are good enough to account for all the empirical properties
of the observed yield curve. From this point of view we can interpret 7, &, 7. as parameters
tuning, respectively, the level, the slope and the curvature of the yield curve, see also the
discussion in Andersen and Lund (1997).

In our estimate, we will determine therefore three additional parameters, 1, &, 79, thus
finding the initial term structure which is compatible with the observed time series. Clearly,
in the operational practice, a different point of view may be adopted: one can fit the three
parameters cross-sectionally, and the spot rate parameters on the time series, in order to
infer forecasts or derivative prices.

We will estimate the extended CIR model efficiently via maximum likelihood, using the
first-order perturbative approximation. Estimation via maximum likelihood can be accom-
plished since our model is affine, thus we can compute the transition density via inversion
of the characteristic function, as suggested in Singleton (2001).

The characteristic function of a univariate process X; is defined by,
(4.12) ox,(u;t,T) = E 2 [e™T].

It is easy to check that it is the Fourier transform of the transition density, so that we can

obtain the latter by inversion,

1 [T ;
(4.13) (X1 Xy) = ;/0 Re [e X1 oy, (u)] du.

In our case, the diffusion is univariate and we have not the problem of the curse of dimension-
ality which, for example, is found in Mari and Reno (2001), who adopt the same approach
to estimate the parameters of an affine model for credit risk.

Since the model belongs to the affine class, the following exponential representation of

the characteristic function holds,

(4.14) 0r (u;1,T) = eotD)+BEstTIre
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(see e.g. Duffie et al. (2002)), where « and § solve the following system of ordinary differential

equations,

Oa(u;t, T

0t _a(w)siust, 1)

ot

(4.15) 08t T) :

SRS = (26— d 4 Bt T) - JkE(ust, T)
with the boundary condition a(u;T,T) = 0, f(u;T,T) = iu. The solution for  is easily
obtained,

. _ 2iu(2¢ — d + )

(4.16) Blut,T) = e(20=d+m)(T=1) [2(2¢ — d + 7) — tuk] + iuk’

while o« can be computed via integration,

(4.17) a(u;t,T):/t a(s)B(u; s, T)ds.

Thus, the characteristic function is easily computable via a straightforward numerical inte-
gration (4.17).

One problem is the fact that we observe the bond price instead of r(t); anyway the two
are linked by the exponential-affine relation (2.6). As in Mari and Reno (2001), we will use
p(r(t),t; T) as working variable, defined as follows

(4.18) p(r(t),t;T) =log P(r(t),t;T) = Ao(t,T) + A1 (t, T)r(t),

where Ay and A; are inferred from (2.6). Since the change of variables is affine, we preserve

the exponential-affine structure of the characteristic function. We have, indeed,
(4.19) ope(u; 1, T) = €40 g (A (8, T)us t, T).

We finally compute the transition density by,

1 [t , ,
(4.20) f[pti+1 Ipt,] = ;/ du Re I:e_lupti+lel’uu4090”i (Aru; t;, ti+1)] ‘
0

It is worth to note that also the integration to be performed in (4.20) is numerically straight-
forward, as the integrations to be performed to compute Ag, A;.

Summarizing, we can compute the transition density of our process as a function of the
six parameters d, k, 7,1, £, 9, in a quasi-analytical way, where the quasi stays for numerical

integration. We perform all the numerical integrations via Gauss-Legendre quadrature, and
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TABLE 1. Parameter estimates of the CIR model. Standard errors are esti-
mated by diag(v/—H~'), where H is the Hessian as computed by numerical

derivatives.

Log-Likelihood = 2044.264

Parameter Estimate Standard Error
k 0.01320 (0.00013)

a 0.2651 (0.0021)

z 5.6347 (0.0065)

T -1.85 (0.52)

we have a natural control on our results, i.e. the number of points used in the integration

procedure. Instead of d, we use the parameter z defined as,
(4.21) z=Vd?—2k.

z coincides with the mean reversion rate parameter in the risk-neutral probability. In this
way, we do not have to impose the non-linear constraint d?> > 2k, but the much simpler
z > 0. We also impose k > 0,£ > 0,1, > 0, together with the non-negativity of f*(0,7) for
every 1.

Our data set consists of the daily annualized yield of the three-month Euribor, from
December, 30", 1998 to October, 18", 2001 for a total of 732 observations. We start by
fitting the standard CIR model, which provides a natural benchmark to the extended CIR
model. Parameter estimates are provided in Table 1. They imply a long-run mean of nearly
7% which is consistent with our data. The market price of risk is negative and significant.

We then fit the extended CIR model. We use two different ways to choose the number
of points for integration. For the integral (4.20), which is the main focus of maximum
likelihood estimation, we iterate the integration increasing the number of points until the
change in the value of the integral is below a given small value. For all other integrals, we
use a fixed number of points, and we increase them until we get stability on the results. We
find that approximately 15 points are enough for the integral (4.20), while we get sufficient
stability with 30 points for all the other integrals. Results are given in Table 2. The first

thing to notice is that, on the basis of a likelihood-ratio test, we overwhelmingly reject the
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TABLE 2. Parameter estimates of the extended CIR model. Standard errors
are estimated by diag(v/—H '), where H is the Hessian as computed by nu-

merical derivatives.

Log-Likelihood = 2126.11

Parameter Estimate Standard Error
k 0.00328 (0.00012)

z 5.071 (0.050)

T 7.74 (0.32)

M 0.1093 (0.0091)

1S 0.4929 (0.0093)

M2 0.0386 (0.0079)

CIR model with respect to the extended CIR model: the LR test value is 163.69 with 2
degrees of freedom. The failure of one-factor model, in particular the CIR model, to account
for the observed interest rate time series has been widely documented in the literature, see
Gentile and Reno (2002) for an example on Italian data. Thus, the rationale for extending
the CIR model is now encouraged by the empirical results.

The estimate of z is consistent in the two estimates, while k£ is smaller (nearly one
fourth) in the extended CIR case. In both case, the estimate of k is very small, thus the
perturbative approach seems to be adequate. It is important to note that the market price
of risk change sign in the new fit. Indeed, the market price of risk is the only parameter in
the CIR model formulation which carries information on the link between the risk neutral
and the natural probability. Given the rigidity of the yield curve in the CIR model, the
estimate of the market price of risk could be unreliable. In the extended CIR framework,
the specification of the yield curve is much more flexible, and in principle we admit arbitrary

term structure. Thus, we find a more reasonable realization of the market price of risk.
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5. CONCLUSIONS

In this paper, we propose an extension of the CIR model which preserves the CIR
volatility structure. We look for bond pricing via perturbation methods, and we provide
closed formula at any order in the expansion. The dynamics of the spot rate is also derived
in a closed form. We then fit the extended CIR model on time series of interest rate data,
and, based on likelihood ratio statistics, we show that it provides a much better description
of the data.

The possibility to obtain the functional form of the dynamics of the spot rate greatly
simplifies the problem of valuing interest rate contingent claims in the sense that we can use
a partial differential equation representation of asset prices. Furthermore, since the model is
consistent with arbitrary initial term structures, the valuation of contingent claims can be

made consistent with observed bond prices.
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