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Abstract - Starting from the known results of Perron (1907) and Frobenius (1912) I apply 
graph theory to give an economically intuitive characterization of imprimitivity. Such property 
implies cyclical vertical relationships among groups of industries which, either directly or 
indirectly, use each others’ products as inputs. More precisely, if the index of imprimitivity is 
h, then industries may be sorted in h groups such that i) each group produces the inputs of one 
and only one other group and ii) there is no direct flow of commodities between industries of 
the same group. A sufficient condition for primitivity is provided which offers some reasons to 
expect non-basic industries to have more vertical cyclical flows than basic ones. 
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1. Introduction 

In the Leontiev-vonNeumann-Sraffa (LNS) framework, indecomposable matrices constitute a particular 
class of non-negative square matrices which have a straightforward economic meaning. An indecompos
able matrix represents an economy, or part of it, where each industry produces a commodity which is 
used as an input by any other industry either directly or indirectly. Primitive matrices are a sub-class 
of indecomposable matrices. A primitive matrix has a single eigenvalue of maximum modulus in its 
spectrum while an imprimitive indecomposable matrix has more than one. 

To the best of my knowledge, the economic meaning of primitivity/imprimitivity has not yet been 
investigated. In this note I provide an interpretation of such properties in terms of the structure of flows of 
commodities among industries. More precisely, imprimitive matrices represent economies where the flow 
of commodities takes the form of a cycle between groups of industries. In this respect, the fundamental 
parameter turns out to be the number of eigenvalues of maximum modulus which determines both the 
number of groups and the period of cycle.1 On the contrary, primitive matrices represent economies 
where the flow of commodities does not show any such cyclicity. 

In Section 2 I introduce the definitions of indecomposability and primitivity, providing an intuitive 
economic characterization of both by means of graph theory. In Section 3, starting from the results 
of Perron (1907) and Frobenius (1912), I study the case of indecomposable imprimitive matrices from 
an economic perspective. Then, under the assumption that at least a group of basic industries exists 
(Sraffa (1960)), I also characterize the more general case of a decomposable matrix with some indecom
posable imprimitive sub-matrices. Again, graph theory is applied to provide both intuition and easily 
understandable examples. Finally, I state and prove a sufficient condition for primitivity whose economic 
meaning seems to support the idea that the cyclicity implied by imprimitivity is more likely to occur in 
non-basic industries than in basic ones. 

2. Primitive Matrices 

1. Indecomposability 
nLet A ≡ {aij}i,j=1 be a square matrix of order n. I use the convention that element aij represents 

the amount of commodity i required to produce one unit of commodity j. Hence, row indices may be 
interpreted as commodity indices and column indices as industry indices. Furthermore, I denote by ai 

the i-th row and by aj the j-th column. Joint production and technical change are not considered. 

Definition 1 (Decomposable/Indecomposable Matrices) 
A non-negative square matrix A ≡ {aij }n is decomposable if the indices 1, 2, ..., n can be divided into i,j=1 

two disjoint non-empty sets I ≡ {i1, i2, ..., il} and J ≡ {j1, j2, ..., jm} with l + m = n, such that aiαjβ 
= 0 

for any iα ∈ I and jβ ∈ J . Otherwise the matrix A is indecomposable. 

1It is shown that all such eigenvalues are single root of the characteristic polynomial and therefore there is no ambiguity 
in not making references to eigenvalues’ multiplicities. 
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Graph representation offers a more intuitive way to characterize matrix indecomposability. Let g(N, E) 
be a directed graph, where N is the set of nodes and E the set of directed edges. The shorthand ij 
indicates the directed edge going from node i to node j. By a path of length m ≥ 1 connecting i to j 
it is meant a finite sequence of m directed edges {e}m

h=1 ≡ {(rhsh)}m where eh ∈ E, and rh ∈ N and h=1 

sh ∈ N indicate, respectively, the root (or starting point) and the sink (or ending point) of each directed 
edge.2 When there is no need to specify the edges composing a path, a path of length m connecting node 
i to node j is denoted by pm(i, j). Moreover, a graph is connected if and only if there exists i ∈ N such 
that, for every j =� i there exists pm(i, j) for some m. Finally, a graph is strongly connected if and only 
if for any pair i, j ∈ N , i =� j, there exists pm(i, j) for some m. 

Suppose matrix A represents an economy composed of n industries. We define the graph induced by 
A as gA(N, E) where N ≡ {1, 2, ..., n} and ij ∈ E whenever aij > 0. The following result is well known. 

Lemma 1 
Let A be a non-negative square matrix. Then, A is decomposable if and only if gA is not strongly 
connected. 

Proof. Suppose A is of order n. If A is decomposable then there exist two disjoint sets of indices 
I ≡ {i1, i2, ..., iu} and J ≡ {j1, j2, ..., jv} with u + v = n, such that aiαjβ 

= 0 for any iα ∈ I and jβ ∈ J . 
It is straightforward to see that pm(iα, jβ) does not exist for any iα ∈ I and jβ ∈ J and m ≥ 1. 

Conversely, suppose that there are no paths of any length going from node i to node j, i =� j. Define 
I ≡ {i} ∪ {k ∈ N : pm(i, k),m ≥ 1} and J ≡ N \ I. Notice that J contains at least j. By construction, 
if r ∈ I then, for any m ≥ 1 and s ∈ J , pm(r, s) does not exists, otherwise there would exist pm+l(i, s) 
for some l ≥ 1 and s would belong to I; in particular, p1(r, s) does not exist. Therefore, we have that 
ars = 0 whenever r ∈ I and s ∈ J .� 

Figure 1 shows an example of two economies – one decomposable, the other indecomposable – and their 
associated graphs. 

2. Primitivity 

Primitive matrices are a special case of indecomposable matrices. They are characterized by the spectrum 
being strictly dominated by a single eigenvalue of multiplicity one. 

Definition 2 (Primitive/Imprimitive Matrices) 
Let A be an indecomposable matrix and S the set of its eigenvalues where each eigenvalue appears a number 
of times equal to its multiplicity as a root of the characteristic polynomial of A. Define λ∗ ≡ maxλ∈S |λ|
and h ≡ ||{λ ∈ S : |λ| = λ∗}||. If h = 1 then A is primitive; otherwise, A is imprimitive and h is its 
index of imprimitivity. 

From Definition 2, however, the economic meaning of primitivity may not be evident. The following 
proposition provides a better insight and allows a further graph-based characterization.3 

2A path can have edges repeated as long as it is consistent with the definition (for instance {ij, ji, ij} or {ij, jj, jj, jk}). 
3A standard proof of Proposition 1 can be found, among others, in Gantmacher (1959). 
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Economy A Economy B 

Figure 1. Economies A and B are composed by nine industries and show qualitatively similar flows of commodities. They 
differ only for industry 2 using or not using the output of industry 5. However, Economy A is decomposable while Economy 
B is indecomposable. Indeed, in the graph representing Economy A there is no directed chain connecting industries 5, 6, 
7, 8 and 9 to any of the industries 1, 2, 3 and 4. On the contrary, in the graph representing Economy B there is a directed 
chain connecting any two industries. 

Proposition 1 
An indecomposable matrix A is primitive if and only if there exists a positive integer k such that Ak > 0. 

Corollary 1 
An indecomposable matrix A is primitive if and only if there exists an integer gk > 0 such that, in the 
graph gA, there exists pk(i, j) for every i =� j. 

Proof. Let {aij}k denote the entry of matrix Ak belonging to the i-th row and j-th column. Corollary 
follows from Proposition 1 once it is proved that {aij}k > 0 if and only if there exists a path pk(i, j) in 
gA. I show this by induction. The condition is trivially satisfied for k = 1. Suppose it holds for k > 1. 
Since {aij }k+1 = {ai}kaj we have that {aij }k+1 > 0 if and only if there exists some h ∈ N such that 
{aih}kahj > 0. Then, by the inductive hypothesis, {aij }k+1 > 0 if and only if there exists pk(i, h) and 
p1(h, j) in gA for some h ∈ N , which in turn implies the existence of pk+1(i, j) in gA.� 

As defined above, the j-th column of matrix A, aj , gives the input required to produce 1 unit of commodity 
j. Thus, a vector of commodities q requires a total quantity of inputs equal to Aq = n

j=1 ajqj to be 
produced. In particular, Aaj gives the inputs required to produce the inputs that, in a subsequent round 
of production, will be required to produce 1 unit of commodity j. Similarly, A2 = (Aa1, . . . , Aan) gives, 
industry by industry, the quantities of commodities required to produce the inputs which, in a subsequent 
production period, will be necessary to produce 1 unit of each commodity. Let me refer to a single round 
of production activity as production lag. Then, Ak represents the quantities of inputs that are required 
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————————————————————————————————————————————— 
Example: Primitivity of Economy B by graph representation 
In order to show that Economy B of Figure 1 is primitive, it is proved that there exists a path of length 5 between 
any two nodes in N = {1, . . . , 9}. Since among the edges of gB we find 11 – i.e. industry 1 uses its output as an 
input – we can conclude that, if there exists a path of length not greater than 5 connecting i to j and passing 
through industry 1, then there exists a path of length 5 connecting i to j. The table below shows the length of 
the shortest path connecting any industry to 1 and 1 to any industry. 

Length of shortest paths from and to industry 1 in gB 

Industry label 1 2 3 4 5 6 7 8 9 

Length of paths to 1 1 1 2 2 2 3 3 3 3 
Length of paths from 1 1 1 2 1 2 2 1 4 3 

By combining the elements of the last two rows we obtain the length of the shortest path connecting any two 
industries and passing through industry 1. All paths but the following have shortest path not longer than 5: 3 
to 8, 4 to 8, 5 to 8, 6 to 8, 6 to 9, 7 to 8, 7 to 9, 8 to 8, 8 to 9, 9 to 8 and 9 to 9. The existence of a path of 
length 5 between the latter is shown one by one in the the following eleven graphs. Paths go from industries with 
a dotted round to industries with full rounds (when the two do not coincide). 

1 2 �� 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

�� 65 

�� 9 

4 5 6 4 5 6 4 5 6 4 4 5 6 4 5 6 
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��
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8�� ��������9��

————————————————————————————————————————————— 

to produce 1 unit of each commodity in exactly k production lags – each column referring to the inputs 
required by the corresponding industry. 

Therefore, by Proposition 1, we have a straightforward economic interpretation of imprimitivity: there 
must be some number of production lags k such that the output of each industry shows up indirectly as 
input of any other industry. Moreover, since indecomposability implies that AkAl > 0 for any integer 
l > 0, we easily conclude that if this holds for k production lags then it also holds for any number of 
production lags greater than k. Corollary 1 characterizes such property in terms of the graph gAkg . 
Indeed, primitivity of A is equivalent to the existence in gA of n2 paths of length k connecting any two 
(not necessarily distinct) nodes. This is illustrated in detail by an example referring to Economy B of 
Figure 1. 
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3. An Economic Interpretation of Imprimitivity 

1. Imprimitive Indecomposable Matrices 

Thanks to the seminal work of Perron (1907) and the subsequent refinements by Frobenius (1912), several 
spectral properties of indecomposable matrices have been established. If A is an indecomposable matrix 
and S and λ∗ are defined as in Definition 2, we know that there exists a positive real eigenvalue λ̃ ∈ S 
which is equal to λ∗. Moreover, we know that λ̃ is a single root of the characteristic polynomial of A 
and that it is strictly greater than any other positive real element of S. As anticipated by Definition 
2, however, A may have negative or complex eigenvalues with a modulus equal to λ∗. The following 
results by Frobenius (1912) illustrate the relationship between the structure of a matrix and the number 
of elements in S of modulus equal to λ∗. 4 

Proposition 2 
Let A be an indecomposable matrix and S the set of its eigenvalues where each eigenvalue appears a number 
of times equal to its multiplicity as a root of the characteristic polynomial of A. Define λ∗ ≡ maxλ∈S λ
and h ≡ ||{λ ∈ S : |λ| = λ∗}||. Then, 

| | 

i) λ1, ..., λh ∈ S are distinct solutions of the equation λh − λ∗ = 0, 

ii) if h > 1 then A is imprimitive and there exists a permutation of both rows’ and columns’ indices 
such that A is reduced to the following cyclic form with square blocks along the diagonal ⎤⎡ 

A = 
⎢⎢⎣ 

0 A12 0 . . . 0 
0 0 A23 . . . 0 
0 0 0 . . . Ah−1,h 

Ah,1 0 0 . . . 0 

⎥⎥⎦ 
Proposition 2 tells us that whenever an indecomposable matrix is imprimitive it shows a cyclical structure 
whose period is equal to the index of imprimitivity. In particular, we have the following 

Corollary 2 
Let A be an indecomposable imprimitive matrix with index of imprimitivity h. Then, there exists a per
mutation of both rows’ and columns’ indices such that Ah has the following form with square blocks along 
the diagonal ⎤⎡ 

A1 0 . . . 0 
Ah = ⎣ 0 A2 . . . 0 ⎦ 

0 0 . . . Ah 

Proof. Corollary follows by computing Ah in the form of point ii) of Proposition 2. � 

Corollary 2 implies that no power of an imprimitive indecomposable matrix is strictly positive which is 
consistent with Proposition 1. 

4Again, Proposition 2 can be found in Gantmacher (1959). Proof is omitted. 
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Economy C 3 1→ 

Figure 2. Economy C is imprimitive with index of imprimitivity 3. The sets N1 = {1, 2, 3}, N2 = {4, 5, 6} and N3 = 
{7, 8, 9} identify the three groups of industries among which there is a cyclical flow of indirect inputs. The cycle’s period 
is 3. Notice that, however, the shortest path between 3 and 1 has a length of 6. 

2. Cyclical Production Lags in an Indecomposable Economy 

Again, graph representation offers a better intuition than matrix representation. 

Corollary 3 
Suppose A is an imprimitive indecomposable matrix of order n and index of imprimitivity h > 1. Then, 
there exist a partition Π ≡ {N1, ..., Nh} of the set N such that gA(N, E) satisfies 

i) ∀i, j ∈ Nk, ij /∈ E, k = 1, ..., h 

ii) ∀Nk ∈ Π, ∃Nl ∈ Π : ∀i ∈ Nk, ∃j ∈ Nl : ij ∈ E ∧ ∀i ∈ Nk, j /∈ Nl ⇒ ij /∈ E 

Proof. Corollary follows by checking the properties of gA where A is in the form of point ii) of Proposition 
2. � 

An imprimitive indecomposable economy with index of imprimitivity h can be divided in h groups of 
industries N1, ..., Nh such that each group’s outputs constitute all direct inputs of one and only one other 
group. In particular, there exists a cyclic linkage among the h groups of industries whose period is h. 
Without loss of generality, I adopt the convention that Nk directly produces the inputs of Nk+1 and 
h + 1 ≡ 1. Then, from a groups’ point of view the output of each Nk is indirectly used as input by Nk+r 

every r > 1 production lags, with 1 ≤ r ≤ h. Instead, from an industry’s point of view the output of 
i ∈ Nk is indirectly used as an input by j ∈ Nk+r every r + hz > 1 productions lags, where z ≥ 1 is an 
integer. Indeed, the shortest path between i ∈ Nk and j ∈ Nk+r may not be r because, although i must 
be linked by a path of length h to some u ∈ Nk+r, the latter may differ from j. So, it could take one or 
more additional full rounds of length h to get to j (see Figure 2). 
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Define the equivalence relation ∼ such that i ∼ j if and only if i, j ∈ Nk. The equivalence classes 
induced by ∼ represent the h groups of industries while the quotient graph gA|∼ exemplifies the structure 
of vertical relationships among them. In the case A is imprimitive but indecomposable gA|∼ takes the 
form of a cycle (Figure 3). If A is primitive then gA|∼ is a single point with no edges. Indeed, if A 
is imprimitive there is a clear vertical structure of production since the flow of indirect inputs among 
industries has a regular period, namely a multiple of h. On the contrary, if A is primitive such a sharp 
distinction cannot be made because the flow of indirect inputs goes from each industry to any other for 
any production lags greater than a certain finite number. 

3. Cyclical Production Lags in a Decomposable Economy 

Decomposable matrices are neither primitive nor imprimitive. However, decomposable matrices contain 
indecomposable sub-matrices which may or may not be primitive. Therefore, by looking at the index of 
imprimitivity of these sub-matrices we can gather useful information about inter-industry relationships. 
To this aim, let me introduce the concept of the normal form of a matrix. 

Definition 3 (Normal Form of a Matrix) 
Let A be a square matrix of order n. Its normal form is ⎤⎡ 

Â = 

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 . . . . . . 0 0 . . . 0 
0 A2 . . . . . . 0 0 . . . 0 

. . . . . . . . . . . . . . . . . . . . . . . . 
0 0 . . . Ag 0 0 . . . 0 

Ag+1,1 Ag+1,2 . . . Ag+1,g Ag+1 0 . . . 0 
. . . . . . . . . . . . . . . . . . . . . . . . 
As,1 As,2 . . . As,g . . . As,g+1 . . . As 

⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
where sub-matrices A1, ...As are indecomposable and in each row f = g + 1, ..., s at least one of the 
matrices Af,1, ..., Af,f−1 is different from zero. 

The normal form of a matrix is unique up to permutations of the blocks of indices.5 Clearly, if A is 
indecomposable then s = 1 while if A is completely reducible then g = s. 

Following Sraffa (1960) I restrict the analysis to the case where there exists a group of basic industries, 
namely a group of industries whose products are either direct or indirect means of production of any 
industry in the economy. Let A represent such an economy. In terms of the graph gA, we have that there 
exists a set B ⊆ N such that, for any i ∈ B and j ∈ N , there exists pk(i, j) for some k > 0. In terms of 
the normal form Â, we have that g = 1. 

For the sake of notation, assume A is a Sraffa matrix already in normal form. Let h1, ..., hs be the 
indices of imprimitivity of the indecomposable blocks along the diagonal of A, where hi = 1 means 
Ai is primitive. Each Ai identifies a set Ni ⊆ N of industries. For each Ni, consider the partition 
Πi ≡ {Ni,1, ..., Ni,hi 

} of the type described in Corollary 3. Since ∪n Ni = N , the partitions Π1 ..., Πsi=1

5More precisely, the blocks 1, ..., g can be always be permuted without modifying the normal form while permutations 
of the blocks g + 1, ..., s are allowed only in certain cases. See Gantmacher (1959) for a detailed proof. 
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Economy C: Flow of Commodities among Groups of Industries 

Figure 3. Since Economy C of Figure ?? is imprimitive with index of imprimitivity 3, the relation ∼ induces three 
equivalence classes. 

induce the partition Π ≡ {N1,1, ..., N1,h1 , ..., N1,1, ..., N1,hs 
} on N . Given this, the equivalence relation ∼

is naturally reinterpreted in such a way that i ∼ j if and only if i, j ∈ Nk,l. 
Again, the quotient graph gA|∼ illustrates the qualitative structure of vertical relationships among 

groups of industries. Since there are s indecomposable sub-matrices we can have up to s cycles which may 
be connected among themselves in various ways. In particular, for each block Nk, industries belonging 
to the same group Nk,l, besides producing for some industries in Nk,l+1 and using products of some 
industries in Nk−1,l, may also directly use the products of any industry belonging to Nq, where q < k, or 
produce the direct inputs for any industry in Nr, where r > k. Therefore, gA|∼ can take quite different 
shapes. On one extreme, if h1 = ... = hs = 1, then gA|∼ is composed by s nodes and one or more paths of 
the type {(rj , sj)}m where m ≤ s and rj < sj (see Figure 3). This is the case of no cyclicity as indirectj=1 

inputs flow from basic industries to non-basic ones with no regular period. On the other extreme, if 
hi > 1 for all i = 1, ..., s, then gA|∼ is composed by s cycles which have, respectively, h1, ..., hs nodes. 
Such cycles are encompassed by paths of the type {(rj , sj )}m where rj ≥ sj (see Figure 4). This is thej=1 

case of maximal cyclicity as indirect inputs flow according to regular periods both within and between 
the s blocks of industries. Any other case is just a combination of the two extremes described. 

4. A Sufficient Condition for Primitivity 

The following proposition provides a sufficient condition for the primitivity of indecomposable matrices. 

Corollary 4 
Let A be an indecomposable square matrix of order n. If aii > 0 for some i ∈ N then A is primitive. 
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Figure 4. The sets N1, ..., Ns identify a partition of N according to the indecomposable matrices along the diagonal of 
the normal form. All flows goes to the right. 

Proof. Although this corollary is a trivial consequence of Proposition 2, I shall prove it with reference to 
the graph gA(N, E) in order to make clear why the presence of positive elements along the diagonal gets 
rid of cyclicity. 

Suppose aii > 0. Then, for every r > 0, in gA we have the path pr(i, i). Since A is indecomposable, 
by Lemma 1 we have that gA(N, E) is strongly connected. In particular, for each j, l ∈ N in gA there 
exist pkj (j, i) and pkl (i, l) for some kj > 0 and kl > 0. Consider the n2 paths connecting any j ∈ N to 
any l ∈ N which are obtained by joining pkj (j, i), pr(i, i) and pkl (i, l), that is pkj +r+kl (j, l). Since r can 
be any positive integer and kj , kl are finite for any j, l ∈ N , we have that there exists an integer k̃ > 0 
such that, for any j, l ∈ N , the graph gA shows the path pk̃(j, l). Then, the result follows by applying 
Corollary 1.� 

So, the presence of a single industry which uses its own output as an input suffices to make acyclical the 
vertical relationships of an entire indecomposable set of industries. Indeed, as suggested by the proof 
of Corollary 4, if a part of i’s product at time t is used as a direct input to produce i’s output at time 
t + 1 then, from a certain period t + k onwards, i’s product at time t is used as an indirect input in the 
production of all commodities. 

It may be argued that it is very likely that some basic industries use their own output as an input and, 
hence, cyclicity rarely happens among basic industries. Indeed, output reuse seems particularly likely 
for agriculture, low-tech heavy industry and constructions, among others. However, since much depends 
on the exact definition of industries and commodities we cannot exclude that cyclicity happens for basic 
industries. Moreover, there is no particular reason to expect that the indecomposable diagonal blocks 
representing non-basic industries are primitive. Therefore, given the characteristics of actual production 
processes, Corollary 4 might suggest, at most, that non-basic industries are more susceptible to have a 
cyclical flow of commodities among themselves than basic ones. 

4. Conclusions 

In this note I have provided an economic interpretation of imprimitive indecomposable matrices in 
the Leontiev-vonNeumann-Sraffa framework. Imprimitivity implies cyclical vertical relationships among 
groups of industries which, either directly or indirectly, use each others’ products as inputs. If the index 
of imprimitivity is h, then industries may be divided in h groups such that each group produces the 
inputs of one and only one other group and there is no direct flow of commodities between industries of 
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Flow of Commodities among Industries: A1, ..., As Imprimitive 

Figure 5. The sets N1,1, ..., N1,3, N2,1, ..., N2,4, ..., Ns,1, ..., Ns,4 identify a partition of N . There are s groups of industries, 
one for each block along the diagonal of the normal form. Each group k is constituted by hk sub-groups of industries 
encompassed by a cycle, where hk is the index of imprimitivity of the k-th block. Flows which are not part of inner cycles 
go from a sub-group to another belonging to a group with a greater index. 

the same group. 
Starting from the known results of Perron (1907) and Frobenius (1912) I have applied graph theory 

in order to give an economically intuitive characterization of both primitivity and imprimitivity. As a 
byproduct I have showed that, when an economy has several cyclic flows of commodities among groups 
of industries, the analysis of imprimitivity helps to identify them in an easy way. Finally, I have stated a 
sufficient condition for primitivity which offers some reasons to expect non-basic industries to have more 
vertical cyclical flows than basic ones. 
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