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Abstract - In this paper we discuss the estimation of the diffusion coefficient of one-factor models
for the short rate via non-parametric methods. We test the estimators proposed by Ait Sahalia
(1996a), Stanton (1997) and Bandi and Phillips (2003) on Monte Carlo simulation of the Vasicek
and CIR model and show that all estimators, especially that proposed by Ait-Sahalia (1996a), are
problematic for values of the mean reversion coefficient typically displayed by interest rate data.
Moreover all estimators depend crucially on the choice of the bandwith parameter. Data analysis
shows that the estimators lead to different estimates on the data set analyzed by Ait-Sahalia (1996a)
and Stanton (1997); moreover we show that the two data set are inherently different.
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1 Introduction

In one-factor models of the term structure the “factor” is invariably taken as the short rate:

dry = p(ry)dt + o(ry)dZ. (1)

A number of different models for the short rate have been proposed and tested (Chan et al.,
1992), which parameterize the drift and diffusion coefficients pu(r;), o(r;) through the specifica-

tion

dry = (a + bry)dt + or]dz (2)

where, for example, v = 0 corresponds to the Vasicek (1977) Gaussian model and v = 1/2 to
the Cox et al. (1985) (CIR) square root model. A number of estimators for this latter process
are known (Bianchi et al., 1994).

Recently a number of different non-parametric estimators of the diffusion coefficient have
been proposed. Ait-Sahalia (1996a,b) has proposed a non-parametric estimator of the function
o(r), based on the a-priori parametric specification of the function p(r). Stanton (1997) has
proposed an approximate non-parametric estimator for both the functions p(r) and o(r). Bandi
and Phillips (2003) proposed an estimator very similar to that of Stanton. These estimators are
based on the non-parametric estimation of the conditional density of the short rate. Stanton
showed that, as the sampling frequency increases, his estimator converges, at a speed depending
on the order of the discrete approximation used, to the infinitesimal drift and diffusion functions.

The advantage of the non-parametric specification is clearly its flexibility. When applied
to actual interest rate data, these non-parametric estimators produce functions p(r) and o(r)
that appear non linear in r, and depart from benchmark parametric models such as the CIR
square root model. This is evident from Ait-Sahalia (1996a) and Stanton (1997) applications.
Chapman and Pearson (2000) used Monte Carlo simulation to investigate the properties of the
Stanton estimator for the drift and diffusion function, as well as a drift estimator developed
using Ait Sahalia’s approach. Adopting the CIR model as the null hypothesis, they conclude
that the non-linearity of the drift function u(r) estimated through the non-parametric model
may not be indicative of a truly non-linear underlying model. They conclude however that
the Stanton (1997) diffusion estimator is capable of identifying with some precision the square
root form of the non-linearity in the volatility parameter. No analysis is carried out of the Ait

Sahalia volatility estimator.



In this paper we examine the Ait Sahalia non-parametric diffusion estimator. We show
that, for realistic parameters values, the estimated volatility will be a non-linear function of
the interest rate even when the actual volatility is a constant. In contrast, the Stanton (1997)
estimator appears to be reasonably accurate. Furthermore we show that the AS estimator is
biased in a manner that accounts for much of the non-linear behavior of the estimated variance
in the constant variance case. Finally, we show that using actual (positive) interest rate data,

the approach may result in negative estimates of variance.

2 The Ait-Sahalia estimator

2.1 Theory

The Ait-Sahalia estimator (AS) is based on the fact that, if a variable r(¢) follows a diffusion
described by:
dr(t) = p(r)dt + o(r)dW(t) (3)

in which W (t) is a standard Brownian motion and u(r) and o(r) are such that a unique solution

of the stochastic differential equation (3) exists, then:

, 2/T w(z)m(z)dz
) = == (@)
where 7(r) is the unconditional distribution of r under the diffusion (3). Given two of the
three functions u(r),o(r), 7(r), equation (4) allows the third to be obtained via integration or
differentiation.

Ait-Sahalia (1996a) suggests specifying the drift pu(r) as an affine function of r and then
estimating the conditional variance o?(r). Ait-Sahalia (1996a) also suggests replacing 7(r) in
(4) with an estimate derived using a non-parametric approach (Scott, 1992). Suppose we have
T observations of r, denoted by #;,7 = 1,...,T. Then the non-parametric estimator of 7 (r) is

given by:

() = Tzs gK (r ;T) (5)

where K is a kernel function that depends on h,. A typical choice of the kernel, suggested by
Ait-Sahalia (1996a), is the Gaussian kernel,

K(z) = e 2. (6)




For the Gaussian kernel the optimal smoothing parameter is given by
hy = h6T~3, (7)

where 6% = Var[#;] and h = 1.06 (Scott, 1992, p.131)*. Tt is widely recognized that the choice of
the kernel function is much less important than the choice of an appropriate smoothing param-
eter (Scott (1992) p.133). Although nominally a “non-parametric” approach, the bandwidth
hs (i-e. the scalar h) is in fact a parameter that has to be appropriately selected.

Under these assumptions, the Ait-Sahalia estimator is given by:

%(r) = 2 é /_OTO M(S)KC;S&) -
()

with K(z) given by (6) and hs by (7).

2.2 Nonparametric estimate of the density of persistent data

While much is known about the asymptotic behavior of non-parametric estimators, their finite
sample properties are largely unknown and their robustness, especially with respect to the choice
of the bandwidth parameter, h, is suspect. For the AS estimator, we show that estimating the
unconditional density of data, the denominator in (4), is particularly critical.

To study the small-sample properties of the AS and other estimators we use a Monte Carlo
approach and generate sample paths for the interest rate that follow an Ornstein-Uhlenbeck
(‘Vasicek’) process as in the Vasicek (1977) model:

dr(t) = k(o — r(8))dt + odW (1). (10)

For this model the diffusion coefficient is, of course, constant and equal to 2. The range of
possible interest rates is (—oo,00) and the unconditional density function, 7(r), is a Normal

distribution with mean o and variance 02/2k. Although the Vasicek process might be viewed

! The optimal smoothing parameter is chosen with reference to the Mean Integrated Square Error (MISE) of

the density estimator, f , compared to a reference density, f, given by:
. 2
MISE = / (F) - 1)) (8)
¢

Different reference densities imply a different optimal smoothing parameter. See Scott (1992) p. 142 for the

conversion ratio of the smoothing parameter under different reference densities.



as an unrealistic model of the short-term rate — because, for example, it admits negative values
— it is quite adequate to illustrate our first point that, when the degree of mean reversion is
(realistically) low, reliable estimating the unconditional density is very difficult with persistent
data.

We replicate 1,000 paths of the Vasicek diffusion model (10)for a range of values for &, the
mean reversion coefficient, and N, the number of observations. In each case we set o = 8.3%
and 0 = 0.1. For each sample path we estimate the mean and the standard deviation of r(¢)
and, as N — +o00, these should converge to o and o/ V2k respectively, i.e. the mean and
standard deviation of the unconditional distribution. Table 1 reports the average values of the
mean and standard deviation of r(t) for the replications, along with confidence bands and shows
that the rate of convergence of the sample estimates can be very slow when mean reversion
is low. In particular, the standard deviation of the unconditional distribution is significantly
underestimated in small samples. For example with £ = 0.05 and ¢ = 0.01 the standard
deviation of the unconditional distribution is 3.16%. But with N = 10,000 observations, the
estimated standard deviation has a mean of 1.79% and a 95th percentile of 2.781%. The
underestimation is even larger at N = 5,000, and still appreciable at N = 50,000, even with
k = 0.5. On the other hand, with high mean reversion (k = 5) the estimates are more reliable.
With N = 10,000 observations, for example, and k& = 5, the 5* and 95" percentiles of the
estimate of the standard deviation are 0.289 and 0.339 when the true value is 0.312. Moreover,
with a small sample size, even the mean is poorly estimated. In the case of the mean, unlike
the standard deviation, the estimate is unbiased but the dispersion of the estimates can be very
large. Obviously, since densities are constrained to be integrated to one, if the unconditional
standard deviation is systematically underestimated, the estimated nonparametric density will
have a peak at the estimated mean (which will be unlikely to be the true mean) and will have
thinner tails than the true unconditional distribution. The problem of estimating kernels with
persistent data has been also studied by Pritsker (1998), who finds out that “inference based
on the asymptotic distribution of kernel density estimators can be very misleading”.

These results show how estimates of the unconditional density of r(¢) vary with the length
of the data series and the degree of mean reversion. Where, in the range we have considered,
do actual data fit? First, even with daily data, 5,000 observations represent around 20 years
of data, 10, 000 observations 40 years and 50, 000 observations an entirely unrealistic 200 years.
The sample size in Stanton paper is N = 7,795, and to our knowledge is the largest ever used.
AS has N = 5,505 observations. Thus AS’s sample size is approximately equal to our “small”

sample and Stanton’s lies between our “small” and “medium” sized samples. Both samples,



however, are “large” in an economic sense, however, in that both rely on model stability pa-
rameters for a period of 20-30 years. This is particularly worrisome in the case of the mean
parameter, o, and many authors from Brennan and Schwartz onwards have advocated a two (or
more) factor process for the short rate in which the mean itself changes stochastically (Bren-
nan and Schwartz, 1980; Dai and Singleton, 2000) This misspecification is a further potential
problem for the non-parametric estimator.

The second parameter that strongly affects the reliability of small sample estimates of the
unconditional density of 7(t) is the degree of mean reversion and Table 2 reports some estimates
of the mean reversion parameter, k, from four studies in the literature. Three of these report
estimates in the range 0.1 — 0.2; the exception is the study by Ait-Sahalia (1996a) who reports
a value of 0.978. AS uses a daily series of rates on 7-day Eurodollar futures. These data have
some features, discussed below, that cast doubt on the reliability of this high estimate of &

In summary, our conclusion from this part of the analysis is that the likely value of £ is in
the region of 0.1-0.2 and that, in this case, even with sample sizes of 5,000 and 10,000, reliable

estimation of the unconditional density is almost impossible.

2.3 Performance of the estimator

In this section we carry out a Monte-Carlo analysis of the AS estimator (12) when the data
is generated by the Vasicek model. Initially we assume that the drift is known, that is, in
computing the estimator of o2(r) we use the values of k£ and « used to generate the simulated
samples. An advantage of using a constant conditional variance is that in this case, with a
Gaussian kernel, we can easily find an analytic expression for the estimator of o%(r) in (9).
Indeed, in the case of the Vasicek model (10), it is straightforward to show that the Ait Sahalia

estimator has the form:?

T ~
hoV21 S k(o — 7) l1 + Erf (T — ”)]
6%(r) = 2kh? + = vah

. (12)

_(r—ip)?

T
Z e 2h2

t=1

From equation (7), as the number of observations increases (I" — oo0) and if the second
moment of the unconditional distribution is finite, then h; — 0 and the first term on the right
2The function Erf(zx) is defined as:

Erf(z) = % /0z e Vat (11)
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Figure 1: Numerator with Ait-Sahalia parameters conditioned on r = 8% (left) and r = 18%
(right).

hand side of (12), a constant, goes asymptotically to zero. The asymptotic estimator is then

given by:

hs\/ﬂték(a — ) [1 +Erf (7;/;}2)]

(13)

a(r) = 711_1)20 T e_%
t=1

However, in any finite sample, the conditional variance estimator (12) not only displays sampling
error but, in the case of the Vasicek model when the numerator may become negative, is not even
guaranteed always to be positive. The two panels of Figure 1 show the behavior of the numerator
as a function of r(t) for h = 4, conditioning on r = 0.08 and r = 0.18 respectively, using
the FGLS parameter values estimated by Ait-Sahalia (1996a). As the estimated conditional
variance will be approximately proportional to the expected value of the numerator under the
unconditional distribution of the interest rate r(t), it is clear that the estimated conditional
variance may become negative under Ait-Sahalia’s method.

Figures 2,3,4 show, respectively, the true density, the numerator in (4) and the true variance
o?(r) together with their estimates computed from a single simulated series of size N. We show
the results for values of N between 5,000, i.e., approximately twenty years of daily data, and
5,000,000, i.e., approximately 20,000 years of daily data. By using a single simulation, we study
the convergence of the estimator as N — oo.

In the previous subsection we showed that with low mean reversion the variance of the

unconditional distribution is systematically underestimated and mean poorly estimated. These
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deficiencies are clearly illustrated in Figure 2. For low and average mean reversion we obtain
reliable estimates of the density only for N = 50,000 or larger. FErrors in estimating the
marginal density can have a dramatic effect on the estimate of the numerator, as illustrated
in Figure 3, again, especially with low or average mean reversion. This, in turn, affects the
variance estimate which is very poor for small sample sizes (Figure 4).

The particular case for £ = 0.05, N = 5,000, at the bottom-left corner of Figures 2,3,4
is worth noting. Here, in the center of the distribution, the density is overestimated (Figure
xx) and the numerator underestimated. These two effects combine to produce substantial
underestimation of the variance. Asymptotically, the estimates are quite good but, for low
mean reversion (k = 0.05), only for values of N larger than around 500,000. In contrast, for
high mean reversion, which unfortunately is not a feature of the data, we obtain reasonable

estimates of the density, numerator and variance even in small samples.
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Figure 2: Non-parametric estimates of the density (dashed line) on a single simulation of the
Vasicek model (10) of length N, for different values of N, as displayed, with a = 8.3%, o = 0.1,
h = 1.06 and different levels of mean reversion:k = 5 (top row), £k = 0.5 (central row) and

k = 0.05 (bottom row). For comparison, the true density is shown (solid line).
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Figure 3: Non-parametric estimates of the numerator in the Ait-Sahalia estimator (dashed
line), on a single simulation of the Vasicek model (10) of length N, for different values of N, as
displayed, with o = 8.3%, o = 0.1, h = 1.06 and different levels of mean reversion:k = 5 (top
row), k = 0.5 (central row) and k& = 0.05 (bottom row). For comparison, the true numerator is

shown (solid line).

2.4 Small sample properties

We now turn to compute the small sample properties of the estimator. The charts in Figure 5
were computed using 1,000 replications of samples paths with N = 6, 000. Here and throughout
all the paper, we draw the starting point for each sample path from the (true) unconditional
distribution. The charts in the first column of Figure 5 show the mean value of &, together
with the 5% and 95% confidence limits, for values of k of 5.0 (first row), 0.5 (second row) and
0.05 (third row). In the first column, the estimator is computed using the true values of k& and
« (as the theory requires). For the charts in the second column we use the true value of £ and
an estimated value of k. For the third column, both estimated values of both parameters are
used.

Some of the results are striking. For relatively £ = 5.0 the performance of the estimator,
even with IV as “low” as 6,000, is quite good and, interesting, the performance actually improves
when estimated values of £ and « are used in place of the true values. The improvement is

particularly marked when the true value of « is replaced by it’s estimate and the reason for this



is that, by using the estimated value the mean of the unconditional distribution and the sample
mean coincide and the numerator and denominator of the estimator become more “consistent”.
For £ = 0.5 and 0.05, however, the performance of the estimator is quite poor even when
estimated values of £ and « are used. In particular, for large values of r the mean is increasing

in 7 even though the true value of r in this case is, of course, constant.

2.5 The choice of the bandwith parameter h

A critical issue in any nonparametric study is the choice of the bandwith parameter h and
the literature provides no widely accepted recipe for this choice. In this section, we study the
dependence of the Ait-Sahalia estimator on A.

Figures 6 and 7 show the results of simulations of the Vasicek models with the same pa-
rameters as in Figure 5, but with h = 3 and h = 5 respectively. There are two main reasons
for considering a higher value of h. First, it will lead to a smoother estimate of the density in
the tails of the distribution where fewer observations are available. Second, we ameliorate the

problem of underestimating & when h; is selected as in equation (7); since we know that the
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Figure 4: Ait-Sahalia estimator of the variance (dashed line), on a single simulation of the
Vasicek model (10) of length N, for different values of N, as displayed, with a = 8.3%, o = 0.1,
h = 1.06 and different levels of mean reversion:k = 5 (top row), £ = 0.5 (central row) and

k =0.05 (bottom row). For comparison, the true variance is shown (solid line).
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Figure 5: Average Ait-Sahalia estimator computed on 1,000 simulation of the Vasicek model
(10), with o = 8.3%, 0 = 1/0.03k, h = 1.06, sample size N = 6,000 and different levels of
mean reversion: k£ = 5 (top row), £k = 0.5 (central row) and k£ = 0.05 (bottom row). In the
first column, we use the true values of o and k when estimating o?(r); in the second column,
we use the true value of £ and estimate « from data; in the third column, we estimate both &
and « from data.The average estimate is the dashed line, while the true value is the solid line.
The dotted line show 95% and 5% confidence limits.

estimate & will be smaller than the actual value, we heuristically increase h.

Figures 6 and 7 show that the estimator is highly sensitive on the value on A in small samples
(N = 6,000). In particular, for high and moderate mean reversion the higher values of h lead
to an upward bias. Note that in the expression (12) h, is a scale factor for the estimator of
the variance in small sample. As expected, by increasing h we reduce the explosive behavior
for large values of r, since the estimate of the density in the tail is smoother. If we repeat the

experiment with larger sample size, the estimator converges slowly to the generated variance.

2.6 Performance when short rate follows the CIR Process

It is possible that our results so far are specific to the Ornstein-Uhlenbeck case when the

variance of the short rate is not a function of its level. In this section we therefore repeat the
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Figure 6: As in Figure 5, but with h = 3.

analysis just described but under the assumption that the true model describing the evolution
of the short rate is the Cox et al. (1985) model (CIR):

dr(t) = k(a — r(1))dt + o\/r(t)dW (2). (14)

As before we compute 1,000 sample paths for the short rate, each of length 6,000, and, in
Figure 8, show the mean value of &, together with the 5% and 95% confidence limits. The
parameter values are given in the caption. The results in the three columns are for values of
the bandwidth parameter H of 1.06, 3.0 and 5.0.

Once again, the results are not encouraging. For Ah = 1.06 the estimator works reasonably
only when there is only a low level of persistence in the data, i.e. for high k. The results for
k = 0.5 and 0.05 are, as in the previous case, poor.

In summary, the small sample performance of the Ait-Sahalia estimator turns is poor except
in the case when the short rate displays a very high degree of mean reversion. In this case it is
possible to obtain a reasonable estimate of the marginal density. However, in the empirically
relevant case when the degree of mean reversion is low, the estimator does not produce reliable
estimates of the variance and can easily suggest the presence of a non-linear relation between

the variance of interest rates and their level when, in fact, no such relation exists.
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Figure 7: As in Figure 5, but with h = 5.

3 Analysis of the Stanton Estimator

The estimator proposed by Stanton (1997) differs from the Ait-Sahalia estimator and, in par-
ticular, does not require that the drift is known. Stanton (1997) shows that, given discretely

sampled data, the drift and diffusion coefficients in (3) may be represented as:

1

p(re) = KEt[TH—A -] +0(A) (15)
O(Tt) = \/%Et[(THA — Tt)2] + O(A) (16)

Disregarding higher order terms, the drift and diffusion coefficients for a given level of r may
be approximated, as the conditional expectations of (15) and (16)These expected values may
be computed using the non-parametric estimate of the conditional density, which is obtained

via the Kernel estimator, as previously described:

T—1 A
> (P —7)K (T Tt)
t=1 hs
£
t=1 hs

A~

f(r) = Elrgq —mifry =r] =

(17)

12
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Figure 8: Average Ait-Sahalia estimator computed on 1,000 simulation of the CIR model (14),
with o = 8.3%, 0 = 1/0.005k/«, sample size N = 6,000 and different levels of mean reversion:
k =5 (top row), k = 0.5 (central row) and & = 0.05 (bottom row), and bandwith parameter:
h = 1.06 (first column), h = 3 (second column) and A = 5 (third column). The average estimate
is the dashed line, while the true value is the solid line. The dotted line show 95% and 5%

confidence limits.

s T—ft
ZTt+1—7°t h
6°*(r) = El(ris1 — )il = 1] = = -
ZK 7"—7"t
2 (5

S

(18)

The variance estimator suggested by Stanton (18) has the attractive feature that the same
non-parametric estimator appears in both the numerator and the denominator and so errors
arising from this source may offset at least to some extent. Even hough both the numerator
and the denominator (which is the same as that for Figure 2) are not well approximated in
small samples, the bias is, in this case, in the same direction and so cancels out in the ratio.
As a consequence the variance is well estimated even in small samples.

Our results confirm that this is indeed the case. Figure 9 shows the estimate the numerator
in (18) and of the estimated variance from a single simulation of the Vasicek model (10) with
the same parameters as used previously. As before, the single path simulation is used to test
the properties of the estimator as the sample size goes to infinity.

In the Ait-Sahalia estimator the Kernel estimate of the marginal density also appears but
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Figure 9: Non-parametric estimates of the numerator (left) and variance (right) for the Stanton
estimator (dashed line), on a single simulation of the Vasicek model (10) of length N, for
different values of N, as displayed, with o = 8.3%, ¢ = 0.1, h = 1.06 and different levels
of mean reversion:k = 5 (top row), k¥ = 0.5 (central row) and k£ = 0.05 (bottom row). For

comparison, the true numerator is shown (solid line).

only in the denominator and so, in this case, there is no scope for errors to offset as in the
Stanton estimator.

Even in the case of the Stanton estimator, however, h is still a crucial parameter that needs
to be fine-tuned. Figure 10 shows that, in the case of the Vasicek model, the performance of
the estimator is improved substantially by increasing h: this causes the width of the confidence
intervals to shrink without introducing a bias. Things are slightly different when the Stanton
method is used to estimate variance for data generated by the CIR model (14). The results are
shown in figure 11 which shows that, while the Stanton estimator perform much better than
the Ait-Sahalia estimator, for larger values of h (3.0 and 5.0) small biases arise for both low

and high values of r. 3

3Stanton uses h = 4
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Figure 10: Average Stanton estimator computed on 1,000 simulation of the Vasicek model (10),
with o = 8.3%, 0 = V/0.03k, sample size N = 6,000 and different levels of mean reversion:
k =5 (top row), k = 0.5 (central row) and £ = 0.05 (bottom row), and bandwith parameter:
h = 1.06 (first column), h = 3 (second column) and A = 5 (third column). The average estimate
is the dashed line, while the true value is the solid line. The dotted line show 95% and 5%

confidence limits.
4 Analysis of the Bandi-Phillips estimator

The estimator proposed in Bandi and Phillips (2003) is the following:
1 % ]2
— 7“ tig+l = T
mZ ]_0 WJ J

2 (57)

tz’,O = 1nf{t 2 0: |ft—fz‘ S 85},

5’2(7‘) — = (19)

where ?; ; is a subset of indices such that

and
tij =inf{t > t;; +1: |7 — 7] <&},
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Figure 11: Average Stanton estimator computed on 1,000 simulation of the CIR model (14),
with a = 8.3%, o0 = 1/0.005k/«, sample size N = 6,000 and different levels of mean reversion:
k =5 (top row), k = 0.5 (central row) and £ = 0.05 (bottom row), and bandwith parameter:
h = 1.06 (first column), h = 3 (second column) and A = 5 (third column). The average estimate
is the dashed line, while the true value is the solid line. The dotted line show 95% and 5%

confidence limits.

m; is the number of times that |f; — 7;| < &, and &, is a parameter to be selected*. Looking
at expressions (18),(19), we can see that the difference between Stanton and Bandi-Phillips
estimators is that, while the Stanton estimator weights the observation r; by the quadratic
variation at time ¢, the Bandi-Phillips estimator weights the observation r; with the average
quadratic variation of all observation which are “close” to r.

As for the previous estimators, we implement the Bandi-Phillips method on simulated paths
of the Vasicek and CIR model. We use £, = 1.5% as suggested in Bandi (2002). Figures 12
and 13 show the results for the Vasicek and CIR models respectively. The performance of the
Bandi-Phillips and Stanton estimators are almost identical with the errors from the former just

slightly lower.

4See Bandi and Phillips (2003) for details.
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Figure 12: Average Bandi-Phillips estimator computed on 1,000 simulation of the Vasicek
model (10), with o = 8.3%, 0 = v/0.03k, sample size N = 6,000 and different levels of mean
reversion: k =5 (top row), k = 0.5 (central row) and & = 0.05 (bottom row), and bandwith
parameter: h = 1.06 (first column), A = 3 (second column) and A = 5 (third column). The
average estimate is the dashed line, while the true value is the solid line. The dotted line show
95% and 5% confidence limits.

5 Data analysis

In this Section, we turn to an analysis of the data used in Ait-Sahalia (1996a) and Stanton
(1997).

The data used in Ait-Sahalia (1996a) consist of the seven-day Eurodollar deposit rate from
June 1, 1973 to February 25, 1995, a total of 5505 daily observations. Stanton (1997)’s data
span an even longer period, from January 1965 to July 1995, and consist of daily yields on
the three-month U.S. Treasury Bill, a total of 7975 observations. The time series of these two
datasets are shown in Figure 14 and, even from visual inspection, it is clear that the two data
set are very different. The Ait-Sahalia data appears much more volatile since it has many
“spikes” which are typical of very short-term interest-rates. Indeed, Duffee (1996) suggests
that rates on instruments with less than three months to maturity should not indeed be used
for these purposes since they have too much idiosyncratic variation.

To implement the Ait-Sahalia estimator, the drift function has to be assumed. We follow

17



h=1.06 h=23

O.02

k=5

0.015
O.01
0.005

\HW\H‘HH‘HH‘\H

LU‘HH‘HH‘HH‘\H

—2
x 10

O.2

©.15

k=0.5

O.1

0.05

T HH‘HH‘HH‘H\

HU‘HH‘HH‘HH‘H\
\\»&LHH‘HH‘HH‘H\

—3
=x 10

o.2
O.15

k=0.05

O.1

[ \v\‘u\_\iw,}uiu(uw-‘\ TT
T \J\_L\L,‘LuL‘-LH\ ‘ TTT
[ \'\’\‘ULU{J_LHH‘H T ‘ TTT

0.05

Figure 13: Average Bandi-Phillips estimator computed on 1,000 simulation of the CIR model
(14), with a = 8.3%, o0 = 1/0.005k/«, sample size N = 6,000 and different levels of mean
reversion: k =5 (top row), k = 0.5 (central row) and & = 0.05 (bottom row), and bandwith
parameter: h = 1.06 (first column), A = 3 (second column) and h = 5 (third column). The
average estimate is the dashed line, while the true value is the solid line. The dotted line show
95% and 5% confidence limits.

Ait-Sahalia (1996a) and choose a linear specification p(z) = k(a—x). The parameters k, o must
be estimated from the data and may be obtained in a number of ways. In Table 3 we report the
parameter estimates obtained from Ait-Sahalia data using a number of alternative econometric
methods. In the Table, OLS denotes Ordinary Least Squares regression, GLS denotes the use
of a Cochrane-Orcutt correction for autocorrelation of the residuals and FGLS* denotes the
method used by Ait-Sahalia. This is a two-stage procedure where the non-parametric variance
function is used to weight observations. This dataset displays strong mean reversion.

We have estimated the conditional variance function on the Ait-Sahalia dataset using the
Stanton and Bandi-Phillips methods and also using the Ait-Sahalia method with a linear drift
specification. The two panels on the left of Figure 15 show the estimated variance function
under the three methods and with two different bandwidths, A = 1.06 (the Gaussian optimal
bandwith) and A = 4 (that used by Stanton). While the Stanton and Bandi-Phillips estimators

give fairly similar results, the Ait-Sahalia estimator gives a larger variance for low interest rates
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Figure 14: The time series of data used in Ait-Sahalia (1996a) (top) and Stanton (1997) (bot-

tom).
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Figure 15: Estimates on data

and a smaller variance for high interest rates than the other estimators. All three estimators

give smoother estimates for larger values of h.
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We have also attempted to apply all three methods with the dataset used in Stanton
(1997). However, when the mean reversion parameters, which are needed to apply the Ait-
Sahalia method, were estimated on this dataset, it became apparent that the data are close
to non-stationary. The OLS autoregressive coefficient was 0.998998 which translates into a &
of —10g(0.998996) x 255 = 0.25615. The absence of the spikes that are present in the 7-day
rate used by Ait-Sahalia is almost certainly responsible for the lower estimated intensity of the
mean reversion in this case. The estimated parameters were are reported in Table 4.

The two panels on the right of Figure 15 show the estimates for the Stanton (1997) dataset.
With the low level of estimated mean reversion, it was impossible, using the Ait-Sahalia method,
to obtain meaningful conditional variance estimates with A = 1.06 and for rates larger than
15%. This is consistent with the results of our Monte Carlo simulations which show instability
in the Ait-Sahalia estimator when mean reversion is low. With larger values of h, all three
estimators appear to be more stable. It is worth noting that, even though they span more or
less the same period, for some values of r, the two data sets give rise to estimates of variance
that differ by an order of magnitude. It is possible that this simply reflects the difference in
the maturity of the two rates but, in our view, it is more likely to result from the presence of
large spikes in the Ait-Sahalia data and their relative absence in the Stanton data.

It is clear that the conditional variance estimated by, on one hand, the Stanton and Bandi-
Phillips methods and, on the other, the Ait-Sahalia method, differ substantially when the
number of observations are available for the estimation is low and, in particular, for high values
of the interest rate (say, above 12%). We also not that, as pointed out above, using the Ait-
Sahalia technique, the estimated conditional variance may be negative. This occurs with the
Stanton dataset and a bandwidth parameter of h = 1.06 when the interest rate on which the

estimate is conditioned is large.

6 Conclusions

Our conclusions regarding the reliability of non-parametric estimators of the diffusion coefficient
for the short rate are not encouraging. With the number of observations that is likely to be
available, each of the three methods we have investigated — Ait-Sahalia, Stanton and Bandi-
Phillips — may produce apparent non-linearities in the relation between conditional variance
and the level of rates that are spurious. Applying the methods to data in which the conditional
variance is in fact constant, we find that all three methods may, for a single time series of

5,000 observations (i.e., five years of daily data), produce a pattern of conditional volatility
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that appears strongly non-linear. We find the Ait-Sahalia method to be particularly prone to
this problem but the problem also arises with the other two methods.

We also test the methods when the short rate is generated by the CIR process and find that,
when the data are are persistent, i.e., exhibit low levels of mean reversion, both the Stanton
and Bandi-Phillips methods are biased in the tails. This problem arises because, when the
data are persistent, it is effectively impossible to estimate the density non-parametrically with
sample sizes that are at all realistic. We also find that, for all three “non-parametric” methods,
the choice of bandwidth remains an important parameter that needs to be determined.

Finally, although they have a substantial overlap, the datasets used by Ait-Sahalia and Stan-
ton have entirely different properties and give rise to quite different estimates of the conditional

variance of interest rates.
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Table 1: We simulate sample paths of N observations of the Vasicek model (10), with
a = 83%, o = 01, r(0) = 8.4387% for different values of k£ (5,0.5,0.05) and
N (5000, 50000 ,500000). The Table shows the average estimated mean and standard de-
viation on the simulated paths. Superscripts and subscripts show 95% and 5% confidence
limits respectively. The true value of standard deviation is displayed in brackets, the true value

of mean is 8.3%.

N=5,000
mean (%) standard deviation (%)
k=50 8.349:02 3.12347 (3.16)
k=05 8.735%1 8.615L35 (10.0)
k = 0.05 10.29%:33 14.02%7* (31.6)
N=10,000
mean (%) standard deviation (%)
k=50 8.3288 3.14339 (3.16)
k=05 8.5313:2 9.241152 (10.0)
k = 0.05 10.29%:33, 1792181 (31.6)
N=50,000
mean (%) standard deviation (%)
k=5.0 8.318:23 3.15327 (3.16)
k=05 8.3710.54 9.811%9% (10.0)
k =0.05 9.02%% 14 ¢ 27.13637 (31.6)
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Table 2: Estimate of the mean reversion parameter k in the literature.

Paper

Ait-Sahalia (1996a)
Chan et al. (1992)
Andersen and Lund (1997)

Durham (2003)

11

Estimate

0.978

0.1779

0.173

0.1875

0.1049

0.1056

Model

dr = (a+ kr)dt + o(r)dW (t)

dr = (a+ kr)dt + or"dW (t)

stochastic volatility

dr = (a+ kr)dt + /B1 + BordW (t)

dr = (a + kr)dt + B1rP2dW (1)

dr =

(@ +

\/B1 + Bar + BarPedW (t)

Method

FGLS

GMM

EMM

Max. Likelihood

Max. Likelihood

Max. Likelihood

Table 3: Ait-Sahalia (1996b) dataset

OLS GLS FGLS*
o | 0.083082 | 0.082536 | 0.084387
1.6088 | 0.94014 | 0.97788

Table 4: Stanton (1997) dataset

OLS GLS
o | 0.068423 | 0.068009
k| 0.25615 | 0.32935

24



