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1 Introduction
A set-inclusion filtral preorder on a finite setX of basic alternatives/opportunities
amounts to the set-inclusion partial order as augmented with a minimal oppor-
tunity threshold which is induced by an order-filter (to be defined below): under
the threshold, opportunity sets are indifferent to each other and to the null op-
portunity set, while over the threshold the set-inclusion partial order is simply
replicated. Therefore, the behaviour of a set-inclusion filtral preorder (hence-
forth SIFP) over the threshold is arguably non-controversial. On the other hand,
since the threshold can be chosen in many different ways, SIFPs -unlike e.g. the
cardinality preorder- also accommodate a non-negligible diversity of judgments
concerning the most appropriate ranking of opportunity sets. Thus, SIFPs can
be regarded as a format for opportunity rankings that, building upon a common
and essentially ‘objective’ basis, gives some scope to a modicum of diversity in
judgments. Furthermore, SIFPs are amenable to nice aggregation methods in-
cluding majority voting (see Vannucci(1999)). However, when it comes to the
assessment of inequality among opportunity profiles according to a majoriza-
tion preorder, the very fact that a SIFP is in general non-total is undoubtedly a
rather fastidious inconvenience. Two basic strategies may be devised to escape
the foregoing difficulty while sticking to the notion of a majorization preorder,
namely i) reformulating (and generalizing) the majorization construct in order
to adapt it to the general case of arbitrary non-total preorders, or ii) extending
SIFPs to total preorders in a suitably ‘natural’ manner.
Strategy i) is a quite radical move. Indeed, it can be shown that it demands

a special tactic to cope with pairs of non-isomorphic lattices of order filters:
thus, it runs deep to the very foundations of the majorization construct. By
comparison, strategy ii) is much more conservative. One way to pursue strategy
ii) is implicitly proposed and explored in Savaglio and Vannucci (2001). It
consists in relying on the height function of a SIFP in order to extend the latter
to a total preorder, the resulting ‘higher than’ relation. Now, the height of an
element x counts the size of the longest strictly ascending chain having x as its
maximum. Does this notion qualify as a ‘natural’ extension of the underlying
SIFP? In the general case the answer is admittedly bound to be disputable.
Indeed, the main problem here is that-generally speaking- SIFPs admit maximal
strictly ascending chains of different size having the same minimum and the
same maximum, i.e.SIFPs do not satisfy the so called Jordan-Dedekind chain
condition, hence are not graded and therefore do not have any rank function
for their elements (see e.g. Barbut and Monjardet (1970) for a general review
of the foregoing notions as defined below in the text). Thus, reliance on height
functions, which provide an instance of rank functions in the graded case, but
are well-defined anyway, is a second-best choice of sorts. However, one may
select a suitably defined well-behaved class of SIFPs.
In the present paper, I focus on principal SIFPs, namely on those SIPFs

whose threshold-inducing order filter is principal or latticial i.e. closed under
meet or set-intersection. The reasons for doing that are the following. First, it is
shown below that principal SIFPs are graded and their height functions amount



to rank functions. This implies that in the principal case heights provide a much
more reliable numerical scale to rank the elements of a SIFP than they do in the
general case. Therefore, height-based extensions are arguably more ‘natural’
and strongly grounded for principal SIFPs than they are for general SIFPs.
Second, Savaglio and Vannucci (2001) prove that principal SIFPs do support an
opportunity-profile counterpart to the classic characterization theorems of the
majorization preorder on real sequences due to Hardy, Littlewood and Pólya
(1952).
Then, a simple characterization of height-based extensions of principal SIFPs

is provided. Our characterization relies on conditions that use the relevant fil-
ter as a fixed parameter. Indeed, it is quite clear that over the filtral threshold
height-based extensions of principal SIFPs behave —essentially— as the cardinality-
based preorder. Therefore, one should expect that a suitable reformulation of
standard characterizations of the cardinality-based preorder should also work
for height-based extensions of SIFPs. As a matter of fact, we show that SIFPs
can be indeed characterized by a suitably adapted version of the axiom set em-
ployed by Pattanaik and Xu (1990) to obtain their well-known characterization
of the cardinality-based preorder. We also show that in our setting a version
of the Pattanaik-Xu characterization mentioned above is essentially recaptured
as a special case which arises from a particular choice of the relevant filtral
parameter.

2 Model and results
Let (Y,<) be a preposet (i.e. < is a reflexive and transitive binary relation on set
Y ); we shall denote by ([Y ]∼, [<]∼) its quotient poset w.r.t. the symmetric com-
ponent ∼ of <, namely the antisymmetric preposet on the set of ∼-equivalence
classes as defined by the rule [x]∼ [<]∼[y]∼ iff x < y.An antichain of (Y,<) is
a set Z ⊆ Y such that for any z1, z2 ∈ Z if z1 6= z2 then z1 and z2 are not
<-comparable. For any antichain Z of a finite non-empty preposet (Y,<), an
order filter of (Y,<) with basis Z is the minimal set F = F (Z) ⊆ Y such that
Y ⊇ Z and for any y, z, if y ∈ F and z Â y then z ∈ F .
Thus, whenever Y is finite, an order filter F of (Y,<) is uniquely defined

by a finite set Z = ZF = {z1, ..., zl} ⊆ Y such that, F = {y ∈ Y :there exists
i ∈ {1, ..., l} such that either y = zi or y Â zi}: Z is also denoted as the basis
of F. In particular, if Z is a singleton i.e. l = 1 then is said to be principal. It
should be remarked that if (Y,<) is a lattice (namely, < is antisymmetric and
for any x, y ∈ X, the pair {x, y} has both a least upper bound w.r.t. <, and a
greatest lower bound w.r.t. <, denoted by x ∨ y and x ∧ y, respectively) then
a principal order filter is also latticial or ∧-closed namely x ∧ y ∈ F whenever
both x ∈ F and y ∈ F.[It can also be shown that the converse holds for a finite
lattice].
Let now consider a poset (X,≥). A chain of (X,≥) is a subset X 0 ⊆ X

which is totally ordered by ≥ ; by definition, the length of chain X 0 is l(X 0) =
|X 0|− 1.A chain X 0 of (X,≥) is maximal if there is no chain U of (X,≥) such



that X 0 ⊂ U.If (X,≥) has a minimum ⊥, one may define its height function
h≥ : X → Z+∪{∞}by declaring the height h≥(x) of any x ∈ X to be the lowest
upper bound of the set of the lenghts of all (maximal)chains X 0of (X,≥) having
x as their maximum. A poset (X,≥) is said to satisfy the Jordan-Dedekind
chain condition if for any x, y ∈ X and any pair of maximal chains X 0,X 00 of
(X,≥) having x as their common minimum and y as their common maximum,
l(X 0) =l(X 00) i.e. equivalently |X 0| = |X 00| . Furthermore, a poset (X,≥) is
graded if it admits a rank function i.e. an integer-valued function r : X → Z
such that for any x, y ∈ Y : i) if x Â y then r(x) > r(y) and ii) r(x) = r(y) + 1
whenever x covers y i.e. x > y and {z ∈ Y : x > z > y} = ∅. A general preposet
(Y,<) will be said to satisfy the Jordan-Dedekind chain condition if its quotient
poset ([Y ]∼, [<]∼) does, and to be graded if ([Y ]∼, [<]∼) is a graded poset.
We are now ready to turn to inclusion-filtral preorders. We shall confine

ouselves to a finite set X.For any order filter F of (℘(X),⊇) the F -generated
set-inclusion filtral preorder (SIFP) is the binary relation <F on ℘ (X) defined
as follows: for any A,B ∈ ℘(X) A <F B if and only if A ⊇ B or B /∈ F.
Let F be an order filter of (℘(X),⊇) and <F the filtral preorder induced by

F. Then, the <F -induced height function hF : ℘(X)→ Z+ is defined as follows:
for any A ⊆ X

hF (A) = max

½
#C : C is a <F -chain, such that

A ∈ C and A ÂF B for any B ∈ C \ {A}
¾
.

The height-based (total) extension of <F is the total preorder <hF defined as
follows: for any A,B ⊆ X, A <hF B if and only if hF (A) ≥ hF (B).
As mentioned in the Introduction, the main aim of the present paper is

to provide a characterization of the height-based total preorder <hFwhen the
relevant order filter F is principal .Indeed, it turns out that in the latter case the
SIFP (℘(X),<F ) is graded, hence the height function hF is a well-defined rank
function which provides an unambiguous criterion to assess the comparative
‘status’ of opportunity sets according to <F . This claim is made precise by the
following

Proposition 1 Let F be a principal order filter of (℘(X),⊇). Then, the F -
generated SIFP(℘(X),<F ) is a graded preposet.

Proof. It is a well-known fact that a finite set is graded if and only if it
satisfies the Jordan-Dedekind condition as defined above :see e.g. Barbut and
Monjardet (1970)). Thus it suffices to show that (℘(X),<F ) does indeed satisfy
the latter condition. Indeed, suppose it does not. Then there exist A,B ⊆ X
and maximal chains C = {[C0]∼F , .., [Ck]∼F },C0= {[C 00]∼F , .., [C 0k0 ]∼F } of
([℘(X)]∼F , [<F ]∼F ) with Ci ÂF Ci∗1, i = 0, ., k−1, C 0j ÂF C 0j∗1, j = 0, .., k

0−
1, [C0]∼F = [C

0
0]∼F = [A]∼F , [Ck]∼F = [C

0
k0 ]∼F = [B]∼F , and such that |C| 6=

|C0| .Now, if {A,B}∩F = ∅ then |C| = |C0| = 1 hence either {A,B}∩F = {A}
or {A,B} ⊆ F.If in fact B /∈ F then by definition of <F and maximality of chains
C,C0 it must be the case that for any i ∈ {1, ..k − 1}, j ∈ {1, .., k0 − 1},there
exist xi ∈ X \ Ci, yj ∈ X \ C0j such that Ci+1 = Ci ∪ {xi}, Cj+1 = Cj ∪ {xj},



and both C1 and C 01belong to the basis of F.But then, since F is principal,
C1 = C 01.It follows that k − 1 = |C \ {C0, C1}| = |C0 \ {C 00, C 01}| = k0 − 1
whence k = k0 i.e. |C| = |C0|, a contradiction. Finally, if B ∈ F then again, by
definition of <F and maximality of chains C,C

0 it must be the case that for any
i ∈ {0, ..k − 1}, j ∈ {0, .., k0 − 1},there exist xi ∈ X \ Ci, yj ∈ X \ C0j such that
Ci+1 = Ci ∪ {xi}, Cj+1 = Cj ∪ {xj} whence by the same argument presented
above k = k0, a contradiction.

Remark 1 Of course, a general SIFP need not be graded. To check this fact,
consider the following elementary example: let be X = {x, y, z}, and F the
order filter of (℘(X),⊇) having {{x}, {y, z}} as its basis, and (℘(X),<F ) the
resulting SIFP. Then consider C ={[X]∼F , [{x, y}]∼F , [{x}]∼F ,[∅]∼F } and C0 =
{[X]∼F , [{y, z}]∼F , [∅]∼F }. Now C and C0are two maximal chains of
([℘(X)]∼F , [<F ]∼F ) with different size (and length), having [X]∼F as their

common maximum and [∅]∼F as their common minimum. Thus, (℘(X),<F )
does not satisfy the Jordan-Dedekind chain condition and as a consequence-being
finite- is not graded.

Let us now proceed to the announced characterization of <hF . In order to
do this, a few more definitions are needed.
Let F ∈ F((℘(X),∪,∩)), F 6= ∅ be any latticial filter of the (finite) lat-

tice (℘(X),∪,∩) i.e. equivalently a principal order filter of the (finite) poset
(℘(X),⊇).Then, the following F -parameterized properties of a binary relational
system (℘(X),<) can be defined:

F-Restricted Indifference between Singletons (F-RIS): (℘(X),<) satisfies F-
RIS if for all A ∈ F and x, y ∈ X \A,A ∪ {x} ∼ A ∪ {y}.
F-Restricted Strict Monotonicity (F-RSM): (℘(X),<) satisfies F-RIS if for

all A ∈ F and x, y ∈ X such that x 6= y, y /∈ A entails A ∪ {x, y} Â A ∪ {x}.
F-Restricted Independence (F-RIND): (℘(X),<) satisfies F-RIS if for all

A,B ∈ F and x ∈ X,x /∈ A ∪B and A < B if and only if A ∪ {x} < B ∪ {x}.
F-Threshold Effect (F-TE): A Â B ∼ ∅ for all A,B ⊆ X such that ∅ 6= A ∈ F

and B ∈ ℘(X) \ F.

It turns out that, in general, the foregoing properties are not mutually inde-
pendent. Indeed, we have the following

Proposition 2 Let F be a principal filter of (℘(X),⊇)
and (℘(X),<) a preordered set which satisfies both F-RIS and F-RSM. Then

(℘(X),<) satisfies F-RIND as well.

Proof. Let us assume that A,B ∈ F, x ∈ X \ (A ∪B) .Since, by definition of
F , there exists Y ⊆ X such that F = {C ⊆ X : C ⊇ Y }, it follows that there
exist non-negative integers h, k and {a1, .., ah} ⊆ X \ Y, {b1, .., bk} ⊆ X \ Y
such that A = Y ∪ {a1, .., ah}, B = Y ∪{b1, .., bk}.Now, assume A < B. If
h < k then A ∼ Y ∪ {b1, .., bh} by a repeated application of F-RIS. Therefore,



by a repeated application of F-RSM, B Â Y ∪ {b1, .., bh} ∼ A, whence, by
transitivity of <, B Â A, a contradiction. Let us then assume without loss of
generality that h ≥ k.Thus -by a repeated application of F-RIS to Y ∪ {x}-
Y ∪ {a1, .., ak, x} ∼ Y ∪ {b1, .., bk, x}.If h = k, then A ∪ {x} ∼ B ∪ {x} follows
immediately. Otherwise, A ∪ {x} = Y ∪ {a1, .., ah, x} Â Y ∪ {b1, .., bk} follows
by a repeated application of F-RSM, and by transitivity of < .Conversely, let
us assume that A ∪ {x} < B ∪ {x}.If A = Y ∪ {a1, .., ah} < B = Y ∪ {b1, .., bk}
does not hold, then it must be the case that h < k. But then, it follows by a
repeated application of F-RIS as applied to Y ∪{x} ∈ F that Y ∪{b1, .., bh, x} ∼
Y ∪ {a1, .., ah, x} = A ∪ {x}.Thus, by a repeated application of F-RSM and by
transitivity of <, it also follows B ∪ {x} Â A ∪ {x}, a contradiction. Hence
A < B, and F-RIND holds.

Theorem 3 Let F be a principal filter of (℘(X),⊇) and (℘(X),<) a preordered
set.Then,(℘(X),<)is the height-based extension (℘(X),<hF )of the set-inclusion
principal filtral preorder (<F ) if and only if (℘(X),<) satisfies F -RIS,F -RSM
and F -TE.

Proof. It is straightforward to check that (℘(X),<hF ) is in fact a (total)
preorder that satisfy F -RIS, F -SM, F -RIND, and F -TE. Indeed, let F = {A ⊆
X : A ⊇ Y } where Y ⊆ X. If A ∈ F , and x, y ∈ X \ F then by definition
hF (A∪{x}) = hF (A∪{y}) = #(A\Y )+1 whence A∪{x} ∼F A∪{y}.Moreover,
A ∈ F , x, y ∈ X and y /∈ A clearly entails hF (A ∪ {x, y}) = #(A \ Y ) + 3 and
hF (A∪ {x}) = #(A \Y )+ 2 if x /∈ A, while hF (A∪ {x, y}) = #(A \Y )+ 2 and
hF (A∪{x}) = #(A\Y )+1 if x ∈ A : in any case, by definition, A∪{x, y} ÂhF

A ∪ {x}. Finally, for all A ∈ ℘(X) \ F , and B ∈ F, hF (A) = 0 = hF (∅) while
hF (B) ≥ 1 i.e. B ÂhF A ∼hF ∅.
Conversely, let (℘(X),<) be a preordered set. To begin with, we define an

auxiliary function lF : ℘(X)→ N as follows: for any A ⊆ X
lF (A) = max{#(A \ Z) : Z ∈ F,Z ⊆ A} = #(A \ Y ), if A ⊇ Y and
lF (A) = −1 otherwise
(i.e. lF (A) = hF (A)− 1 : lF is the so-called length function of (℘(X),<F )).
Next, we show that if (℘(X),<) satisfies F-RIS and F-RIND then for any

A,B ∈ F :
lF (A) = lF (B) entails A ∼ B (or equivalently hF (A) = hF (B) entails A ∼

B).
We proceed by induction on lF (A).The case lF (A) = lF (B) = 0 is trivial in

that it entails -by definition- A = Y = B whence A ∼ B.
Let us now suppose by inductive hypothesis that for any nonnegative integer

m not larger than n, lF (A) = lF (B) = m entails A ∼ B.
Then, take a pair C,D ⊆ X such that lF (C) = lF (D) = n + 1.If C = D

there is nothing to prove. If C 6= D then there exist x, y ∈ X and A,B ⊆ X
such that A ∩ B ⊇ Y,#(A \ Y ) = #(B \ Y ) = n, x /∈ B, y /∈ A and C =
A ∪ {x} ,D = B ∪ {y}.It follows that {x, y} ∩ Y = ∅ hence, by definition,
lF (A) = lF (C)− 1 = lF (D)− 1 = lF (B) = n,which entails A ∼ B, by inductive
hypothesis. Moreover, if x ∈ A then C = A a contradiction since lF (A) 6= lF (C),



thus indeed x /∈ A∪B, and y /∈ A∪B by a similar argument. Therefore, A∪{x} ∼
B∪{x}( and A∪{y} ∼ B∪{y}) by F-RIND. Moreover, A∪{x} ∼ A∪{y}(and
B ∪ {y} ∼ B ∪ {x}) by F-RIS. As a result, A ∪ {x} ∼ B ∪ {y} i.e. C ∼ B, by
transitivity of ∼, and the inductive thesis follows.
Now, take any pair A,B ⊆ X such that hF (A) > hF (B) i.e. equivalently

lF (A) > lF (B). Two cases should be distinguished, namely: i) A ⊇ Y and
B + Y ; ii) A ∩ B ⊇ Y. If case i) obtains, then, by definition of F,A ∈ F and
B /∈ F hence A Â B by F-TE. Under case ii) both A ∈ F and B ∈ F , and
there exist A0 ⊆ X \ Y,B0 ⊆ X \ Y such that A = Y ∪ A0 , B = Y ∪ B0

and #A0 > #B0. Then, there also exists A00 ⊂ A0 such that #A00 = #B0.We
also posit #(A0 \ A00) = k and A0 = A00 ∪ {x1, .., xk}.Therefore, lF (Y ∪ A00) =
lF (Y ∪B0) = lF (B) whence (Y ∪A00) ∼ B by the first part of this proof. Since
Y ∪A00 ∈ F, Y ∪A00 ∪ {x1} Â Y ∪A00, by F-RSM. By a repeated application of
a similar argument - and by transitivity of Â - we can eventually establish that
A Â Y ∪A00 ∼ B whence A Â B.
Thus, we have just shown that for any A,B ⊆ X: hF (A) = hF (B) entails

A ∼ B and hF (A) > hF (B) entails A Â B, i.e. (<hF ) ⊆ (<). Hence, in
particular, < is a total preorder. But notice that if there exist A,B ⊆ X such
that A < B and not A <hF B, then -since <hF is also a total preorder by
definition- it must be the case that B <hF A hence hF (B) ≥ hF (A).Moreover,
not A <hF B entails hF (B) > hF (A), whence B Â A, a contradiction.
It follows that (<) ⊆ (<hF ) as well, so that (<) = (<hF ) .

The foregoing characterization is tight. To see this, consider the following
list of examples.

Example 1 Take a principal order filter F of (℘(X),⊇) and the corresponding
set-inclusion filtral preordered set (℘(X),<F ) defined as follows: for any A,B ⊆
X,A <F B if and only if [A ⊇ B or B /∈ F ](see Vannucci(1999)). It is
easily checked that <F is indeed a preorder, and satisfies F-RSM and F-TE.
Moreover, let A ∈ F,B ∈ F and x ∈ X \ (A ∪ B). Thus, A <F B entails
A ⊇ B whence A ∪ {x} ⊇ B ∪ {x} which in turn entails A ∪ {x} <F B ∪ {x}.
Conversely, since obviously {A∪{x}, B∪{x}} ⊆ F, A∪{x} <F B∪{x} entails
A ∪ {x} ⊇ B ∪ {x}.Then A ⊇ B as well, hence by definition A <F B.It follows
that <Falso satisfies F-RIND. However, for any A ∈ F and x, y ∈ A such that
x 6= y, A ∪ {x} and A ∪ {y} are not <F -comparable, hence F-RIS fails.

Example 2 Let us consider again a principal order filter F of (℘(X),⊇), and
the binary relational system (℘(X),<#F ) defined as follows: for any A,B ⊆ X,
A <#F B if and only if [either (B ∈ F,A ∈ F and #B ≥ #A) or B /∈ F ].
Notice that <#F is indeed a preorder: to check this, first observe that reflexivity of
<#F follows trivially from the definition, and assume that A <#F B and B <#F C.
The following mutually exclusive and exhaustive cases should be distinguished:
i) #B ≥ #A, #C ≥ #B and {A,B,C} ⊆ F : in this case #C ≥ #A hence



A <#F C by the first clause; ii) #B ≥ #A, {A,B} ⊆ F and C /∈ F : in this case
A <#F C by the second clause; iii) B /∈ F and C /∈ F :here again A <#F C follows
immediately from the second clause. Thus, <#F is transitive. Also, if A ∈ F, x /∈
A and y /∈ A, then clearly {A∪{x}, A∪{y}} ⊆ F and #(A∪{x}) = #(A∪{y})
whence A ∪ {x} ∼#F A ∪ {y},i.e. F-RIS is satisfied. Similarly, if A ∈ F,B ∈
F, x ∈ X\(A∪B) and A <#F B then #B ≥ #A and {A∪{x}, B∪{x}) ⊆ F.Thus,
#(B∪{x}) ≥ #(A∪{x}) whence, by definition, A∪{x} <#F B∪{x}. Conversely,
if A ∈ F,B ∈ F, x ∈ X \ (A ∪ B) and #(A ∪ {x}) <#F (B ∪ {x}) then by
definition #(B ∪ {x}) ≥ #(A ∪ {x}): it follows that #B ≥ #A as well hence
by definition A <#F B.Thus, F-RIND is also satisfied. Finally, F-TE follows
immediately from the definition. However, F-RSM is definitely not satisfied by
<#F : indeed, if A ∈ F, x ∈ X \ A, y ∈ X \ A and x 6= y then, by definition,
A ∪ {x} Â#F A ∪ {x, y}.

Example 3 Fix a principal order filter F of (℘(X),⊇) and take the binary
relational system (℘(X),<#

F∂ ) defined as follows: for any A,B ⊆ X, A <#
F∂ B if

and only if [ either A /∈ F or A ∈ F,B ∈ F and #A ≥ #B]. Obviously, <#
F∂ fails

to satisfy F-TE. On the other hand, <#
F∂ is a preorder. To check this, observe

that reflexivity follows immediately from the definition. As for transitivity, if
A <#

F∂ B and B <#
F∂ C then the following two mutually exclusive and exhaustive

cases are to be distinguished: i) A /∈ F , and ii) A ∈ F,B ∈ F,C ∈ F,#A ≥ #B
and #B ≥ #C. In both cases, A <#

F∂ C follows immediately from the definition.
Furthermore, F-RIS and F-RSM of <#

F∂are also easily seen to follow trivially
from the definition.

It should be emphasized here that the axioms used by Pattanaik and Xu
(1990) in their well-known, and seminal, characterization of the cardinality-
based preorder— namely Indifference between Singletons, Strict Monotonicity,
and Independence— are implied by the corresponding axioms in our list when
the reference filter F is taken to be the trivial or maximum filter ℘(X).Moreover,
it is immediately seen that for F = ℘(X) the fourth axiom of our list i.e. F-
Threshold Effect, which has no counterpart in the Pattanaik-Xu list, is in fact
trivially satisfied when restricted to the original Pattanaik-Xu domain which
only includes non-empty opportunity sets.

3 Concluding remarks
As mentioned in the Introduction the characterization of height-based exten-
sions of principal filtral opportunity preorders provided in the present paper
does not extend to the general case of arbitrary filtral opportunity preorders.
This is due to the fact that when an order filter is not principal, the height
function of the corresponding SIFP may exhibit a highly irregular behaviour.



Therefore, the height-based extension of a SIFP does not mimic the behaviour
of the cardinality-based preorder over the filtral threshold. A simple example
may help clarify this point.

Example 4 Let X = {x1, .., x7}, Z = {{x1, x2}, {x3, x4, x5, x6}, {x7}}, and
F = F (Z) (notice that Z is indeed an antichain of (℘(X),⊇) ). Then, consider
the height-based extension (℘(X),<hF ) of the F -induced SIFP (℘(X),<F ), and
take A = {x3, x4, x5, x6}.Clearly, A ∈ F. However, hF (A ∪ {x1}) = 2 while
hF (A ∪ {x7}) = 5, hence A ∪ {x7} ÂhF A ∪ {x1} and F-RIS fails.

By contrast, our characterization is in fact amenable to a simple general-
ization in another direction. Indeed, a counterpart to Theorem 2 for arbitrary
(finite) lattices of sets is readily available provided that the axioms are suitably
reformulated by replacing join-irreducibles for singletons/atoms. The details of
this extension, however, will not be pursued here.
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