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Abstract - Before solving the capacity-pricing game for oligopoly, Boccard and 
Wauthy (2000) argue that, as under duopoly, at a mixed-strategy equilibrium of the 
pricing game the largest firm’s payoff equals the Stackelberg follower profit. We point 
to a nontrivial mistake in their argument and see how this important property can be 
satisfactorily established.  
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1 Introduction

In a recent paper Boccard andWauthy (2000) (hereafter, BW) analyze a two-
stage capacity-pricing game. The setting of Kreps and Scheinkman (1983)
- constant marginal variable cost up to “capacity”, efficient rationing rule,
and so on - is extended to oligopoly and by allowing production beyond
installed capacity at a constant extra unit cost. Before solving the entire
game, BW seek to establish the following property of mixed strategy equilib-
ria of the pricing subgame: for the largest firm(s) expected profit equals the
Stackelberg-follower profit when rivals supply their capacity (see Claim 6, pp.
282-3). To our knowledge, this is the first attempt to generalize a property
previously established for duopoly (see Kreps and Scheinkman, 1983) and
symmetric oligopoly (see Brock and Scheinkman, 1985, and Vives, 1986).
Our aim here is to see how this important generalization can satisfactorily
be proved, in the face of a nontrivial mistake in the proof supplied by BW.

2 The correction

D(p) and P (q) are demand and the inverse demand, respectively, where p
is the price and q the total output; P (q) > 0 on a bounded interval [0, bq)
on which P 0(·) < 0 and P 00(·) ≤ 0. There are n ≥ 2 firms; xi is firm i’s
capacity, x−i the total capacity of i’s rivals, and x = xi + x−i. Variable cost
is zero up to the firm capacity, hence in the pricing subgame each i ≤ n seeks
to maximize expected revenue, denoted Πi. Firm i’s Cournot best response
to x−i under costless capacity building is denoted r (x−i), while R(x−i) is
the corresponding revenue. Note that xiP (xi + x−i) is concave in xi and
−1 < r0 (x−i) < 0 for any x−i < bq.
In the region of no existence of a pure strategy equilibrium of the pricing

subgame, existence of a mixed equilibrium is guaranteed by Theorem 5 of
Dasgupta and Maskin (see BW, p. 281). Let Σi ≡ {pi | fi(pi) > 0} denote
the support of firm i’s equilibrium density fi(pi), and pi and pi, respectively,
the infimum (i.e., the greatest lower bound) and the supremum (the lowest
upper bound) of Σi. Also, let Fi(p) ≡ Pr(pi < p), H ≡ argmaxi≤n pi,
p ≡ maxi≤n pi, and let Π∗i denote firm i’s equilibrium expected revenue.
A few features of mixed equilibria are readily established. First, any

j ∈ H sells less than xj when charging p: otherwise, it would be D(p) ≥ x,
implying that any i : Fi(p) > 0 has not made a best response since it can sell
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xi by charging p. Second, p is charged with positive probability by one firm
at most: indeed, if Pr(pj = p) > 0, charging slightly less than p is better
than p to any i 6= j due to the jump in i’s residual demand in the event of j
charging p. Thus, at a mixed equilibrium there exists at least one firm j ∈ H
such that no i 6= j charges p with positive probability.1 Arguing similarly as
in Kreps and Scheinkman, p = P (r(x−j) + x−j) and Π∗j = R(x−j) = pr(x−j)
for any such j, with r(x−j) < xj. We can now look at the argument set
forth by BW, according to which a contradiction would arise from assuming
xj < x1, where 1 is assumed to be (any of) the largest firm(s).
It must be R(x−1) = r(x−1)P (r(x−1) + x−1) ≤ Π∗1, given that p1 ≤

p < P (r(x−1) + x−1). Further, x1R(x−j) < xjR(x−1) (see the proof in the
Appendix). In view of all this, BW can write (p. 283)

Π∗j = R(x−j) <
xj
x1
R(x−1) ≤ xj

x1
Π∗1 < Π∗1. (1)

The final stage of their argument relies on writing (p. 283)

Π∗1 = p1

h
F−1(p1)(D(p1)− x−1) + (1− F−1(p1))D(p1)

i
, (2)

where the expression in square brackets is 1’s expected output when charg-
ing p

1
. The term D(p

1
) multiplying (1 − F−1(p1)) is mistaken. Notice

that F−1(p1) is the probability of the event that pi < p
1
for every i 6= 1,

i.e., F−1(p1) = ×i6=1Fi(p1). The complementary event is thus the event that
pi ≥ p1 for at least some i 6= 1. Therefore, (1 − F−1(p1)) should have been
multiplied by q1(p1 = p

1
| some pi ≥ p

1
), i.e., 1’s expected output when

charging p
1
, conditional on pi ≥ p

1
for some i 6= 1. To understand that

q1(p1 = p
1
| some pi ≥ p

1
) < D(p

1
) it suffices to show that x1 < D(p

1
).

Notice that x−j ≥ x1 (with x−j = x1 if and only if n = 2) and recall
that p = P (r (x−j) + x−j) < P (x−j); further, p1 < p since it is assumed
that p is not charged with positive probability by firm 1. Consequently,
D(p

1
) > r (x−j) + x−j > x1.2

1This means that, for any i 6= j, either p /∈ Σi or p ∈ Σi but Pr(pi = p) = 0. As to firm
j, Pr(pj = p) ≥ 0 depending on the capacity configuration.

2Further, if Fi(p1) > 0 for some i 6= 1, the event that pi ≥ p1 for some i 6= 1 would also
include price vectors by 1’s rivals with some pi < p

1
, resulting in a residual demand for

firm 1 less than D(p
1
) when charging p

1
.
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Then, how to achieve the desired contradiction? Write firm 1’s equi-
librium expected revenue as Π∗1 = p

1
q1(p1 = p

1
), where q1(p1 = p

1
) is 1’s

expected output when charging p
1
. Let (xj/x1)Π∗1 ≡ xjp1k, where k ≡

q1(p1 = p1)/x1 ≤ 1. It follows from (1) that Π∗j < xjp1k. Notice that firm
j sells xj by charging p−1 , i.e., slightly less than p1 : indeed, this results in a
residual demand of at least D(p

1
)−x−j+x1 > x1 > xj, since D(p1) > x−j as

p
1
< p < P (x−j). Thus Πj(pj = p−1 ) = p1xj ≥ xjp1k > Π∗j , a contradiction.
It follows that p = P (r(x−1) + x−1) and Π∗i = R(x−i) for any i : xi = x1.

This is immediate when x1 > xi for every i 6= 1, since then it must be that
1∈ H and no i 6= 1 charges p with positive probability. The case xi = x1 for
some i 6= 1 needs further reflection. The above contradiction is avoided by
having xj = x1 for any j ∈ H for which no i 6= j charges p with positive
probability; further, Π∗i = R(x−i) for any i : xi = x1. Indeed, suppose
the latter does not hold, i.e., 1 ∈ H but pi < p = P (r(x−1) + x−1) and
Π∗i > Π∗1 = R(x−1) for some i : xi = x1.

3 Similarly as above, firm 1 would sell
x1 by charging p−i ,

4 hence Π1(p1 = p−i ) = pix1 ≥ Π∗i > Π∗1, a contradiction.

APPENDIX

Here we report (with a few integrations) the argument by which BW
establish that x1R(x−j) < xjR(x−1), where, by assumption, x1 > xj, j ∈ H
and no i 6= j charges p with positive probability at a mixed equilibrium.
Let m ≡ P

i6=j,1 xi, so that x−j = m + x1 and x−1 = m + xj. By letting
Θ(z) ≡ zR(m+ z) = zr(m+ z)P (m+ z+ r(m+ z)) our task is to prove that
Θ(x1)−Θ(xj) < 0. By the envelope theorem,

.

Θ(z) = (r(m+z)−z)P (m+z+
r(m+z)). In the following, we repeteadly use the fact that ∂r(m+z)/∂z < 0
form+z < bq. If r(m+xj) < xj, then .

Θ(z) < 0 for any z ∈ [xj, x1] , implying
Θ(x1) − Θ(xj) < 0. The same implication is drawn if r(m + xj) = xj since
then

.

Θ(z) < 0 for z ∈ (xj, x1]. The argument is somewhat involved when
r(m + xj) > xj. Then, r(m + x) = x is solved for x = x∗ > xj. Similarly,
r(m + x) = xj is solved for x = y∗ > x∗. Finally, in view of the latter and
recalling that r(m+ x1) = r(x−j) < xj, it is understood that y∗ < x1. This

3The case Π∗i < Π
∗
1 = R(x−1) is immediately dismissed since firm i earns no less than

R(x−1) by charging p. (It earns R(x−1) if firm 1 charges p with zero probability.)
4By charging p−

i
firm 1 obtains a residual demand of at least D(p

i
)−x−1+xi > xi = x1

since p
i
< p < P (x−1).
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leads to5

Θ(x1)−Θ(xj) =

Z x∗

xj

.

Θ(z)dz +

Z x1

x∗

.

Θ(z)dz <

Z x∗

xj

.

Θ(z)dz +

Z y∗

x∗

.

Θ(z)dz

= Θ(y∗)−Θ(xj) = y
∗R(r−1(xj))− xjR(m+ xj)

= y∗xjP (xj + r−1(xj))− xjR(m+ xj) = xj [y∗P (xj +m+ y∗)−R(m+ xj)] .

Finally, y∗P (xj + m + y∗) ≤ R(m + xj) as R(m + xj) is by definition the
maximum payoff in response to an aggregate output of m + xj by rivals.6

Thus Θ(x1)−Θ(xj) < 0.

5Actually, BW (p. 283) write
R x∗
xj

.

Θ(z)dz +
R x1
x∗

.

Θ(z)dz ≤ R x∗
xj

.

Θ(z)dz +
R y∗
x∗

.

Θ(z)dz.

Strict inequality must hold, however, because
.

Θ(z) < 0 for z ≥ y∗ so that R x1
y∗

.

Θ(z)dz < 0.
6BW conclude that y∗P (xj + m + y∗) < R(m + xj). Equality cannot be excluded,

however (it occurs if, by a fluke, y∗ = r(m+ xj).)
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