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1. INTRODUCTION  

 

The issue of dynamic consistency in Finite Extensive Form Decision 

Problems (FEFDP) has recently been at the centre of a very interesting debate. 

The discussion was stimulated by a paper of Piccione and Rubinstein (1997) 

(P&R) where, in absence of changes in the decision maker (DM) preferences, 

imperfect recall was identified as a source for possible inconsistent choices, in 

particular by the type of limited memory denominated absentmindedness. 

Such memory limitation is the case when the DM can not distinguish among 

decision histories along the same path. Piccione and Rubinstein argued that 

upon reaching an information set characterised by absentmindedness, the DM 

might be induced, somehow “paradoxically”, to revise her original optimal 

plan. A number of authors Aumann-Hart-Perry (1997), Battigalli (1997), 

Gilboa (1997), Lipman (1997) have discussed how an approach based on the 

view that the DM is a collection of different selves could justify these choices, 

along the decision tree, as a Nash Equilibrium profile of actions taken by the 

various selves.  

Within a one self framework, an alternative route leading to dynamic 

consistency has been independently undertaken by Segal (2000) and Dimitri 

(1999). Starting from the celebrated example of the Absentminded Driver they 
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argue in support of two main assumptions, which are not part of P&R 

analysis, that would fully incorporate the DM awareness of possibly being 

absentminded along the decision tree. Broadly speaking, the first concerns 

consistency of beliefs with respect to the revised strategy, while the other is a 

condition of perceived welfare symmetry once at an information set where 

absentmindedness is exhibited. In short, belief consistency rests on the 

consideration that, upon reaching an information set with absentmindedness, 

it would be difficult to make sense of the view that passage from one node to 

another, within the set, is governed by the behavioural strategy adopted prior 

to entering that set and not by the (possibly) revised one. The second is based 

on the observation that, once having reached such an information set, unless 

further elements would be introduced the DM should associate the same game 

value at all nodes in that set since, otherwise, she would think of having the 

ability to disentangle the nodes that she is finding herself at.      

 This paper generalises the result to a large class of FEFDP where nature 

is not present, this because we only want to concentrate on the possibility of 

inconsistent behaviour due to cognitive limitations. The problems we 

consider incorporate straightforward generalisations of absentmindedness, 

but do not investigate the role of partial memory limitation. On this point, 

recent work by Kline (2002) established minimum memory conditions for ex-

ante optimal strategies to be dynamically consistent. The paper is organised 

as follows. In part one of Section 2 we introduce and discuss the above two 

main cognitive-behavioural assumptions, within the “classical” example of 
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the Absentminded Driver. Section 3 specifies the basics of the general model. In 

Section 4 we define dynamic consistency and the generalised versions of the 

two main assumptions. Section 5 presents the main result of the work while 

Section 6 discusses possible extensions and concludes the paper.  

 

2. THE “CONSISTENT” ABSENTMINDED DRIVER1 

 

2.1 The Absentminded Driver 

 

We begin this section by recalling the original version of the 

Absentminded Driver problem (AMD henceforth), the motivating example of 

P&R analysis. The game is as in Fig 1 below. 

 

Insert Figure 1 about here 

 

The payoffs associated to terminal histories of the extensive form 

decision problem reveal that her goal is to obtain 4, the highest reward. There 

is absentmindedness since the driver upon reaching one of the two nodes 

(highway junctions), I and II, is unable to distinguish between them. More 

specifically she has a single information set, indicated by the dotted line 

connecting nodes I and II. As a manifestation of imperfect recall, the 

peculiarity of absentmindedness rests in the fact that information sets contain 

decision points (two in the case of the AMD problem) along the same path. 
                                                 
1 This section draws from Dimitri (1999).   
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Actions available at each intersection are either c {continue} or e {exit}; hence, 

the AMD goal is achieved if and only if the sequence of actions ce (in this 

precise order) would be chosen. 

In this simplest decision problem P&R detect the possibility of time-

inconsistent choices when both pure and (randomised) behavioural strategies 

are considered. Namely, the plan (on how to choose within the game) formed 

by AMD before she starts playing may be revised, in spite of unchanged 

preferences, upon reaching the information set.   

This last observation makes dynamic inconsistency a key conceptual 

issue in the game, in need of further investigation. Indeed, since Strotz (1956), 

a common explanation for dynamic inconsistency has been given by change 

in preferences. Hence, on the one hand, since in the problem AMD tastes 

remain stable along the decision path, here inconsistency would be 

exclusively due to the type of imperfect memory under consideration; 

namely, only to a purely cognitive aspect. On the other hand, P&R notice, in the 

model there’s an evident tension between the ex-ante and the ex-post 

individual’s choice, in the following sense. As AMD is ex-ante aware of her 

own ex-post absentmindedness why should she plan an optimal strategy, 

before entering the game, if she can anticipate that she may have an incentive 

to deviate from it once at the information set? As a consequence why, for 

example, isn’t AMD considering only either the ex-ante or the ex-post 

strategy? With the possibility of time inconsistency in extensive form games it 

is the standard notion of strategy, defined as a contingent (to each 
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information set) plan of actions made at the beginning of the game, that 

comes to be put under scrutiny. In extensive form decision games with perfect 

information the distinction between ex-ante and ex-post strategies is 

irrelevant since, ex-post, players have no incentive to deviate from a 

previously formed optimal plan of actions. With absentmindedness instead 

the alleged distinction becomes meaningful and the notion of optimal strategy 

may be an issue.   

Since absentmindedness represents a very specific type of imperfect 

recall, it is not unreasonable to imagine that different DM may entertain 

alternative views on how to deal with such a particular cognitive limitation. 

Then, in principle, we see it as acceptable that inconsistency might emerge in 

some of the approaches but not necessarily in all of them. Indeed, we very 

much share the view, made explicit by P&R and Lipman (1997), that there 

may be more than one plausible way to model a decision maker’s mental 

process in this game.  

 Let’s now discuss, somewhat informally, the P&R argument 

supporting the possibility of inconsistency in behavioural strategies. In what 

follows p will be the ex-ante (planned before the game starts) probability of 

choosing action c {continue}, 1-p the probability of action e {exit} at each node 

(in the behavioural strategy), q the ex-post (at the information set) probability 

of choosing c, 1-q the probability of choosing e and α  the subjective 

probabilistic belief of AMD to be at node I, conditional to having reached the 

information set. Moreover Π(p) and Π(q) indicate, respectively, the ex-ante 
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and ex-post expected payoffs for AMD; finally, Π(q⎟ I) and Π(q⎟ II) stand for 

the expected payoffs conditional to, respectively, node I and II.  

 

i) Ex-ante Before the game starts AMD expected payoff is Π(p)=p(4-3p), since 

she would face a lottery that with probabilities 1-p, p(1-p) and p2 provides her 

with payoffs (respectively) equal to 0, 4 and 1. Straightforward maximisation 

of p(4-3p) leads to p*=2/3 as the optimal behavioural strategy planned to 

follow, once at the information set.     

 

ii) Ex-post Conditional to being at the information set AMD expected payoff 

instead becomes Π(q)=αΠ(q|I)+(1-α)Π(q|II)=α[q(4-3q)]+(1-α)[4-3q]. Hence, 

maximisation of Π(q) entails that the optimal strategy is now q*=max [0,(7α-

3)/6α ], different from p* unless α=1. Therefore, if α<1, any behavioural 

strategy would be time inconsistent since p*≠q*; however, inconsistency 

would also be the case if α=1 too since, believing to be at node I with 

probability one, AMD would presumably choose to continue with certainty 

and so q*=1.  

  

 While point (i) is basically uncontroversial, point (ii) has been a main 

source of debate for it is on the ex-post reasoning of an individual that 

alternative approaches can be contemplated. In particular, since AMD mental 

process is formalised by the expected payoff  α[q(4-3q)]+(1-α)[4-3q], we here 

anticipate that we’ll scrutinise the above expression in the following two main 
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directions. First to incorporate an issue of internal coherency in the 

individual’s mental process, reflected in Assumption 3 (Welfare Symmetry), the 

term αΠ(q|I) will change; this in turn implies that AMD game evaluation at 

the information set will no longer be calculated through the conditional 

expected payoff Π(q|I). The second direction, made explicit by Assumption 4 

(Belief Consistency), will instead propose a definition of α  that, to us, 

represents the most convincing way for the model to embody the 

fundamental issue of the analysis, namely AMD possible reconsideration of 

the ex-ante optimal behavioural strategy upon reaching the information set.  

  We are now ready to discuss in more detail how consistency could 

emerge once the AMD reasoning would fully incorporate the (explicit and 

implicit) model assumptions that we now specify.  

 

Assumption 1 (History-independent information partition) At all non terminal 

histories AMD information partition is the same.   

 

 In extensive form games and decision problems this is the standard 

assumption concerning a DM information processing skills. It is however 

worth stressing it since taken together with the next one (Assumption 2) will 

entail some important implications.  

 Being standard, in P&R Assumption 1 is left implicit; what is made 

explicit  instead is the following Assumption 2.  
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Assumption 2 (Awareness2 of Absentmindedness) At all non terminal histories 

AMD is aware of her own absentmindedness, and takes this knowledge into account 

when evaluating her welfare. 

  

Few comments are in order here. Absentmindedness is introduced as 

AMD inability to distinguish between nodes, at all decision histories in the 

problem. Consequently, for both Assumptions 1 and 2 to hold it must 

necessarily be true the further implication that absentmindedness should also 

relate any element that may provide AMD with information concerning the 

node that she is at the moment. The element we are particularly interested in 

stressing is her mental process at decision nodes.  

A possible, informal, argument supporting the point could be the 

following. Suppose that at node II AMD could recall (for example) a 

consideration that she has previously made, which was not at the beginning 

of the game. Then, she would immediately infer to be at node II and the 

information set could not be as the one depicted in Fig. 1.  

We now come to Assumptions 3 and 4, the main ones for the paper 

findings. The versions we give below will later be generalised.   

 

Assumption 3 (Welfare Symmetry) At both decision nodes in the information set 

AMD thinks that her game value is the same at all histories in the set, and equal to  

Π*(q).  
                                                 
2 The notion of (un)awareness is introduced here only on intuitive grounds. 
For a formal treatment of the concept see Modica-Rustichini (1994-1999) and 
Dekel-Lipman-Rustichini (1998).  
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Assumption 4 (Belief Consistency) Conditional to having reached the information 

set, the probabilistic belief of being at a particular node is consistent with the 

behavioural strategy chosen at the information set (ex-post) and not before the game 

starts (ex-ante). Formally, if α is AMD’s belief to be at node I then 1-α=αq. This 

would clearly imply that  

α+αq=1  

so that α=1/(1+q).  

 

 The key conceptual finding of the paper is already in the following 

preliminary proposition. 

 

Proposition The ex-post evaluation of the game by AMD is Π*(q)=αqΠ*(q)+(1-α) 

[4-3q], rather than Π(q)=α[q(4-3q)]+(1-α)[4-3q], where α=1/(1+q). Hence, Π(p)= 

p(4-3p) and Π*(q)= q(4-3q) have the same functional form, respectively, in p and q so 

that p*=2/3=q* and AMD is time consistent.  

 

Here’s the argument supporting welfare symmetry. Following the 

proposition, interpret Π*(q) as AMD “value of the problem” conditional to 

being at the information set; we observe that because of Assumptions 1 and 2 

she must believe of entertaining the same evaluation of the game at both 

nodes. Indeed, if this was not so, she would imagine to be able to distinguish 

between the two junctions. More specifically, if (with belief α) she is at node I 
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then her game value is Π*(q); moreover, she is aware that should she then 

reach junction II (with probability q) she would have no elements to think that 

she would not replicate exactly the same reasoning, hence ending up with the 

same game value Π*(q). This explains the first term on the right hand side of 

Π*(q). If AMD were instead at node II (with belief 1-α) then she knows that 

the game will end after the next move; as a consequence, at this node the 

game evaluation is given, as in P&R, by (4-3q).       

It is indeed at this very point that our modelling of AMD mental 

process differs from P&R proposal; this is not surprising in view of the 

following conceptual tension. If she were to be at node I then she perfectly 

knows that at II she will face a different lottery; P&R are in favour of 

incorporating such information in her welfare calculations and notice that this 

leads to time inconsistent choices. However, if we do this we allow AMD to 

be aware of an element of incoherence in her own reasoning by assuming that 

she anticipates at I the subjective value that she will attach to the game at II 

and yet, in calculating Π *(q), she disregards this information. Still at an 

interpretative level, we could depict the above situation as AMD facing a 

trade-off between being externally (with respect to the data of the problem) vs 

internally (with respect to her own personal evaluation of the game) coherent. 

This paper will suggest that should AMD opt for the latter then time 

consistent choices may emerge.  

Notice that an analogous approach incorporating future welfare in a 

DM calculation, rather than mere expected payoff, has recently been 
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advocated and discussed also by Saez-Marti and Weibull (2002) in work 

concerning time discounting.  

We now argue on beliefs α and 1-α being consistent with q3. Indeed, as 

AMD has no elements to think that her own reasoning is different at the two 

nodes (otherwise, again, she would imagine to be able to detect the nodes), 

she can not but assume that at both junctions she would choose the same ex-

post probability q. Hence, q is the transition probability between I to II and 

consistency between beliefs and behavioural strategies entails 1-α=αq so that 

α=1/(1+q).  

In extensive form games (decision problems) without 

absentmindedness, it is standard to consider beliefs as formed prior to 

players’ actual choices. Namely, conditional to being at an information set, 

beliefs relative to the nodes in the set are independent of the actions taken at 

that set. Because of the above symmetric-reasoning considerations, with 

absentmindedness this may not be so. Conditional beliefs could then be 

imagined to depend upon behavioural strategies chosen at the set and, due to 

the belief consistency assumption, come after them. Failure to accept so may 

entail some drastic consequences; the following is a possible one. Letting 1-α=

αp, would imply imputing to AMD the idea that possible reconsideration of 

her ex-ante optimal strategy can not occur at node I. Indeed, if this was not so 

then AMD could not assume that p is the transition probability between the 

                                                 
3 We stress so since in P&R belief consistency is defined with respect to the 
probabilistic behavioural strategy p* chosen ex-ante. Namely, they require 1-α 
=αp* =α(2/3).  
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two highway junctions. Consequently, AMD would think of deducing to be at 

II and choose q*=0.  

 

3. THE GENERAL MODEL 

 

 We are now ready to pursue the general analysis. We begin so by 

formally defining the relevant elements of a FEFDP provided by P&R (1987) a 

specification, for the case of one player and nature, of the definition of a Finite 

Extensive Form Game given in Osborne and Rubinstein (1994).  

 

Definition 1 (FEFDP) Is a five tuple Γ =<H,u,C,ρ,Π> where 

i) H is a finite set of sequence of actions of the type h=(a1,…,ak), where k 

is a non negative integer. Moreover, H includes the initial history ∅  

and if h∈H then for all its sub-histories h’⊆h it is h’∈H. A sub-history 

h’⊆h of the kind h’=(a1,…,al), with l<k, is called prefix. History h is 

terminal if for no h’∈H is h⊂h’. The set of terminal histories is Z, with 

generic element z∈Z. For all non terminal histories h∈H-Z, the set 

A(h) indicates the actions available to the player (whether DM or 

nature) at h.  

ii) u: Z→R is a VNM utility function. 

iii) C⊂H-Z is the set of histories at which chance (nature) moves.  

iv)  for each h∈C the probability with which chance chooses a∈A(h) is ρ(a), 

where ρ(a)>0 for all such a.  
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v)  D=H-Z-C is the set of histories at which the DM moves.  

vi) the information processing ability of DM is modelled by a partition P 

of D. The element of P containing h∈D, for all such h, is P(h). At all 

h’∈P(h) is A(h)=A(h’). Henceforth, for simplicity, X will be a generic 

(element of P and so) information set; the set A(X) indicates the 

(common) actions available at all histories in X.   

 

Moreover, we also need to introduce the following  

 

Definition 1a In Γ =<H,u,C,ρ,Π>   

 

vii) Γ(h) indicates the subgame starting from history h, for all h∈H-Z, 

while Γ(X)=∪x∈XΓ(x) is the set of subgames starting from X.     

viii) b*(h) =bI(D-Γ(X))(h)+b’I(Γ(X)-Z)(h), where I is the standard indicator 

function, stands for a behavioural strategy adopted by DM that 

coincides with the behavioural strategy b’, at all histories h in Γ(X)-Z, 

and with the behavioural strategy b at histories h in D-Γ(X). The set of 

behavioural strategies is B.  

ix) V(Γ(h)|b) stands for the value of the subgame Γ(h) and, analogously, 

V(X|b) stands for the value of the game at the information set X, when 

in Γ the DM adopts the behavioural strategy b. By V(Γ(∅)|b)=V(Γ|b) 

we denote the value of the whole game.  

x) the probability of reaching history h’ from history h, according to the 

behavioural strategy b, is p(h’|h,b). We denote p(h’|∅, b) as p(h’|b). 
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The expected value of Γ(h) under b is E(Γ(h)|b)=Σz∈Z p(z|h,b)u(z). 

Furthermore, E(Γ(∅)|b)= E(Γ|b)   

xi) for all x∈X the conditional (to X) belief of being at history x, when 

DM adopts strategy b, is α(x|b).    

 

Throughout the paper we shall assume the following.  

 

Assumption 5 E(Γ|b)=V(Γ|b) 

 

As we shall see, because of the main behavioural assumptions, the 

above would not necessarily be true for proper subgames.  Finally, we also 

need the notions below  

 

Definition 2 In Γ =<H,u,C,ρ,Π> the Successors and Predecessors of history h are 

defined as follows.   

(i) (Successors) For each h∈H-Z  the set of its 1-step successors is defined 

as S(1,h)={h’∈H |h’= (h,a) for all a∈A(h)}. The n-step successors of h 

are defined iteratively as follows S(n,h)={h’’∈H |h’’= (h’,a) for all 

a∈A(h’) and h’∈S(n-1,h)}, with n=2,3,… 

(ii) (Predecessors) For each h∈H-∅, its 1-step predecessor is defined as 

P(1,h)={h’∈H|h∈S(1,h’)}. The n-step predecessor of h is defined 

iteratively as follows P(n,h)={h’’∈H| h∈S(n,h’’)}. 
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4. DYNAMIC CONSISTENCY  

 

 In this section we define the general notion of dynamic consistency and 

provide generalised versions of Assumptions 3 and 4. We begin with the 

definition of ex-ante optimality.  

 

Definition 3 (Ex-Ante Optimality) A behavioural strategy b∈B is ex-ante optimal if  

V(Γ|b) ≥ V(Γ|b’) 

 for all b’∈B.  

 

We now formalise dynamic consistency 

  

Definition 4 (Dynamic Consistency) A behavioural strategy b∈B is dynamically 

consistent if for every information set X that is reached with positive probability 

under b is 

V(X|b) ≥ V(X|b’) 

 for all b’∈B.   

 

 The definition of dynamic consistency adopted here is an immediate 

generalisation of the one discussed earlier; it simply stipulates that 

consistency is the case whenever at each information set reached with positive 

probability the DM has no incentive to change an ex-ante adopted strategy. 

Below we generalise Assumptions 3 and 4 ; more specifically, the extensions 

are given by Assumptions 7 and 8.    
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Assumption 6 For all information sets X is V(X|b*)=Σx∈Xα(x|b*)V(Γ(x)|b*).  

 

Assumption 7 At any history x in X the DM thinks that her game value at all 

histories X is the same and equal to V(X|b*). Moreover, 

V(Γ(x)|b*)= Σ{h’∈S(1,x)∩ X} p(h’|x,b’)V(X|b*) + Σ{h’∈S(1,x)-X} p(h’|x,b’)E(Γ(h’)|b’) 

 

At any history in X to calculate V(Γ(x)|b*), for all x∈X, the DM reasons 

as follows. From x, in one step, she can either move to histories within X or to 

histories outside X. The former possibility can occur with probability 

Σ{h’∈S(1,x)∩ X} p(h’|x,b’) and, because of Assumption 7, at any such h’ would give 

rise to a game evaluation of V(X|b*). The latter instead will occur with an 

overall probability Σ{h’∈S(1,x)-X} p(h’|x,b’) and, at all such h’, gives rise to game 

evaluations equal to the expected values E(Γ(h’)|b’). On this last point we 

shall come back in the final section.  

 

Assumption 8 α(x|b*)=p(x|b*)/p(X|b*), where p(X|b*)=∑x∈Xp(x|b*).  

 

In words, upon having reached the information set X, the DM has a 

(conditional belief) to be at a node x∈X that, within the set itself, is consistent 

with the strategy adopted at X, generically indicated by b’. Clearly, in so far as 

those nodes in X which are reached from outside the set are concerned, the 

(conditional) belief must be consistent with the strategy adopted prior to 
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reaching X, generically indicated by b. Notice that in the AMD and GAMD 

this last point does not appear to be an issue since the information set is 

reached with probability one. As for the rest, the definition of α(x|b*) is fully 

analogous to one given by P&R.  

 

5. THE MAIN RESULT 

 

We are now capable to state the main theorem of the paper establishing 

dynamic consistency.   

 

Theorem Assume that in Γ=<H,u,C=∅,Π> assumptions 1-2 and 6-8 hold. Then if 

b∈B is ex-ante optimal is dynamically consistent.  

 

Proof  Assume that, when implementing b, X can be reached with positive 

probability. Then  

 

V(Γ|b)=E(Γ|b) = Σz∈Z p(z|b)u(z) = Σz∈Z-Z(X) p(z|b)u(z)+ Σz∈Z(X) p(z|b)u(z) 

 

where Z(X) ⊆ Z is made of those terminal histories having at least one prefix 

ending in X. Moreover,   

 

V(Γ|b)=Σz∈Z-Z(X) p(z|b)u(z)+ Σh∈X  p(h|b)E(Γ(h)|b)        (1) 
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where X={h∈X|P(n,h)∉X for all n∈N}.  

 

It is however more convenient to write V(Γ|b) as follows 

 

V(Γ|b)=Σz∈Z-Z(X) p(z|b)u(z)+ p(X|b)Σh∈X p(h|b)E(Γ(h)|b)/p(X|b)  (2) 

 

where p(X|b)=Σx∈X p(x|b). 

 

From Assumptions 6-8 we have that  

 

V(X|b*)= Σh∈X p(h|b) Σ{x∈Γ (h)∩X} p(x|h,b’)[Σ{h’∈S(1,x)∩ X} p(h’|x,b’)V(X|b*) + 

Σ{h’∈S(1,x)-X} p(h’|x,b’)E(Γ(h’)|b’)]/ p(X|b*) 

 

and   

 

V(X|b*)=Σh∈X p(h|b)Σ{h’∈H-X|P(1,h’)∈ Γ(h)∩X} p(h’|h,b’) E(Γ(h’)|b’)/[1-Σh∈X 

p(h|b)Σ{x∈Γ (h)∩X-{h}} p(x|h,b’)] 

 

so that  

 

V(X|b*)=Σh∈X p(h|b)E(Γ(h)|b*)/ p(X|b) 
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As a consequence, from (2) it  is b∈ argmax b*∈B V(X|b*). Indeed, if this was not 

so, b could not be the ex-ante optimal strategy. Since this holds true for any 

information set X, reachable with positive probability by b, dynamic 

consistency follows.  

 

 

5.  PERSPECTIVES AND CONCLUSIONS 

 

Before concluding the paper, it could be interesting a brief discussion 

on possible alternative ways to model the DM reasoning at information sets. 

In particular, Assumption 7 stipulates that, from an history in X, the 

continuation value of the game when passing to an history h outside X is 

given by the expected value, under the possibly revised behavioural strategy 

b’, of the subgame starting from h.   

However, we could also contemplate that at any X the DM would 

anticipate the kind of reasoning that she will entertain later in the game at all 

information sets, possibly exhibiting absentmindedness. Though a complete 

analysis of the point is not of central interest to the paper, we think it worth to 

exemplify the matter and illustrate how consistency could still follow. 

Consider the problem in Fig. 2 below, an extension of Fig. 1 problem.  

 

Insert Fig 2 about here 
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In it the DM can not distinguish between nodes I and II and between 

nodes III and IV. So there are two information sets, say X and Y, where 

X={I,II} and Y={III,IV}. If in the ex-ante calculations p and q are the 

probabilities of c, respectively, in X and Y, then the (ex-ante) expected payoff 

is  

 

Π(p,q)=(1-p)V0 + p(1-p)V1+ p2(1-q)V2+p2q(1-q)V3+p2q2V4     (3) 

 

and the optimal probabilities p* and q* maximise (3) in p and q.       

Upon reaching X let now p’ and q’ be the (possibly) revised 

probabilities, α again the conditional (to X) belief to be at node I and β the 

conditional (to Y) belief to be at node III4.  

Then, if Π(X;p’,q’) is the game value at X and Π(Y;p’,q’) the game value 

at Y we have  

 

Π(X;p’,q’)= α[p’Π(X;p’,q’)+(1-p’)V0]+(1-α)[p’Π(Y;p’,q’)+(1-p’)V1]       (4) 

 

Π(Y;p’,q’)= β[q’Π(Y;p’,q’)+(1-q’)V2]+(1-β)[(1-q’)V3+q’V4]                    (5) 

 

The term p’ Π (Y;p’,q’) on the RHS of (4) formalises the above 

considerations; at X the DM anticipates that upon reaching Y she will perform 

                                                 
4 The DM reasoning concerning the possibility of strategy revision 

upon Y being reached, which in this case would only pertain the possible 
updating of q’, will be analogous to the example of Fig.1 and so omitted.  
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a similar kind of reasoning. Hence, at node II she will evaluate the 

continuation of the game by Π(Y;p’,q’) rather than by the expected value (1-

q’)V2+q’(1-q’)V3+(q’)2 V4.  

Belief consistency would entail α=1(1+p’) and β=(p’)2/[(p’)2+(p’)2(q’)]. 

Solving the system (4)-(5) immediately entails that  

 

Π(X;p’,q’)=(1-p’)V0 + p’(1-p’)V1 + (p’)2(1-q’)V2+ (p’)2(q’)(1-q’)V3 + (p’)2(q’)2V4  (6) 

 

and so p** and q**, the optimal conditional (to X) probabilities, will be found 

by maximising the above expression relatively to (respectively) p’ and q’. 

Since expressions (3) and (6), as functions of the pairs (p,q) and (p’,q’), are the 

same dynamic consistency would follow as p*=p** and q*=q**.  

In this paper we have generalised to a large class of finite extensive 

form decision problems, where nature is not present, an approach to 

individual choice formation originally suggested by Dimitri (1999) and Segal 

(2000). The main theorem that we obtain is a general result of dynamically 

consistent choices, an individual might entertain within a decision problem in 

which imperfect recall, included absentmindedness, could be present.  
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