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1 Introduction
Voting protocols are decision mechanisms involving disclosure by participants
of private information concerning their own preferences. Voting protocols are
solvable with respect to some game-theoretic solution concept or rule if for any
admissible preference profile there exists a non-empty set of solutions, and ef-
ficiently solvable if the resulting outcomes are Pareto efficient. Thus efficiently
solvable protocols are of special interest in that they both enjoy a suitably
defined strategic robustness and ensure Pareto-efficiency of the resulting strate-
gically stable outcomes.
Concept lattices of voting protocols provide a structural representation of

the a priori decision power of coalitions in terms of the events in outcome space
they are able to enforce. In particular, the lenght of the concept lattice of a
voting protocols does represent the layers of hierarchy among coalitions induced
by the protocol, while the width of the same lattice provides some information
about the extent to which coalitional decision power is distributed.
The present paper is devoted to the introduction and study of the concept

lattices of some prominent classes of efficiently solvable voting protocols. That
study is meant to provide some insight on the ‘structural’ distribution of decision
power among coalitions induced by a few protocols that are ‘nicely robust’ with
respect to some prominent game-theoretic solution concepts.

2 Model and results

2.1 Voting Protocols

Let N = {1, .., n} denote the set of players, X = {x1, .., xk} the set of outcomes,
and RX the set of linear (preference) orders on X. A strategic game form on
(N,X) is an array Γ = (N,X, (Si)i∈N , h) where Si is a set, the strategy set of

player i, i = 1, .., n and h :
nY
i=1

Si → X is a surjective function, the outcome func-

tion of Γ.A voting protocol (in strategic form, with fixed agenda) for (N,X,RX)
is a strategic game form Γ = (N,X, (Si)i∈N , h) such that Si ⊇ RX for some
i ∈ N. Moreover, a voting protocol is said to be basic if Si = RX for any i ∈ N ,
i.e. the outcome function of Γ is a social choice function.
A solution concept is a rule for solving games of a certain collection: e.g.

if RX is the set of admissible preferences for each player i ∈ N, then a solu-
tion concept for the set Γ(RN

X) =
©
(Γ, RN ) : RN ∈ RN

X

ª
of games induced by

game form Γ on the domain RN
X of all profiles of total preference preorders on

X is a correspondence σ : Γ(RN
X) →→

nY
i=1

Si. A few concrete examples of so-

lution concepts including Nash equilibrium, strong equilibrium and coalitional
equilibrium with threats will be introduced and discussed below.
Let Γ be a voting protocol and σ a solution concept for Γ(RN

X).Then, voting
protocol Γ is said to be σ-solvable over preference domain RN

X if σ((Γ, R
N )) 6= ∅

1



for any RN ∈ RN
X .

Moreover, at any profile of preference preorders RN = (R1, .., Rn) ∈ RN
X we

denote Par(RN ) the set of Pareto efficient outcomes, namely

Par(RN ) =

⎧⎪⎨⎪⎩
x ∈ X : for any y ∈ X

if (y, x) ∈
n\
i=1

Ri then (x, y) ∈
n\
i=1

Ri

⎫⎪⎬⎪⎭ .

Voting protocol Γ will be said to be efficiently σ-solvable over preference
domain RN

X if ∅ 6= h[ σ((Γ, RN ))] ⊆ Par(RN ) for any RN ∈ RN
X . It should be

emphasized that we do not impose any upper bound on the (finite) size of X.1

As mentioned in the Introduction, this paper will be devoted to the study of
concept lattices of certain important classes of efficiently solvable voting proto-
cols. This task will be accomplished by attaching certain coalitional game forms
to voting protocols.
In order to accomplish this task a few more notions are now to be introduced.

2.2 Coalitional Game Forms

A coalitional game form is a triple G = (N,X,E) where N and X are non-
empty sets denoting the sets of players and outcomes, respectively, and E :
P(N)→ P(P(X)) is the coalitional power function: the ‘power-value’ E(S) of
coalition S ⊆ N is the collection of all events A ⊆ X coalition S ⊆ N is able to
‘force’ (under some suitable interpretation of the latter notion). We also assume
#N ≥ 2 and #X ≥ 2 in order to avoid trivialities. A coalitional game form
(N,X,E) is a (standard) effectivity function (EF) if E satisfies the following
boundary conditions:

EF1) (Souvereignty) E(N) ⊇ P(X)\ {∅} ;
EF2) (Null Set Normalization) E(∅) = ∅;
EF3) (Exhaustiveness) X ∈ E(S) for any S, ∅ 6= S ⊆ N.
EF4) (Null Event Unenforceability) ∅ /∈ E(S) for any S , ∅ ⊂ S ⊆ N .
A CGF is monotonic if for any S, T ⊆ N and any A,B ⊆ X

[A ∈ E(S) and S ⊆ T entail A ∈ E(T )] and
[A ∈ E(S) and A ⊆ B entail B ∈ E(S)] .

In what follows we shall confine ourselves to monotonic CGFs.
Moreover, it is regular if for any S, T ⊆ N and A ⊆ X, A ∈ E(S) entails

X\A /∈ E(N\S), maximal if for any S, T ⊆ N and A ⊆ X, A /∈ E(S) entails
X\A ∈ E(N\S), superadditive if for any S, T ⊆ N and A,B ⊆ X, A ∈ E(S),
B ∈ E(T ) and S ∩ T = ∅ entail A ∩B ∈ E(S ∪ T ), convex if for any S, T ⊆ N
and A,B ⊆ X, A ∩ B ∈ E(S ∪ T ) or A ∪ B ∈ E(S ∩ T ) whenever A ∈ E(S)
and B ∈ E(T ), and additive if there exist positive probability measures p, q on
P(N),P(X) respectively s.t. A ∈ E(S) iff p(S) + q(A) > 1 (an additive EF is
also convex).
A (monotonic) simple game on N is an order filter of (P(N),⊇) i.e. a set

W , P(N) ⊇W 6= ∅, such that S ∈W and T ⊇ S entail T ∈W . The coalitions

1That kind of generality rules out simple majority voting protocols, which are strategically
robust only with (not more than) two outcomes.
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belonging toW are meant to represent the winning or all-powerful ones. Finally,
a CGF (N,X,E) is simple if there exists an order filter W of (P(N),⊇) such
that for any S ⊆ N, A ⊆ X, A ∈ E(S) if and only if either A = X and S 6= ∅
or A 6= ∅ and S ∈ W (notice that a simple EF is —by definition— both and
monotonic). Indeed, simple EFs amount to simple games as endowed with a
fixed outcome set.
We are mainly interested in those CGFs -and EFs- that can represent the

decision power of coalitions under a certain (deterministic) decision mechanism,
or strategic game form as defined above.
Now, the notion of decision power admits at least two distinct interpreta-

tions, namely “guaranteeing power” and “counteracting power” that in turn
correspond to the ability to force maximin and minimax outcomes, respectively.
Indeed, let Γ = (N,X, (Si)i∈N , h) be a voting protocol (or, for that matter,
any strategic game form). Then, the allocation of “guaranteeing power” under
voting protocol Γ is represented by the α − EF of Γ- denoted by Eα(Γ)- as
defined by the following rule: for any non-empty S ⊆ N ,

(Eα(Γ))(S) =

⎧⎨⎩
A ⊆ X: a tS ∈

Q
i∈S Si exists such that

h(tS , sN\S) ∈ A
for any sN\S ∈

Q
i∈N\S Si,

⎫⎬⎭.
Conversely, the allocation of “counteracting power” under voting protocol Γ

is represented by the β −EF of Γ, denoted by Eβ(Γ) and defined as follows :
for any non-empty S ⊆ N

(Eβ(Γ))(S) =

½
A ⊆ X : for any sN\S ∈

Q
i∈N\S Si some t

S ∈
Q

i∈S Si
and h(tS , sN\S) ⊆ A

¾
.

It is easily checked that (N,X,Eα(G)) is regular, (N,X,Eβ(G)) is maximal,
and both of them are monotonic satisfy null-event-unenforceability. Conversely,
it is well-known that superadditivity and monotonicity of an EF G = (N,X,E)
imply that it is α-playable i.e. a strategic game form Γ0 exists such that E =
Eα(Γ

0) : see Moulin(1983), and Otten,Borm,Storcken,Tijs(1995)).

2.3 Concept lattices of coalitional game forms and voting
protocols

We are now ready to introduce concept lattices of voting protocols.
The concept lattice of a CGF G can be defined through the following steps.
First, define the functions hE : P(P(N))→ P(P(X)) and iE : P(P(X))→

P(P(N)) for any S ⊆ P(N) , A ⊆ P(X) define
hE(S) = {A ⊆ X : A ∈ E(S) for all S ∈ S} and
iE(A) = {S ⊆ N : A ∈ E(S) for all A ∈ A} .

It is easily seen that (hE ,iE) is a Galois connection between (P(P(N)),⊆)
and (P(P(X)),⊆) i.e. for any S,T ⊆ P(N), and A,B ⊆ P(X),
i) if S ⊆ T then hE(S) ⊆ hE(T), and if A ⊆ B then iE(B) ⊆ iE(A), and

ii) (iE ◦hE) (S) ⊇ S,(hE ◦iE) (A) ⊇ A.
Now, consider

C(G) = {(S,A) ∈ P(P(N))× P(P(X)) : S = iE(A), and A = hE(S)} .
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In the language of formal concept analysis (see e.g. Ganter and Wille(1999))
an element (S,A) of C(G) is said to be a concept of the contextG, with extent S
and intent A (the latter notions are amenable to straightforward dualizations).
Thus, the (dual)2 concept lattice of G (sometimes also referred to as its

Galois lattice) is L(G) = (C(G), >) where for any (S1,A1), (S2,A2) ∈ C(G)
(S1,A1) > (S2,A2) iff A1 ⊇ A2 (which is provably equivalent to S2 ⊇ S1),

and
(S1,A1) ∧ (S2,A2) = (iE(hE(S1 ∪ S2)),A1 ∩A2)
(S1,A1) ∨ (S2,A2) = (S1 ∩ S2,hE(iE(A1 ∪A2)).

It is also well-known and easily shown that both (iE ◦ hE) : P(P(N)) →
P(P(N)) and (hE ◦ iE) : P(P(X)) → P(P(X)) are closure operators with
respect to set-inclusion (recall that a closure operator K on a preordered set
(Y,>) is a function K : Y → Y such that for any y, x ∈ Y : K(y) > y,K(y) >
K(x) whenever y > x, and K(y) > K(K(y)) ), and extents and intents of
concepts are precisely the closed elements -or fixed points- of (iE ◦ hE)and
(hE ◦ iE) respectively (i.e. (S,A) ∈ C(G) iff S = iE(hE(S)) and A =
hE(iE(A))).We shall also denote (iE ◦hE) and (hE ◦iE) by KG and K∗G,
respectively. The sets of all fixed points of KG and K∗G, are also called the
(Galois) closure systems of CGF G, and denoted by C and C∗, respectively.
Clearly enough, the concept lattice L(G) -that is also sometimes called the

Galois lattice of G (see e.g. Barbut and Monjardet (1970), chpt. V, vol.2) - is
lattice-isomorphic to the lattices of inclusion-ordered closure systems (C,⊆) and
(C∗,⊇), respectively (see Davey and Priestley (1990) , chpt. 11, p.227). Hence,
L(G) is complete, has a unique atom if G is null-set-normalized and a unique
co-atom if G satisfies null-event-unenforceability. Moreover, if G is linear then
L(G) is also linearly ordered.
Those basic facts concerning L(G) - which rely on the classic Birkhoff’s theo-

rem on concrete -i.e. polarity-induced- Galois connections (see Birkhoff(1967))-
can be summarized by the following3:

Proposition 1 Let G = (N,X,E) be a CGF. Then, a complete lattice
L(G) - the concept lattice of G, uniquely defined up to isomorphisms- can be
canonically attached to G. Moreover, i) if G is null-set-normalized, then L(G)
is dense i.e. has a minimum that is meet-irreducible ; ii) if G satisfies null-
set-unenforceability, then L(G) is co-dense i.e. has a maximum that is join-
irreducible; iii) L(G) is finite whenever either N or X is finite; iv) if G is
linear then L(G) is a chain.

2To be sure, the concept lattice as defined below is indeed endowed with the reverse ordering
of the concept lattice as usually defined in the literature. Therefore, as mentioned above, what
is referred to as a ‘concept lattice’ in the text is in fact the dual of a concept lattice as usually
defined. The reason I insist on dual concept lattices is my intention to focus on rankings of
coalitions in terms of decision power, relying on the ability to ‘force’ events as the relevant
criteria/attributes. By contrast, the concept lattice of a CGF in the standard sense is best
regarded as a classification of the ‘resilience’ of (families of) events with respect to coalitional
capabilities to act.

3A similar result for the slightly more specialized case of EFs is presented and discussed
in Vannucci(1999).
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Remark 2 In particular, Proposition 1 ii) says that L(G) = 1⊕B(L(G))⊕1
for some lattice B(L(G)) if G satisfies null-set-unenforceability and null-set-
normalization and L(G) = 1⊕B(L(G)) if it is just null-set-normalized (where
1 denotes the degenerate 1-element lattice, and ⊕ denotes the linear or ordinal
sum operation: see e.g. Birkhoff(1967), or Davey,Priestley(1990)). In any case,
we shall refer to the lattice B(L(G)) as the bulk of L(G) .

2.3.1 Efficiently dominant-strategy solvable voting protocols

To begin with, we consider an easy case namely the class of dominant-strategy
solvable voting protocols.
Let g = (N,X, (Si)i∈N , h, (Ri)i∈N ) -with Ri ∈ RX for any i ∈ N - a game in

strategic form, and i ∈ N . A dominant strategy for i is a strategy si ∈ Si such
that for any s0i ∈ Si

h(si, sN\{i})Rih(s
0
i, sN\{i}) for all sN\{i} ∈

Y
i∈N\{i}

Si

and there exists s0N\{i} ∈
Y

i∈N\{i}
Si such that

not h(si, s0N\{i})Rih(s
0
i, s

0
N\{i}).

Let us denote DSi(g) the set of dominant strategies for i, and DS(g) =Y
i∈N

DSi(g) the set of all profiles of dominant strategies of game g. Then, a

voting protocol Γ = (N,X, (Si)i∈N , h) is dominant-strategy solvable (or DS-
solvable) over preference domain RN

X if DS(g) 6= ∅ for any game g = (Γ, RN )
with RN ∈ RN

X .
It is easily checked that, as a Corollary to the well-known Gibbard-Satterthwaite

theorem (see e.g. Danilov, Sotskov (2002)) as combined with the so-called ‘rev-
elation principle’ that whenever #X > 3, dictatorial voting protocols are the
only efficiently DS-solvable ones ( a dictatorial voting protocol invariably selects
the most preferred outcome of a fixed player, the dictator). As a consequence
of that fact, we have

Proposition 3 Let Γ = (N,X, (Si)i∈N , h) be an efficiently DS-solvable voting
protocol, Gα(Γ) = (N,X,Eα(Γ)),Gβ(Γ) = (N,X,Eβ(Γ)). Then C(Gα(Γ)) =
C(Gβ(Γ)) ' 4.

Remark 4 Notice that the concepts attached to a DS-solvable voting protocol
may be described by the following intents: ‘omnipotent’ coalitions (i.e. coalitions
able to enforce any event including the null event), ‘all-powerful’ coalitions (i.e.
coalitions able to enforce any event except for the null event), ‘essentially power-
less’ coalitions, and ‘absolutely powerless’ coalitions. The corresponding extents
are, respectively, the empty set, the ultrafilter of all coalitions including the dic-
tator among their members, the set of all nonempty coalitions, and the set of
all coalitions.
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2.3.2 Acceptable voting protocols

Next, we consider efficiently Nash equilibrium solvable voting protocols (such
protocols are usually referred to as acceptable). Let g = (N,X, (Si)i∈N , h, (Ri)i∈N )
be a game in strategic form. A Nash equilibrium of g is a strategy profile
s = (si)i∈N such that h(si, sN\{i})Rih(s

0
i, sN\{i}) for any i ∈ N and any s0i ∈ Si.

The set of Nash equilibria of game g is denoted by NE(g).
No general characterization of acceptable voting protocols is available. The

simplest example of an acceptable voting protocol is perhaps the kingmaker
protocol ΓK = (N,X, (SKi )i∈N , h

K) defined as follows:
S1 = N\ {1} , Si = RX for any i ∈ N\ {1}, and

hK((si)i∈N) = maxRj for any (si)i∈N ≡ (j,R2, .., Rn) ∈
nY
i=1

Si.

Hence, under the kingmaker protocol as presented above player 1 selects a
dictator or ‘king’ who in turn proceeds to select the final outcome.
Moreover, a kind of ‘universal’ family of efficiently Nash-equilibrium-solvable

voting protocols ΓM(.) = (N,X, (S
M(.)
i )i∈N , h

M(.)) -the family of so-calledMaskin
protocols (see again Danilov, Sotskov(2002)) - can be defined as follows. A cor-
respondence f : RN

X →→ X is Maskin-monotonic if for any RN ,QN ∈ RN
X and

any y ∈ X,
if y ∈ f(RN ) and {x ∈ X : yRix} ⊆ {x ∈ X : yQix}for any i ∈ N , then

x ∈ f(QN ).
Let f : RN

X →→ X be a Maskin-monotonic non-empty-valued correspon-
dence, then ΓM(f) = (N,X, (S

M(f)
i )i∈N , h

M(f)) is specified by the following
rules:

S
M(f)
i = gr(f)× Z+for any i ∈ N
(where gr(f) ≡

©
(RN , x) : RN ∈ RN

X , x ∈ f(RN )
ª
and Z+is the set of non-

negative integers) and,

for any s = (si)i∈N ≡ ((RN
i , xi), zi) ∈

nY
i=1

S
M(f)
i

hM(f)(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x : if (RN
i , xi) = (R

N , x) for all i ∈ N
y : if there exists k ∈ N such that

(RN
i , xi) = (R

N
j , xj) = (R

N , x) 6= (QN
k , xk) for all i, j ∈ N\ {k}

and xRkxk

xi∗ : where i∗ =
X
i∈N

zi(mod#N), otherwise

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

Thus, under the Maskin protocol for choice rule f every player chooses a
point of the graph of f and a nonnegative integer. If all players happen to choose
the same point (RN , x) the final outcome is x. If all players choose the same point
(RN , x) except for one ‘dissident’ j who chooses (QN

k , xk) then the outcome is
xk if xk is no better than x according to preference order Rk, and x otherwise.
Under any other circumstance the modular sum i∗ =

X
i∈N

zi(mod#N) is com-

puted to identify the player i∗having that number as her identity number: the
final outcome is the outcome corresponding to the point of f chosen by player
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i∗.
It can be shown that such a family of Maskin protocols is ‘universal’ for

acceptable voting protocols in that for each of the latter there is a Maskin
protocol which is behaviorally equivalent to the latter (to the extent that Nash
equilibrium predicts correctly the participants’ behaviour). It is readily checked
that the following proposition holds true.

Proposition 5 Let f : RN
X →→ X be a Maskin-monotonic and Pareto efficient

non-empty valued correspondence4 and ΓM(f) = (N,X, (S
M(f)
i )i∈N , h

M(f)) the
corresponding Maskin voting protocol. Then,
C(Gα(Γ

M(f))) = C(Gβ(Γ
M(f))) ' 4.5

Remark 6 The concepts attached to the Maskin voting protocol may also be de-
scribed by the following intents: ‘omnipotent’ coalitions (i.e. coalitions able to
enforce any event including the null event), ‘all-powerful’ coalitions (i.e. coali-
tions able to enforce any event except for the null event), ‘essentially powerless’
coalitions, and ‘absolutely powerless’ coalitions. The corresponding extents, are
respectively the empty set, the set of all coalitions including at least n−1 agents,
the set of all nonempty coalitions, and the set of all coalitions.

Indeed, both efficiently Nash equilibrium solvable and DS-solvable voting
protocols as considered above induce a sharp distribution of decision power
among coalitions, and the corresponding effectivity functions are simple. This
is suitabbly reflected in the structure and ‘short’ length of their concept lattices.

2.3.3 Strong-equilibrium solvable and core solvable voting protocols

Finally, we turn to some solution concepts implying coalition formation and
coordinated coalitional behaviour. Again, let g = (N,X, (Si)i∈N , h, (Ri)i∈N )
be a game in strategic form. A strong equilibrium of g is a strategy profile
s = (si)i∈N such that for any coalition T ⊆ N and any s0T ∈

Y
i∈T

Si there

exists i ∈ T such that h(sT , sN\T )Rih(s
0
T , sN\T ). A coalitional equilibrium

with threats of g is a strategy profile s = (si)i∈N such that for any coalition
T ⊆ N and any s0T ∈

Y
i∈T

Si there exists s0N\T ∈
Y

i∈N\T
Si and i ∈ T such that

h(sT , sN\T )Rih(s
0
T , s

0
N\T ) (notice that coalitional equilibrium outcomes with

threats of g do exactly coincide with the core6 outcomes of g). Clearly, since

4Notice that Maskin-monotonic, Pareto efficient and nonempty valued correspondences
defined over RN

X do clearly exist, the Pareto correspondence being an obvious example (under
mild restrictions on the outcome set X).

5 Similarly, C(Gα(ΓK)) = C(Gβ(Γ
K)) ' 4

6An outcome x ∈ X is dominated within a game in coalitional form G = (N,X,E, (<i
)i∈N ), where (N,X,E) is a coalitional game form and (<i)i∈N is the profile of total preference
preorders on X, if there exist A ⊆ X and S ⊆ N such that A ∈ E(S) and for any y ∈ A and
i ∈ S both y <i x and not x <i y. The core of G is the set of outcomes of X which are not
dominated in G.
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the grand coalition N is one of the feasible coalitions, both strong equilibrium
outcomes and coalitional equilibrium outcomes with threats are by definition
Pareto efficient.
It turns out that certain voting-by-limited-veto protocols ( as briefly intro-

duced in section 2 above, and thoroughly analyzed elsewhere, e.g. Danilov,Sotskov(2002))
enjoy both strong equilibrium solvability and coalitional equilibrium with threats
solvability over preference domain RN

X . Of course, such voting-by-veto protocols
rely on a considerably more complex allocation of decision power than the vot-
ing protocols considered previously. This is neatly reflected by the properties
of their concept lattices. As a prominent example of a voting-by-limited-veto
procedure that shares anonymity and neutrality properties with majoritarian-
like schemes we shall focus on a version of the proportional veto protocol, first
introduced by Moulin (see e.g. Moulin,Peleg(1982), Moulin(1983), Peleg(1984),
Abdou,Keiding(1991), Danilov,Sotskov(1993,2002)). Namely, we consider a pro-
portional veto protocol with endogenous agenda formation that can be informally
described as follows. A distinguished outcome x∗- the “status quo”- is identi-
fied. Then, each player makes k proposals, is informed on the resulting set of
outcomes, and issues k vetos - according to a prefixed order - on non-vetoed
alternatives. The unique non-vetoed outcome is selected. The corresponding
EF EPV (which is regular and maximal, hence unambiguously determined) is
defined by the following rule:

for any S ⊆ N , A ⊆ X , A ∈ EPV (S) if and only if
d(kn+ 1) sne > kn+ 1− a

where s = #S, n = #N , and a = #A .
Since each coalition-size corresponds to a distinctive “degree” of decision

power, the concept lattice L(GPV ) is easily computed. Thus, it is straightfor-
ward to establish validity of the following

Proposition 7 Let GPV = (N,X,EPV ) be the proportional veto EF as defined
above. Then, L(GPV ) = 1⊕ n⊕ 1 (where n denotes the chain of size n ).

Clearly, the intents of the concepts attached to the proportional veto protocol
may be described as ‘the coalitions that are able to veto at least k · l outcomes’,
with k · l 6 k · n. The corresponding extents amount to player (sub)sets of
cardinality l, 0 6 l 6 n.
It should also be remarked that the concept lattices of non-anonymous

versions of that voting by veto protocol are also chains.

3 Concluding remarks
The concept lattices of some prominent efficiently solvable voting protocols have
been introduced and described. It turns out that all of them are chains. More-
over, in nontrivial cases their sizes do not depend on the cardinality of either the
player set or the outcome set, except for the voting by veto protocol. Therefore,
even allowing for quite different choices of the solution concept, the distribution
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of coalitional decision power induced by known efficiently solvable voting proto-
cols apparently share a rather simple (concept-latticial) structure. It remains to
be seen whether efficiently solvable voting protocols endowed with more general
concept lattices do exist.
Acknowledgement:An abridged version of the present paper has been pub-

lished in S. Ben Yahia, E.M. Nguifo (eds.): CLA 2006, Proceedings of the
4th International Conference on Concept Lattices and Their Applications, Yas-
mine Hammamet. Publications de la Faculté de Sciences de Tunis: Tunis 2006
(ISBN:978-9973-61-481-0), 319-321.
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