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1 Introduction

The last decade witnessed a growing literature in the field of the diffusion coefficient estimation.
The main motivation underlying this strand of research is that the diffusion coefficient, which is
called volatility, plays a fundamental role in practically every financial application. We concentrate
on univariate models of the kind:

where W, is a standard real Brownian motion and the real functions u(z) and o(z) are such that
a unique solution X; of the stochastic differential equation (1.1) exists. X; can be any variable;
however, in this paper we concentrate on short rate modeling, that is X; = r;. Our specific
problem is then to estimate the diffusion term o(r) when we observe a discrete realization of the
process r, namely n observation 7y, ..., 7, in the interval [0, 7.

The methods for measuring volatility can be coarsely divided into parametric and nonparametric.
The parametric approach consists in specifying the function o(r) = o(r;6), with 6 being a vector
of real parameters. As a popular example, a large parametric class has been explored by Chan
et al. (1992), who study the following model:

d’f’t = ,B(Ol — ’f't)dt + O'Tdet,

where 3, a, 0,7 are real numbers. This specification nests many popular one-factor models, like
the constant variance model of Vasicek (1977), for v = 0 or the square-root diffusion of Cox et al.
(1985), for v = 0.5. The methodology is to estimate ] through point estimation. For interest rates
diffusions, this can be done via maximum likelihood (Duffie et al., 2002) or GMM, direct (Chan
et al., 1992) or simulated (Gallant and Tauchen, 1996; Dai and Singleton, 2000). The advantage of
parametric models is that closed form solutions exist for bond and derivative pricing. On the other
hand, the advantage of nonparametric specification is clearly its flexibility. For example, Jiang
(1998) shows that the nonparametric specification provides more accurate prices for bonds and
derivatives. However, for bond and derivative pricing one has to resort to Monte Carlo simulations
since closed form solutions are out of reach.

One important example of nonparametric estimator for the diffusion coefficient is that proposed
by Ait-Sahalia (1996a). The Ait-Sahalia estimator is based on the fact that, if the spot rate r; is
driven by equation (1.1), then we have:

2 [ uwm(wiy

2 -
o*(r) = 1.2
) - (12)
where 7(r) is the unconditional distribution of r. Equation (1.2) allows, given two out of the
three functions p(r),o(r), m(r), to obtain the third after integration or derivation. This estimator
is not fully nonparametric, since to get an estimate of the variance a specification of the drift
term is needed. Ait-Sahalia (1996a) suggests to specify the drift u(r) as an affine function of
r, then to estimate the conditional variance o(r). Given the drift p(r), the estimator (1.2) still
depends on the unconditional distribution 7(r). However, we can obtain an estimate of () with
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a nonparametric technique (Scott, 1992) and replace 7(r) in (1.2) with its estimate. Suppose our
observations are equally spaced, and denote them by 7;,4 = 1,...,n. Then the nonparametric
estimator of the density is given by:

ﬂm=7%§iK<T;ﬂ) (1.3)

=1

where K (-) is the kernel function and h a bandwidth parameter which depends on n. One popular
way of estimating densities through formula (1.3) is the histogram, where the kernel function is
an indicator function of a compact real interval centered around zero.

Ait-Sahalia (1996a) estimation results on interest rate data show that a departure from classical
univariate models (e.g. CIR and Vasicek) is observed. In a related paper, Ait-Sahalia (1996b)
rejected almost all the most popular one-factor model used for modeling interest rates. However
this rejection is very controversial. The problem is that estimating (1.3) in finite samples can be
problematic if the mean reversion is low. For example, Pritsker (1998) shows that the rejection
of the most popular parametric models comes from severe underestimation of confidence interval
for testing the null in small samples.

The most remarkable example of a fully nonparametric estimator of the diffusion coefficient can
be found in Florens-Zmirou (1993). She introduces an estimator which is conceptually different
from that used in Ait-Sahalia (1996a), since it does not need any assumption on the drift. Florens-
Zmirou (1993) shows that, given discretely sampled data, the diffusion coefficients in (1.1) may

be estimated by:
n—1 ~
. N r—r
n Z_:(riﬂ —7)?K <—h )
5 (r) = = : (1.4)

T§3K<T2ﬁ>
i=1

The variance estimator (1.4) looks more appealing since there is the same kernel in the numerator
and in the denominator, so biases in finite samples coming from nonparametric estimation of
the density could cancel out. The estimator (1.4) has been used by Jiang and Knight (1997) on
Canadian interest rates, and by Stanton (1997) on U.S. interest rates. In both those papers, the
Authors conclude in favor of a departure from standard models, and they suggest a strong mean
reversion for values of the spot rate r less than 3% and larger than 15%, see Chapman and Pearson
(2000) for a discussion on these results.

An estimator similar to that of Florens-Zmirou (1993) has been proposed by Bandi and Phillips
(2003), and studied in Bandi (2002). The estimator proposed in Bandi and Phillips (2003) is the

following:
- — T IR, R
nZK (r hr ) (E Z [rtiajﬂ - Tti,j]2>
i=1

T
52(r) = =0

TﬁiK(T;ﬁ)
i=1

(1.5)




where ; ; is a subset of indexes such that
ti,O = 1nf{t Z 0: ‘ft — TAZ| S 85},

and
ti,j—f—l = 1nf{t Z tz’,j + At : |7‘At - f,‘ S 65},

m; is the number of times that |7y — 7;| < &5, €5 is a parameter to be selected and At is the
time step between adjacent observations. We refer the reader to the cited paper for details. It is
important to remark that Bandi and Phillips do not require the process (1.1) to be stationary, but
only the weaker condition to be recurrent. This condition can be important theoretically, since
Bandi (2002) and many others, e.g. Ball and Torous (1996), show that there is no strong support
to the assumption of stationarity of interest rate data. Watching carefully expressions (1.4) and
(1.5), we can see that the difference between Florens-Zmirou and Bandi-Phillips estimators is that,
while the Florens-Zmirou estimator weights the observation r; with the quadratic variation at time
t, the Bandi-Phillips estimator weights the observation r; with the average quadratic variation at
all observations which are “close” to r;.

Other estimators have been proposed, in a more general framework, by Jacod (1999). Hoffmann
(1999) proposes a wavelet estimator which is consistent in £P. Both these authors study conver-
gence rate properties for their estimator, showing that the Florens-Zmirou (1993) estimator is not
optimal. However, asymptotic distribution can only be assessed for the estimator (1.4).

In this paper we introduce a new fully nonparametric estimator of the diffusion coefficient of an
univariate stochastic differential equation. The estimator is fully nonparametric in the sense that
we do not impose any restriction on the functional form of the drift term. Moreover, it is developed
under mild regularity conditions for the stochastic differential equation (1.1). As for the estimator
in Bandi and Phillips (2003), the stationarity assumption is not strictly required, being substituted
by the milder assumption of recurrency. The estimator is proved to be consistent in the £? sense,
and asymptotically normally distributed. In order to assess the asymptotic properties, we borrow
from the limit theory for semimartingales, and in particular of the convergence of a semimartingale
to a process with independent increments. The asymptotic distribution turns out to be identical
to that of Florens-Zmirou (1993). However, the estimator is basically different, and this allows us
to re-examine the estimation of the diffusion coefficient with the available interest rate data.

This paper is structured as follows. Section 2 shows how to estimate volatility from discrete
observation in an interval [0,7]. Section 3 presents the estimator, and shows its consistency and
asymptotic normality, using limit theory for semimartingales. In Section 4 we implement the
estimator for measuring the variance of the diffusion of short interest rates, and compare our
results to those in the literature, and in particulare with the results of Stanton (1997). Finally,
Section 5 concludes.

2 Volatility estimation

We start with a result stated by Malliavin and Mancino (2002) which will be very useful in the
following. We work in the filtered probability space (92, F;, P) satisfying the usual conditions
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(Protter, 1990), and define X; as the solution of the following process:

{ dX; = p(Xy)dt + o(Xy)dW, (2.1)

Xy =1

where o(-), u(-) are bounded, differentiable functions such that a unique solution of the stochastic
differential equation (2.1) exists in the interval [0,7] and W; is a standard Brownian motion. We
will write X;(w) to explicit the dependence of X from ¢ € [0,7] and w € .

In this case X; is a semimartingale, and its quadratic variation (Jacod and Shiryaev, 1987) is given
by:

(X, X]; = /0 o*(X,)ds (2.2)

Without loss of generality, we consider the solution X; in the interval [0, 27|, and define the Fourier
coefficients of dX and o2 as follows:

1 2 1 2
a0(dX) = o /0 ix, (%) = 5- /O o2(X,)dt
1 2T 1 2T
ak(dX) = - / cos(kt)dX, ax(o?) = - / cos(kt)o(X,)dt (2.3)
0 0

1 27 1 2
be(dX) = / sin(kt)dX, by(o?) = - / sin(kt)o? (X, )dt
0 0

™

It is worth noting that these integrals can be defined on each trajectory, for almost every trajectory
in €, see Follmer (1979).

There are many ways to reconstruct o?(X;) given its Fourier coefficients. One way is the Fourier-
Fejer formula:

. k .
o*(X;) = lim Z (1 — M) [ak(c?) cos(kt) + by (c”) sin(kt)] (2.4)
Convergence of Fourier sums is in £2(]0, 27]) norm. We now state the main result:

Theorem 2.1 Consider a process Xy satisfying (2.1), and define the Fourier coefficients of dX
and o? as in (2.3). Given an integer ng > 0, we have almost surely:

N
™

ap(0?) = lim ———— ) " a}(dX) = lim Z b2 (dX) (2.5)

N_>OON+1_nOk,n N—)OON+1—7’LO

N

2T 2T
2\ .
ag(07) = Mim kz Xkl dX) = I T = Z br(dX)bro(dX) - (2.6)
=ng
o al o
2\ 71 —
by(o%) = ]\}I_I)I;o Nl m kE ap(dX)bgiq(dX) = A}l_I)réo T o E bi(dX)ag4q(dX) (2.7)
=no



Proof. See Appendix A. O

Corollary 2.2 The Fourier coefficients of 0?(X;) can be computed almost surely as:

N

a(0?) = Jim ﬁ_no ) % (a2(dX) + B2(dX)) (2.8)
40(0%) = Jim o 3 (0(AX) kg (dX) + by(dX)big(dX) (2.9)
by(0?) = Jim m D (ak(dX)bpsg(dX) + bp(dX ) agq(d X)) (2.10)

=no
From Theorem 2.1 we get immediately an estimator of the integrated volatility. Indeed:

/0% 0?(X,)ds = 2may(0?) (2.11)

where ay(0?) is given by formula (2.5). The following Theorem provides asymptotic confidence
intervals for the Fourier coefficients of volatility, in the case of constant o:

Theorem 2.3 Assume volatility is a constant, o(-) =0 € R. As N — oo, we have:
VN +1—ng (a(c”) — °) = N (0,20%) (2.12)

VN +1—mng a,(6*) = N (0,0%) (2.13)
VN +1—mng b(6”) = N (0,0 (2.14)

where the above limit is in distribution.

Proof. We have already shown in the proof of Theorem 2.1 that ax(dX), bx(dX) can be replaced
by a(dv), bx(dv) where dv = dX — u(t)dt, since all the contribution of the coefficients of y vanish
a.s. as N — oo. We start from the fact that ax(dv), bg(dv) are Gaussian random variables with
zero mean. Let o(-) = 0. We then have:

Ela? (dv)] = E[b2 (dv)] = %02 (2.15)

and
Ela? (dv)] = E[b (dv)] = %04 (2.16)

Moreover, from the orthogonality of the trigonometric base, if k # h, E[ax (dv)ay(dv)] =
= E[by, (dv)bx(dv)] = 0 and, for every k, h, E[ay (dv)bg(dv)] = 0. Thus ax(dv), by(dv) are all inde-
pendent, thus if k # h, a}(dv) + b%(dv) is independent of a3 (dv) + b2 (dv). Then standard central
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limit theorem yields the result. We get the result for a,(c?), by(0?) with the same reasoning, since
Ea (dv)ay4q(dv)] = Elag (dv)by44(dv)] = 0 and E[(ax(dv)ar q(dv))?] = o* /2. O

It is sometimes convenient to rewrite equation (2.4) as:

ﬁugzlm_§%<1—%>Auﬁw% (2.17)

where
L(ak(0?) — ibk(0?)), k>1
Ap(0®) =< sae(0?), k=0 (2.18)
%(aw(ﬂz) + ib|k‘(0'2)) k< -1

For the implementation of the estimator, we follow Barucci and Reno (2002a). Since we observe
the process X; only at discrete times %4, ..., t,, we set X; = X, in the interval t; <t < ¢;4,. Using
interpolation techniques different from this we get a bias in the volatility measurement (Barucci
and Reno, 2002b). Then the Fourier coefficients of the price can be computed as:

1 27 X .= X, k 2w
%@m=—/cmwm&:¢L—i-i/smmmm, (2.19)
T Jo s T Jo
then using:
k[t ko [tie 1
—/ sin(kt) X; dt = Xti—/ sin(kt)dt = Xy, — [ cos(kt;) — cos(ktiv1)]- (2.20)
T Jy, T Jy s

Before computing (2.19), we add a linear trend such that we get Xo, = X,, which does not affect
the volatility estimate. Then we stop the expansions (2.8-2.10) at a properly selected frequency N.
For equally spaced data, the maximum /N which prevents aliasing effects is N = 7, see Priestley
(1979). Finally, we have to select the maximum M in (2.17). M should be a function of N such

that M(N) — oo when N — oo. In the applications of this paper, we will use evenly spaced data

only, then we select N = 2, M = % =7, and ng = 1.

3 Nonparametric estimation of the diffusion coefficient

We consider the SDE (2.1) in the interval [0, T]. We assume the following:
Assumption 3.1 Given the SDE (2.1), we have:

i) zo € L2(Q) is independent of Wy, t € [0,T] and measurable with respect to Fy.
ii) p(z) and o(z), defined on a compact interval I, are once continuously differentiable.

i1i) There ezists a constant K such that 0 < o(z) < K and |pu(z)| < K.
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iv) (Feller condition for non-explosion). Given:

/ I8 =y (3.1)

V() :/ S'(y / e dmdy, (3.2)

then V(«a) diverges at the boundaries of 1.

Assumption 3.1 insures existence and uniqueness of a strong solution. Asking for the Feller
condition allows to deal with models which, as noted by Ait-Sahalia (1996a), do not satisfy global
Lipschitz and growth condition (e.g. CIR). Moreover, Feller condition is necessary and sufficient
for recurrence in I, see the discussion in Bandi and Phillips (2003). Alternatively, one can ask for
global Lipschitz and growth conditions on p and o (Karatzas and Shreve, 1988).

Asking for a bounded volatility (and drift) is harmless from an econometric point of view, since
we always observe a finite, thus bounded, set of observations. For example, in the CIR model the
variance is unbounded and proportional to 1/ X;. However, since estimation is on a finite sample,

the observations X; are bounded and /X is indistinguishable from min(v/X;, v/max X;).

Moreover we will consider a kernel function for nonparametric estimation with the following prop-
erties:

Assumption 3.2 We define a kernel K(-) a bounded function in L*(R) which is continuously
differentiable, positive, with [, K(s)ds =1 and such that hm K(s) = 0 faster than any inverse

s—+oo
polynomial.

A typical choice is the Gaussian kernel:
K(s) = —e 2 (3.3)
We will moreover consider a sequence h,, such that:

Assumption 3.3 (hy,)nen is a real sequence such that, as n — oo, we have h,, — 0 and nh, — co.

An example which is very popular in applications (Scott, 1992) is the following:

=

hn = hyén (3.4)

where h; is a real constant to be tuned, and & is the sample standard deviation. We will assume
3.1,3.2,3.3 holding throughout all the paper.

Consider the solution process X; with ¢ € [0,7]. We now consider the fact that the process X;
is usually recorded at equally spaced times. When subdividing the interval in n steps of equal
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length, we use, as shorthand notation, X; = Xir/,, that is Xy = xo, X, = X7. Moreover, we set
t; = iT/n. Assumption 3.1 implies that X; is a continuous semimartingale, thus we can define its

local time (Revuz and Yor, 1998) as:
1
Ly(z) = ll_% g‘/o I]mfs,sH—E[(XT)dT (3.5)

We can estimate the local time of a diffusion via the following approximation:

[nt]
n 1 )(Z — X
Lj(2) = — ZK( - ) (3.6)
n i=1 n

where [z] is the integer part of x. We have indeed:
Proposition 3.4 If, as n — oo we have nh: — 0, then LY (x) — Ly(x) in the £L? sense. The
convergence 1s almost sure if %gy" — 0.

Proof. These are Propositions 1 and 2 in Florens-Zmirou (1993). O

The estimator of the diffusion coefficient proposed in Florens-Zmirou (1993); Stanton (1997); Jiang
and Knight (1997) is based on the following quantity:

Vi(x) = Tizn i:K (Xih; x) (Xiy1 — Xi)? (3.7)

=0

We have indeed,
Proposition 3.5 If nh: — 0 as n — oo, then V,*(x) converges to o®(x)Ly(x) in the L* sense.

Proof. This is Proposition 3 in Florens-Zmirou (1993). O

Thus dividing V;*(x) by L?(z) we get a consistent estimator of o2(z). In this paper, relying on
the result of Section 2, we want to substitute the quantity (3.7) with the following:

n—1
Up () = 7 ZK( :

where 62(t;) is computed via (2.4) on the observed trajectory of X;.

)ﬂm (3.8)

We then define the estimator:

)ﬂm

)

S™(z) = o X 2
TZK(%
i=1 n

We now prove that S™(z) is a consistent estimator of o2(z).
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Theorem 3.6 If nh: — 0 as n — oo, then S™(x) is a consistent estimator of o®(x) in the L
sense.

Proof. Suppose p(z) =0 in (2.1). For every w € €, consider the solution X;(w) of equation (2.1),
and define the process Y;* defined by:

dY¥ = o(X,(w))dW! (3.10)

where W/ is a standard Brownian in an auxiliary probability space (<, (F})o<t<t, P'), and o(X;(w))
is the realization of o(X};). Assumption (3.1) guarantees the existence of the solution of (3.10).
Then we can construct random variables in €2 by taking expectations in €2’. We denote by E’ the
expected value in Q' and by E the expected value in €.

Using equation (2.17), we get for 0 < ¢ < s < T and almost surely in :

. 1 B YR = i . /t 0% (X, (w))du =

= Z Aq(gz)eiqtei — (3.11)

Pl ig(s — 1)

= ?(X,(w)) + f A, (0?)et <& _ 1) _

ig(s — )

g=—00

= o?(Xy(w)) + F(s,1)

since the Fourier series can be integrated term by term. Moreover, since the integral of a Fourier
series converges uniformly, we have almost surely in :

131_I>It1F(8,t) =0 (3.12)
Now it is simple to prove that, almost surely:
E[E'[(YY - Y?))|F] = El(X, — X,)*|F, (3.13)

where X is the solution of (2.1), since both are equal to f: E[o?(X,)|F;s]du. Moreover, using
E[(X; — X,)*|F,] = 3E?[ f; 0?(X,)du|F,] and Cauchy-Schwartz inequality, we get almost surely:

E[E?[(YY - Y2Vl F] < E[(X: — X,)'F, (3.14)

Now, let us denote the £2(€2) norm of X by ||X||* = E[X?]. We then use almost sure identity
(3.11) and get:

i

(nt]—1
U e) - @) = | o 3o K (B0) B [ - vy +

Xi -
Tnh,, 2 K( h )F(t"’t”l)

(3.15)




When expanding the square in the norm (3.15), we can use the fact that E[X| = E[E[X|F,]], then
use (3.13) and (3.14), to get:

me)—o?(x)mx) <
[nt]—1
n 2 n . 1 XZ'—.T L
< |lV*(z) - o*(z)L* () T, 2 K " F(t; tin)|| < (3.16)
[nt]—1
1 X, —x
n 2 n 7
< |V™(z) — o?(z) L (z)|| + T ZlK( " )F(ti,tm)

Both terms converge to zero: the first, because of Proposition 3.5; the second given Proposition
3.4 and since F(t;,t;11) = 0 (2).

n

If u(x) # 0, then (3.13) becomes:

E[EYY - Y?)]] = E[(X: — X,)*] - E

( / t M(Xu)du> 2] , (3.17)

and the second term of the r.h.s vanishes as s — t i.e. n — o0. O
We want now to assess the asymptotic normality of S™(z). We first state two lemmas.

Lemma 3.7 If nh3 — 0 when n — oo, then,

[nt] 2
n X, —z
Y E ™ (K ( - ) (X1 — Xi)% — 02(x)/n]> f—H] — o (z)Ly(z) (3.18)
i=1 n n
where the above convergence is in probability.
Proof. This is Lemma 2(b) in Florens-Zmirou (1993). O

Lemma 3.8 Let g(x) : R — R be a continuously differentiable bounded function. Let nh: — 0
when n — oo. Consider:

[nt] o
o) = = 2 (V) ) o) (3.19)

then, as n — oo, G¢(x) — 0 in the L' sense, and thus in probability.

Proof. We have:

[nt]

G @) <B| =K (F5) lacx —g<x>} (320)
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We now divide the sum in terms such that | X; — z| < % and their complementary. Then:

Jmmm]Fﬁﬂmmxﬁﬁimxaww > K(&d$)+

) 1
|Xz_$|§;

e 2 K () e g <

Xi*.fc 1

Xi—al>s, - (3.21)
I B 11{(&‘”)+
lj |Xi—z|<+ i=1 nha hn

+

\/%meﬁ; 9(Xi) —g(=)] Y K (Xihnxﬂ

_ 1
| X z\>n

Now, using Taylor’s rule we get that sup,x, <1 19(X;) — g(z)| = o(+). Then, using Proposition
3.4, we have that the first term goes to zero as n — oco. The second term goes to zero given the
boundedness of g and the fact that the kernel goes to zero when its argument goes to infinity
faster than inverse polynomials. O

We finally state the main result of this paper. The idea is still to substitute n(X;;; — X;)* with

62%(t;) in (3.18), with the remainder vanishing in probability.

Theorem 3.9 If nh3 — 0 then

iy (S"(m) - 1) 1 N, (3.22)

o%(x) Lr(z)

where the above convergence is in law, and N(0,1) is a standard Normal variable.

Proof. Consider the discrete filtration F; = F;,, ¢+ =0,...,n. Define the following:

Qi1 = \/g K (Xh_ “””) [02(X;) — o*(x)] (3.23)

Since o2(-) is bounded, ©; is bounded, and it is adapted to F;_; (it is actually a constant with
respect to F; 7). We want now to verify the conditions of Theorem B.6. In the limit n — oo, we
have the following:

[nt]—1 [nt]—1
i) Z E[©;1|F] = Z ©;41 which tends to 0 in probability, given Lemma 3.8.
i=0 i=0
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ii) We have to prove that Zg’fgj_l E[©7 ,|F;] — 0. We can use formula (3.11) and use the same
reasoning leading to the proof of Theorem 3.6 getting:

i=0
[nt]—1 2
1 X,L — X w w
s [ () o 01 - ]
[nt]-1 2
1 Xi—=x
<Y E K& Xit1 — Xi)? = F(ti, tip1) — 0° i
88 (5 (5 v -5 - o
(3.24)
From this inequality and Lemma 3.7 we get the result.
iii) We have to prove conditional Lindeberg condition. We have:
E[|[E[67|F ][] = > €7 (3.25)

‘@i‘>6

Now, the sum (3.25) is bounded by o*(z)L;(z); moreover, we can rewrite |9;] > ¢ as:

K (Xh_ x) 02(X;) — 0*(z)| > e/nhn (3.26)

The 1.h.s of equation (3.26) is bounded, thus as n — oo we have v/nh,, — oo and the sum
(3.25) vanishes in probability.

Thus, we fulfill the assumptions of Theorem B.6, then if we define Y;*(z) as:

Y (z) = Z Oit1(x) (3.27)

than we have that Y;"(z) converges in law to the continuous martingale M; with quadratic variation
[M, M]; = o*(x)Li(x). We then set M; = B(c*(x)L;(x)), where B(t) is a standard Brownian

motion. Now consider:
[nt]—1

7y (z) = (Wti“ - Wti) (3.28)

1

Il
)

where W, is the standard Brownian motion in (2.1). It is clear that Z}'(z) converges in law to the
standard Brownian motion W;. Moreover we have:

[nt]—1

Z E [G)Hl (WtH»l - Wti) ‘]:z] =0 (3.29)

i=0
By equation (3.29), we get that M, and W, are orthogonal. We can also write B(t) = My, where
T(t) = inf, (m) Then, by Knight’s Theorem C.1 we get that B(t) and W, are independent
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Brownian motions. Then B(t¢) and L;(z) are independent, since the filtration generated by X,
is included in the filtration generated by W;. We then have that Y*(z) — +/L.(z)o?(z)N(0,1),
where N (0, 1) is a standard normal random variable independent of L(x). Since L7 (x) converges
in probability to Li(z), we have the desired result. O

The above result can be easily generalized to a multivariate framework, and, more importantly,
if the observations X; are not equally spaced, but if they are such that, as n — oo, then we have
suplt; — t;_1| — 0.

We tested the estimator on simulations of the Vasicek (1977) model:
dry = k(o — 1) dt + odW,, (3.30)

which displays mean reversion and constant variance. We simulate the model with parameters
resembling actual interest rates distribution. For example, the annualized variance of 3-months T-
bill is around 3%, so we keep this value throughout all our simulations. From previous literature,
it is well known that two parameters play a crucial role: the choice of the bandwidth parameter A,
in (3.4), and the mean reversion parameter k. The choice of the bandwidth parameter has been
long debated in the literature. While consistency of nonparametric estimators is independent of
hs, convergence rates and small sample properties depend crucially on it. Scott (1992) suggests the
choice of hy = 1.06, as it is optimal with respect to the mean integrated standard error criterion.
However, typical choices in the literature were larger than this value. For example, Stanton (1997)
uses hs = 4, while Ait-Sahalia (1996a) uses hs; = 5.

The role of mean-reversion is even more debated. The strength of mean reversion is measured by
the parameter k. Estimates of £ in the literature range around 0.1, which is a very low value. Thus
many studies argue that in the available interest rate data there is no mean reversion at all, if
not for extreme values (Ait-Sahalia, 1996a; Bandi, 2002). Chapman and Pearson (2000) show, via
Monte Carlo evidence, that nonparametric methods could be biased toward finding non-linearities
in the drift even if the drift is linear. Jones (2003) concludes in a similar way, and he argues
that mean reversion in available interest rate data is so weak, if present, that its detection is very
difficult with any statistical method.

We then select a grid of (hs, k) ranging across the values of interest. We select hy = 1.06, 3,5 and
k = 0.05,0.5,5.0. In all the replications of the model (3.30), we draw the starting value from the
marginal distribution, and we use sample of n = 8, 000 observations, for comparison with the data
sets in the next Section. For every value of hy and k, we use 5,000 replications.

Figure 1 shows the average measurements on Monte Carlo replications, together with estimated
confidence intervals, obtained with the estimator (3.9). Simulations show that the Fourier esti-
mator is unbiased in small samples for the selected parameters. As expected, confidence intervals
are broader for smaller mean reversion and smaller bandwidth parameter, and broader for large
and small interest rates, which are less frequent.
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4 Data Analysis

In this Section, we turn to the analysis of interest rate data. Our aim is to estimate the diffusion
coefficient of the univariate model:

dry = p(ry)dt + o(ry)dW, (4.1)

when discretely observing the short rate r; in a time interval [0, 7]. Since the spot rate is inherently
unobservable, we use proxies for it, typically the three-months rate as it is common in the literature,
see Duffee (1996); Chapman et al. (1999). Alternatively, one can regard the model (4.1) as a model
for the three-months rate itself.

We first test the methodology on the same data set in Jiang (1998), that is the daily time series
of the annualized yields of the three-months U.S. Treasury Bill, from January 1962 to January
1996, for a total of 8, 503 observations. The minimum and the maximum of the yield in this time
span are 2.61 % and 17.14 %, thus the estimates of the diffusion coefficient outside of this interval
are an artifact of the nonparametric estimation procedure. Figure 2 shows the estimation results.
The estimate obtained with the Fourier estimator (3.9), using as bandwith parameter (3.4) with
hs = 4, is the solid line. Confidence intervals are computed according to (3.22), using estimated
local times via equation (3.6). The Fourier estimator is implemented with the maximal N = n/2
and with M = n/4. The Fourier estimator confirms the departure from standard parametric
models, such as the Vasicek variance o%(r) = k, or the CIR variance ¢%(r) = kr. In order to
better clarify this point, we consider the parametric model of Chan et al. (1992) which nests many
popular one-factor models including CIR and Vasicek:

dry = p(a — ry)dt + or] dW,. (4.2)

This model has been estimated in Jiang (1998) on the same data set using indirect inference.
Parameter estimates are o = 0.079(0.044), p = 0.093(0.100), v = 1.474(0.008), o = 0.794(0.019),
where standard errors are in brackets. Figure 2 shows the function or” for comparison with the
nonparametric estimate. While the shape of the two estimates is increasing in both case, and
the two estimates are compatible for r around 8%, we get a significantly higher estimate at low
interest rates, and a significantly lower estimate at high interest rates when using the nonpara-
metric method. It is clear that we are exploiting the flexibility provided by the nonparametric
methodology.

We then compare the estimates with those obtained with other nonparametric estimators. To
this purpose, we use the same data set used in Stanton (1997), that is the daily time series of
the annualized yields of the three-months U.S. Treasury Bill, from January 1965 to July 1995,
for a total of n = 7,975 observations (minimum 2.61 %, maximum 17.15 %). Thus, we can
directly compare our results with those obtained in Stanton (1997). From this perspective, we
use the same value hy = 4 used by Stanton. Figure 3 shows that the two estimates are quite
different. With respect to the estimate obtained in Stanton (1997), the Fourier estimate coincides
only in the central part of the distribution, i.e. r ~ 11%, while it is higher for smaller values
of r and considerably smaller for larger values of r. For larger values of r confidence intervals
are wider, since the local time is small for the paucity of observations in that zone. For further
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comparison purposes, we also estimate the variance with the nonparametric estimator proposed in
Bandi and Phillips (2003), with the same bandwidth parameter hs = 4.0 and £, = 1.5% in (1.5).
The result obtained with the estimator proposed in Bandi and Phillips (2003) is almost identical
to that obtained with the Stanton estimator, confirming that the empirical performance of the
two estimators is nearly the same. We do not report the estimate obtained with the Ait-Sahalia
method, since it is very different from those obtained here, and it is very unstable at the level of
mean reversion displayed by three-months interest rates, see Reno et al. (2004).

Finally, we estimate the diffusion coefficient on the full data set at our disposal, that is the daily
yields on the three-months Treasury Bill from from 4 February 1960 to 11 December 2003, for a
total of 10, 944 observation (minimum 0.79% on 19 June 2003, maximum 17.14% on 11 December
1980) and the daily yields on the ten-years Treasury Note from 2 February 1962 to 11 December
2003, for a total of 10,447 observations (minimum 3.10% on 13 June 2003, maximum 15.51% on
4 September 1981). Figure 4 shows the results which are in line with the previous findings. We
also find that the volatility of the longer maturity contract is less than the shorter one, as it is
well known. We leave the reader the judgment on the opportunity for using such a long data set
when estimating the model, given the heterogeneity of the economic conditions which drove the
interest rate evolution: it is quite clear that the answer to this question depends on the specific
application.

5 Conclusions

In this paper a new nonparametric estimator for the diffusion coefficient based on discrete ob-
servations is introduced. This estimator is based on a result on volatility estimation derived
in Malliavin and Mancino (2002). The estimator is proved to be asymptotically consistent and
normally distributed, and asymptotic confidence intervals are provided.

This nonparametric estimators, as well others, can be used in a variety of applications. We used
it to compute the diffusion coefficient for daily time series of short interest rates. Our results are
in line with those in the literature, but with some peculiarity. We show that our nonparametric
estimates is quite different from standard parametric specifications. Moreover, the estimate with
the Fourier estimator provides larger variances for interest rates smaller than 9% and smaller
variances for interest rates larger than 12% than the variances obtained on the same data set by
Stanton (1997). We conclude that the estimator proposed here can be a very useful tool for the
issue of correctly specifying the diffusion term of stochastic models for interest rates.
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A Proof of Theorem 2.1

Theorem 2.1 is a slightly extended version of the main theorem in Malliavin and Mancino (2002).
The proof presented here is similar.

Proof of Theorem 2.1. Fix w € €2 such that the stochastic integral can be defined on w, which can
be done almost surely in Q (Follmer, 1979), and define:

6(t) = o(Xy(w)), Alt) = p(Xi(w)) (A.1)
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Then define: o o
X, = / &(t)dW; + / i)t (A.2)
0 0

with Xy = 2. Consider the mapping from ¢ : 2 — Q' which associates to w the trajectory W;(w)
in the Wiener space €. It is clear that this mapping preserves probabilities. Moreover we have:

Xy(w) = Xilpw),  ar(dXi(w)) = a(dXi(p))),  be(dX:(w)) = bi(dXi(p(w)))  (A3)

Now we prove almost sure convergence in €)'. Then, suppose that convergence does not hold for
a set A C Q such that P(A) > 0. This would imply that convergence does not hold in the set
©(A) C Q' such that P(¢(A)) > 0, but we proved almost sure convergence in €' then convergence
is almost sure in {2 as well.

Denote by E the expected value in Q' and consider first the case p(-) = 0.

We choose k, h € N such that £ > h > 1. We have:

E ak(dX)ah(dX')} =K {l /OQW cos(kt)dX, - = /027T cos(ht)d)z't} =

s m
_E {% /0 " cos(k0)6 (1AW (1) - /0 " cos(ht)&(t)dW(t)] - (A4)
= % 027r 62(t) cos(kt) cos(ht)dt.

by the contraction formula.

Using the following identity:

2 cos(kt) cos(ht) = cos[(k — h)t] + cos[(k + h)t] (A.5)
we get:
E [a(dX)ay(d%)] = % [a6_(62) + ax5n(67)] (A.6)

Moreover we have: .

[ = D (a}(6*) + B (67) (A7)
k=0

Now fix an integer ng > 0 and define, for ¢ € N:

1 N X

Uy = Nil—n kz ak (dX) a1 q(dX) (A.8)

=ng
Using (A.6) after taking expectations we get:
N
. R L
(0g(6%) + agk14(6%)) = gaq(fﬁ) + Ry. (A9)

=no

1 1

EUY] = —— —
Ux] N +1—mny2m
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Where
N

1 1 1
Ryl = - ) < ——— |52 A.10
x| N+1—-ng2n kZangrq(a) ~VN+1-n g ‘£2 ( )
=ng
by Schwartz inequality, thus
a,(6%) = lim E[UY]. (A.11)
We want now to proof that a,(6?) = J&im U%. To do so we compute:
— 00
1 A A~ N N
B2 (U] = e Y OE [akl(dX)ak1+q(dX)] E [% (dX)agy+q(dX) (A.12)

no<k1,k2<N

Using the fact that az(dX) is a Gaussian random variable with mean 0, we use a well known
formula for the product of four Gaussian random variables to compute:

1 > 2, A ~
E[(U%,)?] abi s — 3 ]E[akl(dX)ak1+q(dX)ak2(dX)akm(dX)} _
1 0 no<ki,ka<N
MEESEr P R (e (40010100 B [, 0 )0 +

+E o, (dX)ai, (4%)] B [k, 14(dX ) ar, 14(dX)]

+ E | ag, (4X) 01y (dX)| B g, 14(dX)a, (45)] )
(A.13)
We now use equation (A.6) to get:

1
AT2(N + 1 —ng)?

S (00282 + b)) (b h420(6%) + a1ty (67)) +
no<ki,ka2<N

+ (k1 4h240(6%) + iy —k2-¢/(6%)) (ks 4824(6%) + Ak —1p141(67)) ]

E[(U} - BU4)?) =

(A.14)
Finally we use Cauchy-Schwartz:

E[(Uy - ]E[llfz%])Q] <

< .

- 47T2(N+ 1-— ’I’L())2
1
2

( Z (ak1+k2 (6-2) + a’|k1*k2|(62))2 : Z (ak1+k2+2Q(62) + a’|k1k2(a-2))2> +

no<ki,k2<N no<ki,k2<N
1

2
N N 2 N N 2
+ ( Z (ak1+kz+(I(02) + a|k1—k2—q\(o-2)) ) Z (ak1+k2+q(02) + a|k1—k2+q|(02)) ) <

no<ki,ko<N no<ki,ka<N
2

2
<
~ m2(N+1—mny) ‘ﬁz

~2
o

(A.15)
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The above inequality proves (2.6), since £? convergence to a constant implies almost sure conver-
gence. If we now repeat the calculation (A.4) replacing ay, ap with ag, by, we have:

E [ak(df()bh(df()] - /0 " &2(t) cos(kt) sin(ht)dt. (A.16)
We now use the identity:
2 cos(kt) sin(ht) = sin[|k — h|t] + sin[(k + h)t] (A7)
and we get:
E [ak(df()bh(df()] = % [bk—n(62) + brn(62)] (A.18)
We then get formula 2.7 by computing the expected value of:
1 Y ; ; 1 al ; ,
Vi = Ntl—ng IZ;O a(dX)bp4(dX), Wi = Ntl—ng Z;Obk(dX)qu(dX) (A.19)

The second part of formula (2.6) comes in the same way from the identity:

2sin(kt) sin(ht) = cos||k — h|t] — cos|[(k + h)t] (A.20)
Formula (2.5) comes in the same way from:

Ela} (dX)] = B (4X)] = 5 [200(6") — 02x(6”)] (A.21)

If 4(-) # 0, then in all previous computation we replace dX with dv defined by dv = dX — jdt.
Now, all the extra terms depending on p vanish asymptotically since:

| =Y ko + ). (A.22)
O

B Limit Theorems

Definition B.1 A process with independent increments (PII) in a filtered probability space is a
cadlag adapted R-valued process X such that Xq = 0 and thatV 0 < s <t the variable X; — X is
independent of F;.

Definition B.2 A truncation function h(z) is a bounded Borel real function with compact support
which behaves like x near the origin.
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For every semimartingale X, we define its characteristics (B, C, v) as follows. Let h be a truncation
function. We define X (h) = X — > __,[AX,; — h(AX,)]. X(h) is a special semimartingale and we
can write its canonical decomposition:

X(h) = Xo+ M(h) + B(h) (B.1)

where M (h) is a local martingale and B(h) a predictable process of finite variation.
Definition B.3 The characteristics of X is the triplet (B,C,v) defined by:

i) B=B(h) in (B.1)
i) C =[X¢ X i.e. the quadratic variation of the continuous martingale part of X
iii) v is the compensator of the random measure associated with the jumps of X.
We then have that B is a predictable process of finite variation, C' is a continuous process of
finite variation and v is a predictable measure on R* x R. Extension to the multivariate case

is straightforward. If X is a PII with Xy = 0 and without fixed times of discontinuity, then
Levy-Kinthchine formula holds:

2

E[e?Xt] = exp (iuBt — %Ct + / (e — 1 — tuh(z)) I/t(dac)) : (B.2)
R+
Then next theorem provides the characteristics of the processes of the following kind:
[nt]
Y, =) 6 (B.3)
i=1

where [z] is the integer part of z. In definition (B.3), we assume that there is a discrete filtration
(Fi)ien, and we need ©; to be adapted to F; ;. We can think of ©; as the difference process
X, — X,;_1 of an adapted discrete process X;.

Theorem B.4 Let h be any truncation function. Then the characteristics of Y; defined as in

(B.8) is:
( [nt]
B, =) E[h(6;)|Fi1]
i=1
{ C,=0 (B.4)
[n1]
grv=[ [ giv=3 Eg®)I00|%i
\ [0,T]xQ Py
Proof. This is Theorem I1.3.11 in Jacod and Shiryaev (1987). O
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If h2 x v < 00, Vt € [0,T], we can define the following:

Cy=Ci+h v, — Y (AB,)’ (B.5)

s<t

We then have the following convergence theorem:

Theorem B.5 Fiz a truncation function h. Assume that X™ is a sequence of processes, and X is a
PII semimartingale without fized time of discontinuity. Denote by (B™, C™,v™) the characteristics
of X™ and by (B,C,v) the characteristics of X. Define C by equation (B.5). Moreover assume
the following:

i) sup |B? — B,| — 0 in probability, Vt € [0,T]
s<t
ii) C — Cy in probability , Vt € [0,T]

i) g * V' — g * vy in probability, Vt €[0,T],g € C1(R)
Then X,, — X in distribution.

Proof. This is Theorem VIII.2.17 in Jacod and Shiryaev (1987). O
We then show the following Theorem, which will be useful in our analysis:

Theorem B.6 Consider the process Y* defined in (B.3) on (Q, (F;)ien, P) with ©; bounded and
adapted to F;_1, and assume the following:

[nt]
i) ZE[@H]—},J — 0 in probability
i=1
[n?]
i) ZE[@?LE,I] — V}; in probability
i=1
[nt]
i) Ve >0, Z]E[@Z2 Ifje,/>¢}| Fi—1] = 0 in probability (conditional Lindeberg condition)
i=1

Then'Y; converges in distribution to the continuous martingale My with quadratic variation [M, M), =
V.

Proof. We have to prove conditions i) — iv) of theorem B.5. We compute the characteristics
(B™,C™,v™) of Y™ by theorem B.4, with h(z) = z Asup©, and C by (B.5). The characteristics
of M, is (0,V,0).

22



i) Is implied in iv)
ii) We have B"™ = B". Since ©; is bounded, this follows directly.

iii) Comes directly from the definition of C'™ and the fact that 3*,_,(AB,)? = YI" E[©2|F,_,] —
0 from 1. B

iv) If g € C; there exist real numbers k, K such that |g(z)| < Kz?I{j;>k}, thus the conditional
Lindeberg condition implies g * ™ — 0.

C Knight’s Theorem

The following Theorem has been proved in Knight (1971). It allows to transform a vector of or-
thogonal square-integrable continuous martingales into a vector of independent Brownian motions
via a suitable time change.

Theorem C.1 Let M, ..., M, be orthogonal square-integrable martingales, and consider the time
changes:
inf|B;, B;|s >t if this is finite
Tty = | P Bl =t this 55 ] 1)
400 otherwise
Then the transformed variables:
_ | Bi(Ti(#)) if Ti(t) < oo
Xi(t) = { B;(00) + W;(t — [B;, Biloo) otherwise (C-2)

where W1, ... W, is an n-dimensional Brownian motion independent of X;, are an n-dimensional
Brownian motion relative to their generated filtration.
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Figure 1: Variance 62(r) obtained with the Fourier estimator (3.9) on 5,000
replications of 8,000 observations of the Vasicek model (3.30), with different
values of hy and k, and o = 10.5%, +/02/2k = 3%. Solid line: the gener-
ated variance 2. Dashed line: average estimates. Dotted lines: 5% and 95%
confidence intervals.
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Figure 2: Estimate of the diffusion coefficient o(r) on Jiang (1998) data set.
Solid line: Fourier estimate. Dashed lines: 5% and 95% confidence intervals.
Dotted line: estimate obtained with the parametric model (4.2). In the inset,
the time series of the yields on three-months T-bill under study, from January
1966 to January 1996.
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Figure 3: Estimate of the diffusion coefficient o?(r) on Stanton data set.
Solid line: Fourier estimate. Dashed lines: 5% and 95% confidence intervals.
Dashed-dotted line: Stanton estimate. Dotted line: estimate obtained with the
estimator (1.5) of Bandi and Phillips. In the inset, the time series of the yields

on three-months T-bill under study, from January 1965 to July 1995.
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Figure 4: Estimate of the diffusion coefficient o (r) on the full 1960-2003 data.
set. Solid line: diffusion coefficient of the yield of the 3-months Treasury Bill.
Dashed-dotted line: diffusion coefficient of the yield of the 10-year Treasury
Note (from 1962). Dashed lines: 5% and 95% confidence intervals. In the
inset, the time series under study.
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