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Abstract - This paper contributes to the task of classifying game forms from a structural point of view by 
studying properties of their concept-or Galoislattices. A characterization of those coalitional game forms that 
have topological closure systems is provided.It is also shown that CGFs with topological closure systems 
include additive effectivity functions and simple effectivity functions, but do not reduce to them, and that the 
resulting topologies are T0 only if the underlying CGF is ‘purified’. 
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This paper contributes to the task of classifying game forms from a structural
point of view by studying properties of their concept-or Galois- lattices. In
particular, we focus on those coalitional game forms that have topological closure
systems.
A coalitional game form (CGF) is a triple G =(N,X,E) where N is the

player set, X is the outcome set, and E : P(N) → P(P(X)) is a function. A
CGF G =(N,X,E) is said to be
∅-normalized if E(∅) = ∅
never empty if ∅ /∈ E(S) for any S ⊆ N
souvereign if there exists S ⊆ N such that P(X) \ {∅} ⊆ E(S)
exhaustive if X ∈ E(S) for any nonempty S ⊆ N
monotonic if for any S ⊆ T ⊆ N,A ⊆ B ⊆ X, A ∈ E(S) entails both

B ∈ E(S) and A ∈ E(T )
linear if for any S, T ⊆ N, E(S) ⊆ E(T ) or E(T ) ⊆ E(S)
purified if for any S, T ⊆ N, and A,B ⊆ X, E(S) 6= E(T ) and E−1(A) 6=

E−1(B)
simple if there existsW ⊆ P(N) such that for any S ⊆ N,A ⊆ X, A ∈ E(S)

iff A 6= ∅ and S ∈W.
Moreover, when both N and X are countable sets, a CGF G =(N,X,E) is

said to be additive if there exist positive probability measures p : P(N) → R,
q : P(X)→ R such that for any S ⊆ N,A ⊆ X, A ∈ E(S) iff p(S) > 1− q(A).
A CGF which is ∅-normalized, never empty, souvereign and exhaustive is

also said to be an effectivity function.
The concept lattice1 of G is defined as follows:
for any S ⊆ P(N) , A ⊆ P(X) posit

hE(S) = {A ⊆ X : A ∈ E(S) for all S ∈ S} and
iE(A) = {S ⊆ N : A ∈ E(S) for all A ∈ A} .

It is easily seen that (hE ,iE) is a Galois connection between (P(P(N)),⊆)
and (P(P(X)),⊆) i.e. for any S,T ⊆ P(N), and A,B ⊆ P(X),
i) if S ⊆ T then hE(S) ⊆ hE(T), and if A ⊆ B then iE(A) ⊆ iE(B), and

ii) (i= ◦h=) (S) ⊇ S,(hE ◦iE) (A) ⊇ A.
Now, consider

C(G) = {(S,A) ∈ P(P(N))× P(P(X)) : S = iE(A), and A = hE(S)} .
In the language of formal concept analysis (see e.g. Ganter and Wille(1999))

an element (S,A) of C(G) is said to be a concept of the contextG, with extent S
and intent A (the latter notions are amenable to straightforward dualizations).
The concept lattice of G (sometimes also referred to as its Galois lattice) is

L(G) = (C(G), >) where for any (S1,A1), (S2,A2) ∈ C(G)
(S1,A1) > (S2,A2) iff A1 ⊇ A2 (which is provably equivalent to S2 ⊆ S1),

and
(S1,A1) ∧ (S2,A2) = (iE(hE(S1 ∪ S2)),A1 ∩A2)
(S1,A1) ∨ (S2,A2) = (S1 ∩ S2,hE(iE(A1 ∪A2)).

1A lattice is a partially ordered set (L,6) such that for any x, y ∈ X there exist both a
greatest lower bound x ∧ y ∈ L and a least upper bound x ∨ y ∈ L of {x, y} . A lattice is
distributive if for any x, y, z ∈ L, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
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It is also well-known and easily shown that both (iE ◦ hE) : P(P(N)) →
P(P(N)) and (hE ◦ iE) : P(P(X)) → P(P(X)) are closure operators with
respect to set-inclusion (recall that a closure operator K on a preordered set
(Y,>) is a function K : Y → Y such that for any y, x ∈ Y : K(y) > y,K(y) >
K(x) whenever y > x, and K(y) > K(K(y)) ), and extents and intents of
concepts are precisely the closed elements -or fixed points- of (iE ◦ hE)and
(hE ◦ iE) respectively (i.e. (S,A) ∈ C(G) iff S = iE(hE(S)) and A =
hE(iE(A))) and comprise the (Galois) closure systems of CGF G.We shall
also denote (iE ◦hE)and (hE ◦iE) by KG and K∗G, respectively.
Since the Galois lattice of a CGF is made up of two dually isomorphic closure

systems as induced by two corresponding closure operators a natural question
immediately arises: under what circumstances are those closure operators topo-
logical?
The following definition is to be recalled here

Definition 1 A closure operator K on a Boolean2 lattice of sets (L,∩,∪) is
topological if it is both i) normal i.e. K(∅) = ∅ and ii) additive i.e. K(A∪B) =
K(A) ∪K(B).

Indeed, whenever a CGF happens to have topological closure operators, the
resulting closure systems define a topology on the player set and on the outcome
sets, respectively. The underlying CGF is then said to be topology-inducing ( a
notion that should not be confused with the more familiar notion of a topological
CGF or effectivity function which simply denotes CGFs whose outcome spaces
are endowed with a given topological structure (see e.g. Abdou,Keiding (1991)).

Definition 2 A CGFG is said to be N-topology-inducing (X-topology-inducing)
whenever KG ( K∗G) is a topological closure operator.

It is easily checked that for any ∅-Normalized CGF G, both KG(∅) = ∅
and K∗G(∅) = ∅. Thus, the topological nature of KG and K∗G depends in fact
solely on their ∪-additivity (or lack of it).
This note addresses the following issue: under what circumstances are the

closure operators KG = (iG ◦hG)and K∗G = (hG ◦iG) topological?
To start with, a class of topology-inducing CGFs can be immediately iden-

tified. Indeed, we have the following

Proposition 3 LetG be a linear CGF. Then its closure systems are topological.

Proof. Straightforward, because by definition the closure systems of a linear G
are chains. Hence, the join of two closed sets is a closed set.e.g. for any pair S,T
⊆ P(N) it must be the case that KG(S) ⊆ KG(T) or KG(S) ⊆ KG(T).Let

2A lattice (L,∧,∨)is distributive if for any x, y, z ∈ L : x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
bounded if has both a greatest element (denoted 1) and a smallest element (denoted 0),

and complemented if it is bounded and for any x ∈ L there exists y ∈ L such that x ∨ y = 1
and x ∧ y = 0.
A lattice is Boolean if it is both distributive and complemented.
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us suppose w.l.o.g. that KG(S) ⊆ KG(T). Therefore, KG(S) ∪ KG(T) =

KG(T).Since, as it is easily checked,KG(S∪T) =
\
{U ⊆P(N)) : U =KG(U) ⊇ S ∪T},

and KG(U) ⊇ U for any U ⊆ P(N), it follows that if one posits U = KG(T)
then U =KG(U) = KG(T) ⊇ S ∪ T.Now, let U0 ⊆ P(N) be such that
U0=KG(U

0) ⊇ S∪T: clearlyKG(U
0) ⊇ KG(T).Hence, KG(S∪T) = KG(T) =

KG(S) ∪KG(T), as required. A similar argument applies to K∗G.

Remark 4 It should be noticed that the foregoing Proposition entails that both
additive CGFs and simple CGFs as defined above are indeed topology-inducing
since -as it is easily checked- their concept lattices are chains (in particular, if
G is a simple effectivity function and G0 = (N,X,E) is an additive effectivity
function, then L(G) = (4,6), and L(G0) = (k,6) where k = {0, 1, .., h+ 1}
with h = # {S ⊆ P(N) : S =KG0(S)}).

In order to proceed, a few more definitions are to be introduced.

Definition 5 Let (h,i) be a Galois connection between (P(P(N)),⊆) and
(P(P(X)),⊆) and K = (i◦h) the closure operator on P(N) induced by (h,i).
Then, a K-closed set S -i.e. a fixed point of K- is
i) monogenic iff there exists B ⊆ X such that S = i({B})
ii) prime iff for any pair T,U of K-closed sets such that T ∩U ⊆ S, either

T ⊆ S or U ⊆ S
iii) meet-irreducible iff for any pair T,U ofK-closed sets such that T ∩U = S,

either T = S or U = S.

Remark 6 It is immediately checked that a prime closed set is also meet-
irreducible while the converse does not necessarily hold.

We are now ready to state the main result of this paper, namely:

Theorem 7 Let G = (N,X,E) be a monotonic CGF. Then KG is topological
iff G is ∅-normalized and the monogenic K∗G-closed sets are meet-irreducible
(and dually K∗G is topological iff G is ∅-normalized and the monogenic KE-
closed sets are meet-irreducible).

Proof. The thesis follows at once from a few facts and claims as listed below.
Fact. If L is a distributive lattice then for any x ∈ L, x is prime if and only

if it is meet-irreducible.
(This is a well-known fact about distributive lattices (see e.g. Grätzer(1998)).
Claim 1. If KG- or K∗G- is a topological closure operator then L(G) is a

distributive lattice.
Proof of Claim 1. First, recall that -as mentioned above- anyKG-closed set S

is an order filter of (P(P(N)),⊆) i.e. for any S, T ∈ S, if S ∈ S and S ⊆ T then
T ∈ S, by monotonicity ofG: hence,the closure system CG =
{S ⊆ P(N) : S =KG(S)} induced by KG is a subset of F(P(N)) the set of all
order filters of (P(N),⊆).
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Next, observe that -as it is easily checked- (F(P(N),⊆) is a distributive
lattice with inf=∩ and sup=∪.Since any closure system is ∩-closed, ∪-additivity
of KG makes the corresponding closure system asublattice of (F(P(N),⊆),
whence CG is a distributive lattice. The same argument applies to the dual
closure system C∗G.Therefore, by construction, L(G) is also a distributive lattice.
Claim 2. KG is topological iff G is ∅-normalized and any monogenic K∗G-

closed set is prime (and dually K∗G is topological iff G is ∅-normalized and any
monogenic KG-closed set is prime).
Proof of Claim 2. First, notice that KG = (iG ◦ hG) is ∪-additive iff for

any S,T ⊆ P(N) :
(∗) iG(hG(S) ∩hG(T)) ⊆ (iG(hG(S)) ∪ (iG(hG(T)).

Indeed, since KG is inflationary i.e. KG(S) ⊇ S for any S ⊆ P(N), it follows
that

KG is ∪-additive iff KG(S ∪T) ⊆ KG(S)∪KG(T) (and the same fact holds
true for K∗G).
Also, observe that, by antitonicity of hGand iG, for any S,T ⊆ P(N), and

A,B ⊆ P(X)
hG(S ∩T)) ⊇ hG(S) ∩hG(T), and iG(A ∩B)) ⊆ iG(A) ∩iG(B).

Moreover, for any S,T ⊆ P(N), and A,B ⊆ P(X),
hG(S ∪T) = hG(S) ∩hG(T)and iG(A ∪B)) = iG(A) ∩iG(B),

because hG(S∪T) ⊆ hG(S)∩hG(T)and iG(A ∪B)) ⊆ iG(A)∪iG(B)
by antitonicity of hGand iGrespectively, while for any A ⊆ X,A ∈ hG(S)∩

hG(T) entails A ∈ E(S) for any S ∈ S and A ∈ E(T )
for any T ∈ T, whence A ∈ E(U) for any U ∈ S ∪T (a similar argument holds
for iG).
Hence, (∗) follows, (and dually hG(B,C) ⊆ (hG(iG(A)) ∪ (hG(iG(B))).
Now, let us suppose that KG is ∪-additive and that A ⊆ P(X) is a mono-

genicK∗G-closed set i.e. there exists S ∈ P(N)
such that K∗G(A) = A =hG ({S}).
We have to show that A is prime. In order to prove that, consider any pair

B,C of K∗G-closed sets such that
A ⊇ B ∩C.Then,
iG(A) ⊆ iG(B ∩C), by antitonicity, or equivalently,

iG(A) ⊆ iG(hG(iG(B)) ∩hG(iG(C))).
It follows- from (∗)- that

iG(A) ⊆ iG(hG(iG(B)) ∪iG(hG(iG(C))).
But iG = iG ◦ hG ◦ iG(and hG = hG ◦ iG ◦ hG) by an elementary

property of Galois connections.
Hence, iG(A) ⊆ iG(B) ∪ iG(C). Since, by definition of A, iG(A) =

iG(hG {S}) = KG({S}) ⊇ {S} ,
it follows that S ∈ iG(B)∪iG(C). Let us assume w.l.o.g. that S ∈ iG(B),

that is {S} ⊆ iG(B).
Then, by antitonicity of hG, B =hGiG((B)) ⊆ hG({S}) = A. Therefore,

A is indeed prime.
Conversely, let us suppose that any monogenic K∗G-closed set is prime.
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Consider now two K∗G-closed sets A,B, and let S ∈ iG(A ∩B). Posit
C = hG({S}).
Since hG = hG ◦iG ◦hGit follows that
K∗G(C) = hG(iG(C)) = hG(iG(hG({S}))) = hG({S}) = C
hence C is a monogenic K∗G-closed set.
Moreover, by antitonicity of hG, C ⊇ iG(hG(A ∩B)) = A ∩B (recall

that the meet of two closed set must
be a closed set). Thus, C ⊇ A or C ⊇ B since C is prime, by hypothesis.

Let us assume w.l.o.g. that C ⊇ A.
Then, iG(C) ⊆ iG(A) by antitonicity ofiG. Therefore, {S} ⊆ KG({S}) =

iG(hG({S})) = iG(C) ⊆ iG(A).
It follows that

(∗∗) iG (A ∩B) ⊆ iG(A)∪ ⊆ iG(B).
Notice, however, that (∗∗) entails (∗) above since hG = hG◦iG◦hGimplies

that hG-images are in fact K∗G-closed sets. As a result, KG turns out to be
∪-additive, as required.

The class of topology-inducing CGFs as characterized above include, but
does not reduce to, the class of linear CGFs. To see this, consider the following
example of a CGF with a topological closure system, which is not a chain.

Example 8 Let G = (N,X,E) with
N = {1, 2, 3, 4, 5, 6} ,X = {x0, x1, x2, x3, x4, x5, x6} ,
and E defined as follows. For any S ⊆ N,and A ⊆ X, A ∈ E(S) iff one of

the following clauses is satisfied:
i) either S ⊇ {1, 3} or S ⊇ {1, 5}, and (B ⊇ X \ {x1, x3} ,
or B ⊇ X \ {x1, x5}, or B ⊇ X \ {x0, x1} , or B ⊇ X \ {x0, x2} .

ii) either S ⊇ {2, 4} or S ⊇ {2, 6}, and (B ⊇ X \ {x2, x4} ,
or B ⊇ X \ {x2, x6}, or B ⊇ X \ {x0, x1} , or B ⊇ X \ {x0, x2} .

iii) S = N and B 6= ∅.
iv) S 6= ∅ and B = X.

It is easily checked that L(G) = 2⊕ 22⊕2, hence definitely not a chain.
However the only meet-reducible KG-closed set is
S = {S ⊆ N : S ⊇ {1, 3} , or S ⊇ {1, 5} , or S ⊇ {2, 4} , or S ⊇ {2, 6}}, which

is not monogenic. Therefore, L(G) amounts to a topological closure system.

Remark 9 It should be noticed that, generally speaking, closure systems of
topology-inducing CGFs do not satisfy even T0.the weakest of classical separation
axioms. However, when a CGF is purified then the resulting topological closure
systems is T0, e.g. for any pair S, Tof distinct subsets of N there exists a KG-
closed set U such that S ∈ U,T /∈ U.This is so, because when G = (N,X,E) is
purified, for any distinct S, T ⊆ N , hG({S}) 6= hG({T}) .
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