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Abstract - The Prisoner Dilemma is a typical structure of interaction in human societies. In spite of a long 
tradition dealing with the matter from different perspectives, the emergence of cooperation or defection still 
remains a controversial argument from both empirical and theoretical point of views. In this paper an innovative 
model is presented and analyzed in the attempt to provide a reasonable framing of the issue. A population of 
boundedly rational agents repeatedly chooses to cooperate or defect. Each agent’s action affects only her 
interacting mates, according to a network of relationships which is endogenously modifiable since agents are 
given the possibility to substitute undesired mates with unknown ones. Full cooperation, full defection and 
coexistence of both cooperation and defection in homogeneous clusters are possible outcomes of the model. A 
computer program is developed with the purpose of understanding the impact of parameters values on the type 
of outcome. Numerous simulations are run and the resulting evidence is analyzed and interpreted. 
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1 Introduction

The contrast between cooperation and defection is usually applied to account for
the dichotomy between a behavior which is superior from a societal point of view
and another one which is superior from an individual point of view. The Prisoner
Dilemma game is the standard representation embedding the strategic characteris-
tics of such a dichotomy. The emergence of cooperation in the Prisoner Dilemma
is often explained by means of the Folk theorem.1 According to it, if interaction
is infinitely or indefinitely repeated and rational agents use appropriate tit-for-tat
strategies, then cooperation may emerge (Fudenberg and Maskin (1986), Kreps et al.
(1982)).

In some cases such argument provides a plausible explanation of the emergence
of cooperation in real world interactions. The application of a Folk theorem binds
explanation to be given in terms of full rationality. However, this has the drawback
of making the interaction setting highly inflexible. More precisely, in its basic version
the Folk theorem requires the same strategic situation to be repeated an infinite or
indefinite number of times and, in particular, the same players to participate in each
repetition.

Real world interactions not always fit in such a rigid picture. For instance,
there are contexts where the set of players is modifiable by the act of will of some
individual or group. In others, an exit option or some kind of punishment are
available. There are even more complex patterns of interaction where several groups
of individuals simultaneously play a Prisoner Dilemma game and any player can
decide, according to some rule, whether to exit or enter one ore more groups. With
respect to explaining the emergence of cooperation in these cases, the Folk theorem
is of little use.

In the last two decades, there have been several attempts to extend the result of
the Folk theorem by introducing more realistic assumptions about the setup of the
game. For this purpose, distinct sets of conditions under which a Folk theorem holds
have been identified (see Gintis (2004) for a critical survey). Although this research
line is very fascinating from both technical and philosophical perspectives, in our
opinion – and for what concerns the issue under consideration – it is not worth the

1The survival of cooperation has been studied from different perspectives. It is not the aim
of this paper to provide a survey of such numerous attempts. However, it is worth mentioning,
besides the cited approach in repeated games with fully rational agents, the stream of biological
models where behaviors are defined as traits evolving through a selection process (Trivers (1971)
and Dawkins (1976) for a broad discussion on the topic).
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effort. The reason is that the more realistic are the assumptions about the setup
of the game, the more demanding, and hence the less realistic, is the requisite of
full rationality. The derivation of new versions of the Folk theorem based on more
realistic assumptions have therefore produced the main effect of moving the scarce
realism of assumptions from the sphere of the game setup to that of agents’ cognitive
capabilities.

Our opinion is that cooperative behaviors may be better analyzed and under-
stood in a framework where a population of self-regarding agents interacts in a
boundedly rational way – i.e. with limited cognitive capabilities – but where agents
can also modify, to some extent, the structure of local relationships they are involved
in.2

The present contribution is innovative under two respects if compared with the
existing literature. The first novelty is the modeling of agents’ interaction. Indeed,
we give agents not only the chance to choose between cooperation and defection,
but also to modify the composition of their neighborhood, making the entire pattern
of interactions endogenous. For this purpose, we model the interaction structure –
that is, who interacts with whom – through a network where agents are nodes and
links represent bilateral interactions. We assume that each agent has a maximum
number of neighbors. This is meant to take into account the physical constraint
due to the finiteness of time which can be spent interacting with other people. A
part from that, we impose no particular restriction on the interaction structure and,
hence, our representation is more general than spatial or lattice-based ones. Locality
of interaction is introduced in the usual way by assuming that the effects of agents’
actions spread to all and only their neighbors. Finally, in each period of time agents
are randomly given the opportunity to cease some existing relationships3 and, if it
is feasible, to form new ones.4

2The idea that locality of interaction and cooperative behaviors might be related is not novel.
Among others, Eshel et al. (1998) and Bergstrom and Stark (1993) consider agents arranged in a
circle each interacting with her two immediate neighbors. Jun and Sethi (2004) adopt the same
spatial structure but let agents interact with a parameterized number of neighbors, varying that
parameter to analyze the effects. In Eshel et al. (1998) agents are arrayed in a plane rather than
along a line. Many of the models in this stream of literature take imitation as the driving force
behind strategy selection.

3The possibility for a cooperator to disconnect a defector may be interpreted as a form of targeted
punishment.

4Zimmermann et al. (2004) proposed a model somehow close to ours in representing the inter-
action structure through an evolving network. A part from other differences, it is worth underlying
that in their model, unlike ours, behavior is adapted simply by imitation of the neighbor with a
highest pay-off and, above all, only defecting agents are given the possibility to break a link.
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The second novelty concerns the aim of the paper. Instead of being only con-
cerned with sustainability of cooperation, we consider more valuable to investigate
the joint emergence of cooperation and behavioral segregation. As a matter of fact,
the literature provides evidence in favor of cooperative outcomes (Boyd and Rich-
erson (2004)) as well as in favor of non-cooperative ones. Obviously, economists
consider the latter less remarkable since defection is not a very surprising outcome
once the one-shot version of a Prisoner Dilemma game is considered. Therefore,
economists’ focus is mainly on the emergence of cooperation and not much attention
is given to whether cooperation and defection coevolve and how this may happen. In
our opinion, a better insight can be obtained by looking at cooperation and defection
as jointly emerging from the evolution of the interaction structure. More precisely,
we expect cooperation to prevail among some agents and defection among some
others, people being eventually clustered on the basis of their behavior as a con-
sequence of many uncoordinated individual decisions. Notice that this outcome is
particularly likely if relationships between cooperators tend to last more than those
involving at least one defector. Interestingly, this may provide a further explanation
of the sustainability of cooperation on a payoff basis. The coexistence of clusters of
cooperators and defectors may prevent cooperators from deviating because if they
defect there is a chance of being excluded from a cooperating cluster.

The following is a summary of the rest of the paper. Section 2 introduces the
model. A population of agents is arranged in a network describing the interaction
structure. In every period each agent is either a cooperator or a defector, takes a
benefit for each cooperator in her neighborhood, and sustains a cost if she coop-
erates. Agents are randomly selected to update their behavior. When selected an
agent decides about whether to cooperate or defect according to a simple bound-
edly rational optimization. In addition, agents are randomly given the possibility
to cease their existing interactions and start new ones with unknown individuals,
up to their maximum number. Section 3 provides preliminaries and definitions. In
particular, an intuitive measure of behavioral clustering is introduced and applied
in order to define an appropriate concept of equilibrium which takes into account
the specific features of our framework.

The complexity of the situation we model prevents us from providing a com-
plete analytical characterization of solutions. Nevertheless, some results are derived.
First, the system always converges in probability towards an equilibrium. Second,
in any equilibrium with at least one cooperator there is a significant lower bound for
behavioral clustering. This implies that a certain degree of behavioral segregation
emerges in all cases where both cooperation and defection survive. Moreover, since
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there exist equilibria where groups of cooperators and groups of defectors coexist
and equilibria where only one behavior survives, we are interested in understanding
the main determinants of either type of equilibria. For this purpose, we use compu-
tational means to investigate their frequency of emergence. In Section 4 we report
the results of thousands of simulations and provide evidence for the emergence,
persistence and coexistence of clusters of cooperators and clusters of defectors in a
significant number of cases. Finally, in Section 5 we conclude with a summary of
results. Proofs are given in Appendix A.

2 The Model

Description. Let N denote the finite agents’ set with n ≡ ||N || its cardinality.
Let the network of connections among agents be represented by a n×n adjacency

matrix G, with its generic element gij such that gij = 1 if agent i is linked to agent
j, gij = 0 otherwise. With the purpose of making G correctly represent reciprocal
relationships, we impose irreflexivity, gii = 0 for any i ∈ N , and symmetry, gij = 1
implies gji = 1 for any i, j ∈ N . Moreover, we assume a physical constraint on the
number of interactions an individual can have; we denote such a bound with m.

Two individual behaviors can be adopted, namely cooperation and defection.
The vector V ∈ {0, 1}n represents the collection of behaviors over the entire popu-
lation, with 1 and 0 standing for cooperation and defection respectively.

We refer to a triple (N,G, V ) as an interaction state.
Let ni ≡

∑
j gij be the number of people interacting with i – her neighbors –

and n1
i ≡

∑
j gijVj be the number of cooperating ones. In any interaction state

(N,G, V ) every agent i ∈ N gets a benefit b from each of her cooperating neighbors.
Moreover any cooperator suffers a loss of l, due to the effort of cooperating. Hence
agent i’s payoff may be written as

πi(N,G, V ) = bn1
i − Vil

Dynamics. We assume a fixed population where individuals have the possibility
to revise both their behavior and the composition of their neighborhood.

Time is discrete. The dynamic process undergone by the system at each time
can be obtained by the sequential application of the steps illustrated in figure 1.

1. An agent is randomly selected to update her behavior.
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2. Every agent can sever each of her existing links with probability p ∈ (0, 1).
All the severing decisions are taken simultaneously.

3. Once disconnections have been carried out, agents having less than m connec-
tions decide whether to enter the market for new connections. Requests are
then randomly matched and satisfied if possible, until no more connections
are feasible.5

4. Payoffs are calculated and distributed to agents.

t t + 1
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Figure 1. Behavior update (BU), link disconnection (LD), link formation (LF) and payoff assign-
ment (PA) sequentially occur.

Agents are assumed to be boundedly rational in the following sense.

1. Local knowledge: besides the rules of the game, an agent knows only her
behavior and the behaviors of her neighbors at instant t.

2. Laplacian reasoning : agents adopt Laplace decision rule which assigns equal
probability to every interaction state when no information about the relative
likelihood of interaction states is available.

3. 1-period-looking : each agent takes into consideration only the payoff paid at
instant t + 1.

Agents make their choices in the attempt to maximize expected payoff, where the
latter is calculated according to the limited cognitive capabilities described above.

5Notice that some requests may remain unsatisfied when, among those willing to connect, there
are only agents that are already linked together.
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In addition, weakly dominated actions are always discarded and this is assumed
to be known by all agents. Furthermore, population size is assumed to be large
enough in order to obtain the negligibility of i) the fraction of agents with less than
m connections after step 3, and ii) the impact of private information in the process
of forming expectations about the current interaction state.

We can now solve the decision problem an agent faces in each period of time.
By backward reasoning, let us begin with step 3. Suppose agent i is linked to less
than m neighbors. By Laplacian reasoning she assigns a positive probability to the
existence of cooperators. Hence, if i requests for a new connection then there is
the possibility that a cooperator disconnects one of her neighbors, applies for a new
connection and is paired off with i. Therefore, for each of i’s vacant slots, requesting
for a new connection weakly dominates the alternative choice because it gives a null
payoff if the agent is paired off with a defector, or a positive payoff if paired off with
a cooperator, contra the null payoff of being alone. As a consequence, agents with
less than m connections always apply for new ones.

Next, consider step 2. Suppose agent i is selected to possibly sever a certain link
ij. If j is a defector then severing weakly dominates not severing because the former
allows the request for a new connection – with best and worst cases as described in
step 3 – contra the null payoff of being connected to a defector. For similar reasons,
if j is a cooperator then not severing weakly dominates severing.

Let us now examine step 1. Suppose agent i is given the possibility to modify
her behavior. By results of step 2 the pair cooperator-cooperator does not dis-
connect, the pair cooperator-defector disconnects, the pair defector-cooperator does
not disconnect and the pair defector-defector disconnects. Notice that by virtue of
Laplacian reasoning these pairs are reputed equiprobable. Therefore, the frequency
of cooperators in the market for new connections expected by agent i is 1/4 and
the benefit of severing link ij is b/4. Hence, the payoff of agent i may be seen as
composed of two parts. The first does not depend on the chosen behavior and is
equal to the sum of n1

i b, representing the total benefits accruing from cooperating
neighbors, and p(m − n1

i )b, representing the expected benefits due to new connec-
tions coming from i’s severing decisions. If i cooperates, the second part is equal
to −l which represents the individual loss of cooperating; instead, if i defects, the
second part is equal to the sum of p(m− n1

i )b/4, representing the expected value of
new connections coming from the severing decisions of i’s defecting neighbors, and
−pn1

i b/4, representing the expected cost of losing cooperating neighbors. Summing
up, πi(1) and πi(0) are what i expects, respectively, from cooperating and defecting
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πi(1) = n1
i b + p(m− n1

i )b/4− l

πi(0) = n1
i b + p(m− n1

i )b/4 + p(m− n1
i )b/4− pn1

i b

Agent i chooses to cooperate whenever πi(1) > πi(0), that is if n1
i > l/pb+m/4. On

the contrary, agent i chooses to defect whenever n1
i < l/pb + m/4. When equality

holds, agent i is indifferent and, as a tie-break rule, defection is assumed. We
define n∗ as the threshold number of cooperators in a neighborhood which induces
cooperation, namely the smallest integer greater than l/pb + m/4.

3 Definitions and Analytical Results

Measures. In order to investigate the evolution of cooperation we need a measure
of its spreading. A simple and natural one is the fraction of cooperators in the
population. Let us indicate with n1 ≡

∑
i Vi the number of cooperators in an

interaction state (N,G, V ). We refer to the ratio

C =
n1

n

as the measure of cooperation relative to a certain interaction state.
We are also interested in the degree of behavioral clustering. Intuitively, we

qualify an interaction state as highly behaviorally clustered if interactions between
agents who both cooperate or defect are sensibly more frequent than interactions
between cooperators and defectors. More precisely, we focus on the number of inter-
actions between individuals behaving in the same way with respect to the number
of interactions between individuals behaving differently. The following measure of
behavioral clustering is adopted. Let n1,1 ≡ V ′GV be the number of cooperator-to-
cooperator links and let n1,0 ≡ V ′G(e−V ) be the number of cooperator-to-defector
links, where e is a vector with all elements equal to 1. Let n0,1 and n0,0 be de-
fined similarly. Finally, let n1,01 ≡ V ′Ge and n0,01 ≡ (e − V )′Ge be the number of
cooperator-to-anyone links and the number of defector-to-anyone links respectively.
The matrix

B =

 n1,1/n1,01 n1,0/n1,01

n0,1/n0,01 n0,0/n0,01


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denotes the behavioral clustering of an interaction state. The first row of B repre-
sents the fraction of existing links of cooperators connecting to other cooperators –
entry b11 – and to defectors – entry b12. Similarly, the second row of B represents the
fraction of existing links of defectors connecting to cooperators – entry b21 – and to
other defectors – entry b22. Clearly, the first row is undetermined when there are no
cooperators while the second row is undetermined when there are only cooperators.
Finally, notice that each row sums up to one.

Equilibrium. We proceed to define and comment an equilibrium notion which
is appropriate to the dynamics into analysis. Let us indicate with (N,Gt, V t) the
interaction state at time t.

Definition 1 [Equilibrium]

An interaction state (N,Gt̄, V t̄) is an equilibrium if and only if

1) ∀t > t̄, V t = V t̄

2) ∀t > t̄, n1,1(N,Gt, V t) = n1,1(N,Gt̄, V t̄)

The first condition requires the constancy over time of agents’ behaviors. This
implies that in equilibrium the measure of cooperation C must be constant. The
second condition is meant to capture the notion of stability for the relevant aspects
of the interaction network G. Connections involving al least a defector will never be
stable while connections between cooperators only will never be broken. Therefore,
it seems reasonable to define an equilibrium notion only with respect to the latter,
more precisely by requiring the infeasibility of new connections between cooperators.
In conclusion, if what concerns is an aggregate and impersonal description of an
interaction state, then the second condition of the above definition seems to capture
the gist of network stability.

Equilibria: existence and convergence. At this stage we deal in greater de-
tail with equilibria, investigating the issues of both existence and convergence and
providing a further characterization of their properties.

The existence of at least one equilibrium is easily established by considering a
limit case. Consider any interaction state where n1 = 0. Any agent i will never
change her behavior because n1

i = 0 < n∗. Since cooperators do not exist and will
never exist, the number of links between cooperators is trivially constant and equal
to zero in any period from now on.
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Absolute convergence of the system to some equilibrium state is not ensured.
However, we can prove convergence in probability. In order to get such a result we
crucially exploit the finiteness of the state space and the positiveness of probabil-
ity associated to any finite sequence of states. The detailed proof is given in the
appendix.

Proposition 1 (Convergence in Probability)
As time goes to infinity, any interaction state converges almost surely to an equilib-
rium.

Proposition 1 tells us that sooner or later an equilibrium interaction state emerges.
By focusing on equilibria we can assess the long run behavior of the system. There-
fore, we turn to the investigation of equilibrium characteristics.

For n∗ > m and for n∗ = 0 any equilibrium interaction state (N,G, V ) must
satisfy, respectively, the condition C = 0 and C = 1.6 For 0 < n∗ ≤ m we cannot
exclude any value of C for equilibria, ranging in principle from 0 to 1. In addition,
notice that the system we are dealing with is non-ergodic, meaning that initial
conditions matter for equilibrium selection and, in particular, for the value that C
will assume.

As regards behavioral clustering we have already noticed that the rows of B
sum up to one, which allows to restrict attention to b11 and b22. However, the same
reasons behind the restriction of network stability to connections among cooperators
only, suggest to consider b11 the opportune index of behavioral clustering. Therefore,
we turn our attention to the range of values b11 can take. Trivially, if C = 0
then b11 is indeterminate. Moreover, in equilibrium any cooperator is satisfied with
her current choice implying that all cooperators must have at least n∗ cooperating
neighbors. Hence, if C > 0 then b11 ≥ n∗/m. This bound can be refined exploiting
the fact that i) the number of cooperators with less than m cooperating neighbors
is at most (n∗ − 1), because otherwise some defector could become a cooperator,
and ii) there must be at least (n∗ + 1) cooperators, since there exists a cooperator
and she must have at least n∗ cooperating neighbors. In the proof of Proposition 2
we carry out such refinement obtaining a function of n1, n∗ and m whose infimum
is easily computed.

6The case n∗ = 0 is considered for completeness, but it is impossible in our model of individual
decision-making since n∗ > l/pb + m/ > 0.
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Proposition 2
Any equilibrium interaction state with C > 0 must satisfy

b11 ≥
3
4

Notice that if there are only cooperators b11 is trivially equal to 1.
The analytical results we have exposed do not provide a full explanation of

the subject we are addressing. In our model there are equilibria where clusters of
cooperators and clusters of defectors coexist and equilibria where only one behavior
survives. We refer to the former as mixed equilibria and to the latter as pure ones.
Our aim is to understand which conditions – that is, which parameters values –
favor the emergence of segregated clusters of cooperators and defectors instead of
the achievement of complete cooperation or defection. By proposition 2 we know
that in mixed equilibria there is a high degree of behavioral clustering.

However, because of the complexity of the dynamic system under consideration,
we found extremely difficult to obtain an analytical characterization of the effects
that parameters have on the frequency of appearance of mixed and pure equilibria.
For this reason we run thousands of simulations in order to collect data suitable for
analysis by induction.

4 Simulation results

A first examination of the dynamic rules of the system brings us to the following
observations:

- the threshold n∗ matters for individual choice of behavior and hence presum-
ably affects where the system tends to,

- parameters l, b, p and m determine the value of n∗,

- the probability p is also relevant for the rate of renewal of connections, possibly
having further non-trivial effects on aggregate outcomes,

- population size n and neighborhood dimension m may affect the emerging
configuration of the system for combinatorial reasons.

Let us concentrate first on n∗ and p. Since p also indirectly influences the system
by modifying n∗, we choose to counterbalance this effect by adequately adjusting l
and b. Unlike m, in fact, l and b do not exert any other influence on the system
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and therefore they suit such adjusting role. For the same reason l and b are of no
interest apart from their effect on n∗. Three hundreds simulations have been run for
several vectors of parameters values, where n∗, p (and consequently l/b) vary while
n and m are kept fixed at 30 and 7 respectively.7

Table 2 in appendix B shows the number of mixed, pure cooperating and pure
defecting equilibria evidencing that

- p is positively correlated with the emergence of mixed equilibria,

- the frequency of mixed equilibria first increases as n∗ increases and then it
decreases when n∗ gets over 4.

These results can be explained as follows. Notice that the possibility to sever
a link is exploited only when that link connects to a defector. Hence, the higher
is p the greater is the robustness of cooperator-to-cooperator links compared with
other kinds of links. Therefore, a high value of p favors the formation of self sus-
taining clusters of cooperators. Moreover, by isolating cooperators p also hinders
cooperation from spreading over the entire population. As regards n∗, notice that
4 cooperators represents the middle value in the range of variation of n∗.8 Then,
it seems plausible that the closer n∗ to its middle value the higher the probability
neither cooperation nor defection prevails.

With the aim of better understanding the type of influence exerted by n∗ and
p, we carry out some simple OLS estimates with different specifications using p and
|n∗ − 4| as basic regressors. In particular, we were doubtful whether the influences
of |n∗ − 4| and especially p were more than proportional and whether there was
a separable joint effect. As table 1 shows, the explanatory power of the model
measured by R2 decreases when one, the other or both regressors are modified by an
exponential9 transformation. Moreover, the explanatory power (obviously) increases
when p · |n∗−4| is added, but very slightly and the new regressor is not significantly
different from zero. For these reasons we conclude that the linear dependence seems
to best fit and a separable joint effect is unlikely to exist.

7A higher number of simulations might have been run and/or greater values for n and m might
have been used. However, we noticed that by progressively raising n and m the qualitative meaning
of results was not changing while the convergence time was dramatically increasing. Moreover, after
300 runs we found that results varied very slightly.

8In fact, an agent can always cooperate, or cooperate if she has a number of cooperating neighbors
at least equal to 1, or 2, or 3, or 4, or 5, or 6, or 7, or never cooperate. Hence, the range of variation
of n∗ counts 9 different possibilities (since m = 7 ) with 4 its middle value.

9We tried other types of tranformations getting similar results which, therefore, have not been
reported.
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Table 1. OLS estimates

regressors coeff. prob. R2

c 58.99 0.00
p 67.24 0.00 0.758

|n∗ − 4| -34.57 0.00

c 24.56 0.03
exp p 38.49 0.00 0.732

|n∗ − 4| -34.57 0.00

c 58.01 0.00
p 67.24 0.00 0.735

exp |n∗ − 4| -9.55 0.00

c 23.59 0.46
exp p 38.49 0.00 0.709

exp |n∗ − 4| -9.55 0.00

c 53.48 0.00
p 85.37 0.00 0.766

|n∗ − 4| -29.98 0.00
p · |n∗ − 4| -15.11 0.27

Let us now try to establish which contribution n and m give to the emergence of
mixed equilibria. Computer simulations become extremely time-demanding when
both n and m increase, posing serious constraints to the extent of our investigations.
For this reason, we restrict our attention to the impact of m/n, which we imagine
is the key parameter here. A further problem is constituted by the fact that, as
n increases, the velocity of connections renewal increases relatively to the velocity
of behavior update if just one agent per period is allowed to modify her behavior,
as the model setup provides. Since we are interested in the net effect of m/n we
counterbalance this by proportionally raising the number of agents who are allowed
to change behavior.

Three hundreds simulations have been run for various population sizes and for
three couples of p and n∗, while keeping m fixed to 7. Results are in tables 3, 4
and 5, suggesting that an increase in population size implies a slight increase in the
number of mixed equilibria. Intuition provides ambiguous arguments for this result.
If n rises then more clusters can form but each possible cluster is less likely. In
any case, the outlined influence of m/n requires further investigation to be better
understood.
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5 Conclusions

In this paper we show how clusters of cooperators and clusters of defectors can
emerge from a single population, as the outcome of many uncoordinated individ-
ual decisions. The key element we introduce is the individuals’ ability to affect
the composition of their neighborhood. In particular, agents have the chance to
substitute undesired neighbors. Such enrichment of the strategic framework have
important consequences. First, individuals cease relationships with defectors and
preserve those with cooperators. Therefore, the only source of instability for inter-
actions between cooperators is a change of behavior in favor of defection. Second,
individuals benefit if disconnected by defecting mates and lose if disconnected by
cooperating mates. Hence, the value of cooperation (defection) is positively (nega-
tively) affected by the number of cooperators in the neighborhood, generating a sort
of conformity effect and increasing the likelihood that cooperators do not change
behavior. These two facts imply that cooperators are likely to aggregate in clusters,
segregating themselves from the rest of population. More precisely, we show that
the system converges almost surely to an equilibrium where, if there is at least a
cooperator, then not less than 3/4 of all relationships cooperators have are with
other cooperators.

Furthermore, we investigate the frequency of emergence of equilibria where both
cooperation and defection survive and, in particular, how it depends on parameters
values. By means of simulations two main determinants are found.10 The first is
the rate of links renewal, whose increase has the effect of raising the instability of
relationships involving at least one defector, hence decreasing the relative instabil-
ity of relationships between cooperators and favoring their isolation. The second is
the ratio between the threshold for cooperation and the neighborhood size, whose
distance from the half makes more likely the survival of a single behavior. Intu-
itively, if either too many or too few cooperating neighbors are required to make
cooperation convenient then it is likely that, respectively, either everybody defects
or everybody cooperates. In addition, we found evidence of a slight impact of the
relative maximum number of relationships that individuals can have. In particu-
lar, a smaller size of neighborhoods with respect to that of population seems to
increase the emergence of behavioral clusters. This result is not totally satisfying.
In fact, although a smaller relative size of neighborhoods allows for more clusters,
each of them is less likely. We suspect there may be combinatorial issues behind

10Simulations are done using an ad hoc computer program developed by the authors. Both the
executable file and C++ source codes are available on request.
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this outcome and, in any case, in order to have a better understanding of the phe-
nomenon more simulations must be run with greater sizes of both population and
neighborhoods.

The next step along this line of research is to introduce idiosyncratic elements
into agents’ decision problems and to investigate in which equilibrium states the
system is likely to spend most time. Our suggestion is to allow for random per-
turbations of both behavior and connections, taking into account the possibility for
agents to make all kinds of mistakes and making the system ergodic. This would
permit the study of the stochastically stable distribution, allowing for substantial
selection among the vast set of equilibria.
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A Proofs

Proof of Proposition 1. Let QT (N,G, V ) be the probability that, starting from
an interaction state (N,G, V ), the system will be in an equilibrium state in T
periods.11

Notice that, if QT (N,G, V ) ≥ q > 0 for any (N,G, V ), we have

∀l ≥ 1, 0 ≤
l∏

m=1

(
1−QT

(
gT (m−1), V T (m−1)

))
≤ (1− q)l

where the term in the middle of the above expression is the probability the system
will not converge to a stable state in lT periods. Clearly, taking the limit for l →∞
such a probability goes to 0.

We are left to show that QT (N,G, V ) ≥ q > 0 for any (N,G, V ) and we will do
that in three steps; the first two steps allow to assert that with positive probability a
state with certain properties is reached in a finite number of periods whatsoever the
initial state, while the third step simply consists of recognizing that the state that
has been reached is indeed an equilibrium. Let us first introduce some of definitions
which will be used in the following.

The set of always cooperating cooperators is C(N,G, V ) ≡ {i ∈ N : V t
i = 1,∀t ≥

0}, the collection of those players that are cooperating in the current state (N,G, V )
and will surely be cooperating i any future state according to the dynamics described
in the paper.

A sub-state (M,G, V ) with M ⊆ N is the restriction of a state to a certain
subset of players where only modalities of and links between them are considered.
Finally, a sub-state of always cooperating cooperators (C(N,G, V ), G, V ) is called
unmodifiable if and only if (C(N,Gt, V t), Gt, V t)(C(N,G, V ), G, V ) for all t ≥ 0,
that is the set of always cooperating cooperators remains the same forever and no
connections are created or destroyed between them.

Step I. There exist t1(N,G, V ) and α1(N,G, V ) > 0 such that starting from
(N,G, V ) the probability to be after t1 periods in a state (N,G′, V ′) such that
(C(N,G′, V ′), G′, V ′) is unmodifiable is at least α1.

11Here and in the following (N, G, V ) has to be intended as (N̄ , G, V ), where only G and V are
left to vary while N is exogenously fixed and constant over time. Moreover, (N, G, V ) without any
apix is used as shorthand for (N, G0, V 0), that is the interaction state at time 0.
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Let us prove the above statement. Ad absurdum, suppose that starting from
(N,G, V ) for all t the probability to be after t periods in a state (N,G′, V ′) such
that (C(N,G′, V ′), G′, V ′) is unmodifiable is 0. Therefore, the current sub-state
(C(N,G, V ), G, V ) is not unmodifiable; this means that there exists t̃ such that
(C(N,Gt̃, V t̃), Gt̃, V t̃) 6= (C(N,G, V ), G, V ) with positive probability α̃. The sub-
state (C(N,Gt̃, V t̃), Gt̃, V t̃) does not have to be unmodifiable either, therefore ap-
plying the same reasoning as before another modifiable sub-state is obtained after
a certain length of time with positive probability. This sequence of modifiable sub-
states has to be infinitely long. However, this sequence does not admit cycles,
because any always cooperating cooperator will always be a cooperator, and any
link between always cooperating cooperators will remain forever since a link be-
tween cooperators is never destroyed and they will always remain cooperators. The
infiniteness of a sequence without cycles is in contradiction with the finiteness of the
state space.

There exist t̄1 and ᾱ1 > 0 such that starting from any (N,G, V ) the probabil-
ity to be after t̄1 periods in a state (N,G′, V ′) such that (C(N,G′, V ′), G′, V ′) is
unmodifiable is at least ᾱ1.

For the proof of this statement it is sufficient that t̄1 is the maximum t1(N,G, V )
for any (N,G, V ), and ᾱ1 is the minimum α1(N,G, V ) for any (N,G, V ), with the
existence of t̄1 and α1(N,G, V ) ensured by the finiteness of the state space. In order
to be convinced notice that, given t1(N,G, V ) and α1(N,G, V ), then trivially for
any t ≥ t1 the probability to be after t periods in a state whose sub-state of always
cooperating cooperators is unmodifiable is at least α1.

Step II. If (C(N,G, V ), G, V ) is unmodifiable then there exist t2(N,G, V )
and α2(N,G, V ) > 0 such that starting from (N,G, V ) the probability to be after
t2 periods in a state (N,G′, V ′) such that if i /∈ C(N,G′, V ′) then Vi = 0 is at least
α2.

Suppose not and take a state which has the minimum number of cooperators
among those states reachable with positive probability. Such a state exists by the
finiteness of the state space. There will be cooperators who are not belonging to
C(N,G, V ), by the absurd hypothesis, and none of them can be willing to change be-
havior, since otherwise another state with an inferior number of cooperators would
be reachable with positive probability. Any cooperator has therefore a sufficient
number of cooperators to voluntarily cooperate. Because connections between co-
operators are never broken, those cooperators will always be cooperating and the
set C(N,G, V ) would not be unmodifiable, against the initial hypothesis.
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For all (N,G, V ) if (C(N,G, V ), G, V ) is unmodifiable then there exist t̄2 and
ᾱ2 > 0 such that starting from (N,G, V ) the probability to be after t̄2 periods in a
state (N,G′, V ′) such that if i /∈ C(N,G′, V ′) then Vi = 0 is at least ᾱ2.

The proof of this statement consists of a simple check. Let t̄2 be the maximum
t2(N,G, V ) for any (N,G, V ) such that C(N,G, V ) is unmodifiable, and let ᾱ2 be
the minimum α2(N,G, V ) for any (N,G, V ) such that C(N,G, V ) is unmodifiable,
with the existence of t̄2 and ᾱ2 ensured by the finiteness of the state space. In order
to see why this is true, notice that given t2(N,G, V ) and α2(N,G, V ), then for any
t ≥ t2 the probability to be after t periods in a state with all defectors except always
cooperating cooperators is at least α2, since no cooperator can emerge after that all
non always cooperating agents have become defectors, otherwise being linked only
with always cooperating agents and hence always cooperating herself.

Step III. Starting from any state (N,G, V ) in t̄1 · t̄2 periods with at least
probability ᾱ1 · ᾱ2 the system will reach a state (N,G∗, V ∗) where the sub-state
(C(N,G∗, V ∗), G∗, V ∗) is unmodifiable and every non always cooperating cooperator
is a defectors. Such a state (N,G∗, V ∗) is an equilibrium, according to definition
1. In fact, always cooperating cooperators will cooperate forever, no cooperator
can emerge among defectors, and no new connection between cooperators can be
established since (C(N,G∗, V ∗), G∗, V ∗) is unmodifiable. Hence, by setting T = t̄1·t̄2
and q = ᾱ1 · ᾱ2 we get the desired result. Q.E.D.

Proof of Proposition 2. As previously defined, n1 denotes the number of co-
operators. Moreover, let n̂1 indicate the number of cooperators who have a full
neighborhood of cooperators, and let ñ1 indicate the remaining ones, ñ1 ≡ n1 − n̂1.

Being in equilibrium, any cooperating agent is willing to cooperate, and hence
she has at least n∗ cooperating neighbors. Therefore n1,1 ≥ ñ1n∗ + n̂1m.

If C > 0 then n1 ≥ 1. Moreover, since any cooperator has at least n∗ cooperating
neighbors n1 ≥ n∗ +1. In equilibrium it is also true that at most n∗−1 cooperators
have a non full neighborhood, ñ1 ≤ n∗ − 1, in order for any defector not to have a
chance to become a cooperator. Clearly, given n1 the higher ñ1 the lower the bound
for n1,1, so n1,1 ≥ (n∗ − 1)n∗ + (n1 − n∗ + 1)m. Moreover, at least one cooperator
must have a full cooperating neighborhood, implying that at least m+1 cooperating
agents exist, n1 ≥ m + 1.

The number of cooperator-to-anyone links, denoted by n1,01, is limited by the
number of cooperators multiplied by the maximum neighborhood size, n1,01 ≤ n1m.
The following bound
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b11 =
n1,1

n1,01
≥ (n∗ − 1)n∗ + (n1 − n∗ + 1)m

n1m
(1)

is increasing in n1 and, being interested in its minimum value, we set n1 = m+1.
Therefore,

b11 ≥
n∗(n∗ − 1) + m(m− n∗ + 2)

(m + 1)m
(2)

It is easy to check that the above expression, considered as a function of n∗, gets
its minimum value for n∗ = (m + 1)/2. By simple substitution into the expression
(2), we get that

b11 ≥
3m2 + 6m− 1

4(m + 1)m
>

3
4

(3)

Q.E.D.
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B Tables

Table 2. The Effect of p and n∗ for n = 30, m = 7

p l/b n∗ Mixed Eq. Coop. Eq. Def. Eq. % Mixed Eq.

0.03 0 2 3 297 0 1%
0.05 0 2 12 288 0 4%
0.09 0 2 29 271 0 10%
0.14 0 2 33 267 0 11%
0.22 0 2 29 271 0 10%
0.35 0 2 40 260 0 13%
0.60 0 2 75 225 0 25%
0.95 0 2 145 155 0 48%

0.03 0.01 3 3 295 2 1%
0.05 0.02 3 27 272 1 9%
0.09 0.03 3 109 189 2 36%
0.14 0.04 3 192 108 0 64%
0.22 0.08 3 231 68 1 77%
0.35 0.10 3 279 21 0 93%
0.60 0.15 3 291 9 0 97%
0.95 0.25 3 297 3 0 99%

0.03 0.05 4 102 94 104 34%
0.05 0.09 4 146 60 94 49%
0.09 0.12 4 226 11 63 75%
0.14 0.18 4 251 7 42 84%
0.22 0.30 4 274 0 26 91%
0.35 0.50 4 287 0 13 96%
0.60 0.80 4 299 0 1 99%
0.95 1.20 4 299 0 1 99%

0.03 0.07 5 3 3 294 1%
0.05 0.14 5 12 1 287 4%
0.09 0.23 5 18 0 282 6%
0.14 0.32 5 46 0 254 15%
0.22 0.55 5 90 0 210 30%
0.35 0.85 5 156 0 144 52%
0.60 1.50 5 229 0 71 76%
0.95 2.50 5 279 0 21 93%

0.03 0.11 6 0 0 300 0%
0.05 0.19 6 0 0 300 0%
0.09 0.31 6 0 0 300 0%
0.14 0.58 6 0 0 300 0%
0.22 0.85 6 1 0 299 0%
0.35 1.30 6 0 0 300 0%
0.60 2.00 6 41 0 259 14%
0.95 4.00 6 95 0 205 32%
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Table 3. The Effect of Relative Neighborhood Size for m = 7, p = 0.09, n∗ = 3

m/n Mixed Eq. Coop. Eq. Def. Eq. % Mixed Eq.

0.23 116 182 2 39%
0.12 132 168 0 44%
0.08 135 165 0 45%
0.06 147 153 0 49%
0.05 129 171 0 43%
0.04 146 154 0 49%
0.03 150 150 0 50%

Table 4. The Effect of Relative Neighborhood Size for m = 7, p = 0.03, n∗ = 4

m/n Mixed Eq. Coop. Eq. Def. Eq. % Mixed Eq.

0.23 75 120 105 25%
0.12 140 66 94 47%
0.08 173 40 87 58%
0.06 220 23 57 73%
0.05 244 18 38 81%
0.04 255 6 39 85%
0.03 261 6 33 87%

Table 5. The Effect of Relative Neighborhood Size for m = 7, p = 0.22, n∗ = 5

m/n Mixed Eq. Coop. Eq. Def. Eq. % Mixed Eq.

0.23 104 0 196 35%
0.12 114 0 186 38%
0.08 128 0 172 43%
0.06 137 0 163 46%
0.05 115 0 185 38%
0.04 135 0 165 45%
0.03 138 0 162 46%
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