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1 Introduction

In the last decade, the assessment and measurement of diversity has been
the focus of a slowly but consistently growing body of literature. The mo-
tivations of such a remarkable growth of interest in diversity measurement
come from a wide variety of concerns, including those for biodiversity and
the effectiveness of conservation policies, and for several dimensions of socio-
economic diversity both agreeable (e.g. diversity among feasible options in
choice problems, or valuable aspects of cultural and social diversity1) and
detrimental (e.g. severe, growth-thwarting inequalities in allocations of avail-
able opportunities). As a result, the extant literature on diversity measure-
ment also displays a considerable variety of aims and emphases. In particular,
biodiversity-oriented measures typically take into account population sizes in
order to address sustainability-related issues. On the contrary, sociodiversity-
oriented measures tend to disregard population sizes (see e.g. Baumgärtner
(2006) for an useful survey which aptly emphasizes this point). Furthermore,
as a consequence of the large variety of contexts where diversity-measurement
issues arise, the formats of the relevant data structures are themselves con-
siderably diverse. Accordingly, the current literature on the measurement
of diversity deals with several and quite different formats of the character-
istic/type spaces of populations, including premetric, semimetric or metric
spaces (see e.g. Pattanaik and Xu (2006), Bossert, Pattanaik and Xu (2001),
Pattanaik and Xu (2000) and Van Hees (2004), respectively), relational sys-
tems consisting of preference profiles as supplemented with a similarity binary
relation (Peragine and Romero-Medina (2006)), and (subspaces of) suitably
preordered mixture spaces (Nehring and Puppe (2002, 2003)).
The present work contributes to that literature focussing on the measure-

ment of ‘pure’ diversity when the relevant type space of population units or
opportunities is just a finite partially ordered set (poset). The foregoing ‘pure’
qualifier alludes to two distinct features of our analysis, namely
a) we are interested in the measurement of diversity as such, and work

under the tentative assumption that the former can be attempted without
having to commit in advance to any particular interpretation of diversity, or
any value judgment concerning its desirability2;

1The latter might arguably include ‘undominated diversity’ in the allocation of freedoms
and opportunities as eloquently advocated in Van Parjis (1995).

2Thus, we strongly concur in that respect with Bossert, Pattanaik, and Xu (2001) (but
see Baumgärtner (2006) for a quite different view).
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b) in particular, we aim at disentangling diversity assessments from other
aspects (including sustainability-related features such as population sizes),
no matter how important.
On the other hand, focussing on (finite) posets as the relevant data struc-

ture is motivated by their somewhat unique combination of extreme informa-
tional parsimony and ubiquity: a few characteristic examples are provided
in the next section to substantiate such a claim.
Once the general relevance of the foregoing posetic framework is estab-

lished, one is left wondering what is the proper way to introduce diversity
assessments within such a parsimonious data format. Following the standard
approach in the literature on diversity measurement, we subscribe to the no-
tion that the diversity of an opportunity set should somehow depend on
the assessment of dissimilarities between pairs of its members. However, we
maintain that starting from a poset we do not really have to introduce extra
information such as a (pre)metric on the option space: we propose to regard
incomparability between two options as strong evidence of dissimilarity be-
tween them. From this suggestion, it follows that the comparative diversity
of subposets should be assessed by aggregating somehow such information
about their respective incomparabilities. Of course, there are many possible
ways to do that. The present work is devoted to exploring one particularly
simple way to evaluate diversity via incomparability as summarized by the
following rule: just rely on the width of subposets to assess their diversity.
Indeed, the width of a subposet counts the maximum number of pairwise
incomparable points it contains. Thus, such a basic parameter of any poset
arguably conveys in a very effective way some essential information about its
intrinsic diversity.
In particular, we define two distinct width-based rankings for subsets of

the population space. The first one is the plain width-ranking of subposets.
The second one is the undominated width-ranking of subposets or equiva-
lently the ranking induced by the size of undominated subposets. We provide
a simple axiomatic characterization for each one of them. Moreover, in order
to illustrate the possible uses of width-based rankings we consider their appli-
cation to a knapsack-problem variant of the so-called ‘Noah’s ark problem’ as
introduced by Weitzman (1998) to motivate his own approach to constrained
optimality of biodiversity conservation policies.
The paper is organized as follows: Section 2 discusses a few prominent

examples of characteristic spaces with a poset structure; Section 3 introduces
the basic notations and definitions, and presents the basic model; Section 4
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includes the main results; Section 5 presents a knapsack version of the ‘Noah’s
ark problem’; Section 6 provides a discussion of some related literature, and
a few concluding remarks.

2 Populations of options as posets: motiva-
tion and examples

We shall be concerned with a population of options or opportunities whose
type space is a partially ordered set or poset3. As mentioned in the Intro-
duction, that approach amounts to a significant departure from most of the
relevant literature on the measurement of diversity, which is mainly focused
on richer environments including metric spaces and similar structures. The
present section is meant to motivate such a modelling choice and advocate
its relevance by means of a few prominent examples.

2.1 The general case: the dominance order in ordinal
multi-attribute spaces

Let us consider a finite population X of opportunities that are described by
means of a finite family {c1, ..ck} of ordinal attributes or criteria4. The latter
may be aptly represented by a finite family K = {f1, .., fk} of real-valued
ordinal scales fi : X → R, i = 1, .., k. Then, one may define the dominance
order 6Kinduced by K and correspondigly the dominance poset (X,6K) by
the following rule:
for any x, y ∈ X, x 6K y iff fi(x) ≤ fi(y) for any fi ∈ K.
It should be remarked that the foregoing interpretation of posets is in-

deed quite general since (as it is well-known by the so called Dushnik-Miller
theorem) for any finite poset (X,6) there exists a finite family {61, ..,6h}
of linear orders i.e. total, transitive and antisymmetric binary relations on

3It should be remarked that the present approach to diversity as width might be easily
extended to preordered sets, namely to sets endowed with a preorder i.e. a reflexive and
transitive binary relation. That is so, because such a preorder induces in an obvious way a
poset on the set of its indifference/equivalence classes. Nevertheless, in the current paper
we stick to posets just for the sake of simplicity of presentation.

4We identify those opportunities which cannot be distinguished by criteria of the given
family. Hence, strictly speaking the elements of X are equivalence classes of opportunities.
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X such that 6= ∩hi=1 6i( see e.g. Trotter (1992)). Also, it includes as a par-
ticular case the starting point of the Nehring-Puppe approach to diversity
analysis, that amounts to a binary multi-attribute description of the popula-
tion of opportunities (see Nehring and Puppe (2002) and the subsection on
relational databases below).
Of course, multi-criteria analysis and its applications in operations re-

search suggest a wealth of examples where ordinal multi-attribute spaces are
the basic data format.
But in fact the foregoing ordinal multi-attribute description of options is a

remarkably general and flexible format which also accommodates an impres-
sively wide range of interesting issues arising in resource management and
environmental economics (we refer the reader to Brüggemann and Carlsen
(2006) for an authoritative up-to-date discussion of some relevant examples,
including analysis of habitat diversity across landscapes, analysis of water
sediment data, risk assessment of chemicals, pollution monitoring data).
Notice that, in view of the Dushnik-Miller theorem mentioned above, the

poset (X,6) can always be regarded as a handy, succinct representation of
some instance(s) of the foregoing multi-attribute model.

2.2 Trees

A tree T = (X,6) is a poset such that for any x ∈ X, the set x ↓=
{y ∈ X : y 6 x} of ancestors of x is a chain i.e. is linearly ordered by 6.
Populations endowed with a tree structure have been widely considered in
the extant biodiversity-oriented literature on diversity measurement, due to
the prominent role of evolutionary or philogenetic trees in evolutionary biol-
ogy (see Weitzman (1992, 1998), Nehring and Puppe (2002, 2003)).

2.3 Concept lattices of relational databases

Let us consider a finite population Y of options/objects that are de-
scribed by a finite set C of binary attributes (again we may choose to identify
those objects which cannot be distinguished by means of those attributes).
Then, one may define a binary relation ρ ⊆ Y × C by the following rule:
for any y ∈ Y and c ∈ C, yρc iff c(y) = 1 i.e. ‘x has attribute c’. The
database ((Y,C), ρ) is also referred to as a context. The information content
of ((Y,C), ρ) is aptly summarized by its concept lattice C(Y,C) = (X,6) as
defined by the following construction.
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First, define the functions hρ : P(Y )→ P(C) and iρ : P(C)→ P(Y ) as
follows: for any Z ⊆ Y , B ⊆ C
hρ(Z) = {c ∈ C : zρc for all z ∈ Z} and
iρ(B) = {y ∈ Y : yρc for all c ∈ B}.
Then, posit
X = {(Z,B) ∈ P(Y )×P(C) : Z = iρ(B) and B = hρ(Z)}.
An ordered pair (Z,B) ∈ X is said to be a concept of context ((Y,C), ρ)

with extent Z and intent B.
Thus, the concept lattice of (Y,C) is C(Y,C) = (X,6) where for any

(Z1, B1), (Z2, B2) ∈ X
(Z1, B1) 6 (Z2, B2) iff Z1 ⊆ Z2 (which is provably equivalent to B2 ⊆

B1),
and
(Z1, B1) ∧ (Z2, B2) = (iρ(hρ(Z1 ∪ Z2)), B1 ∩B2)
(Z1, B1) ∨ (Z2, B2) = (Z1 ∩ Z2,hρ(iρ(B1 ∪B2)))

(where ∧ and ∨ denote the greatest lower bound and the least upper
bound, respectively).
Moreover, one may define a function γ : Y → X mapping each object

y ∈ Y into the object concept of y, namely the 6-smallest concept of (Y,C)
having y in its extent (see e.g. Carpineto and Romano (2004) for a detailed
presentation of concept lattices which emphasizes both their applications in
information retrieval and data mining, and related computational aspects)5.
It should also emphasized that the same construct can be extended to many-
valued contexts, namely to the case of (finitely) many-valued attributes, by
replacing ρ with a suitable ternary relation involving objects, attributes and
attribute-values.
If the population of options is described by database ((Y,C), ρ) it is quite

natural to assess the characteristics of any opportunity Z ⊆ Y by considering
the set y[Z] of object concepts of its elements. Thus, we end up with poset
(γ[Y ],6|γ[Y ]), a subposet of the concept lattice (X,6).

5See also Vannucci (1999, 2006) for a study of concept lattices of game forms.
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3 Width-based rankings: notation, definitions
and preliminaries

Let X = (X,6) be the universal (finite) poset of options/opportunities i.e. 6
is a transitive, reflexive and antisymmetric binary relation on X, and P(X)
the power set of X. An opportunity set is a set A ⊆ X thus P(X) also
denotes the set of all opportunity sets attached to X. A chain of X is a set
C ⊆ X such that the restriction 6|C := {(x, y) ∈ C × C : x 6 y}) is a total,
transitive and antisymmetric binary relation on C.A family C = {Ci}i∈I of
chains of poset X = (X,6) is a chain decomposition of X (w.r.t. set union)
if and only if C is a partition of X, namely X = ∪i∈ICi, and Ci ∩ Cj = ∅
for any i, j ∈ I, i 6= j.
The binary relation k ⊆ X ×X comprises the set of all 6-incomparable

ordered pairs: for any x, y ∈ X, xky holds if and only if x ­ y and y ­ x.An
antichain of (X,6) is a set A ⊆ X such that xky for any x, y ∈ X such
that x 6= y: AX will denote the set of all antichains of X . The size of an
antichain A is given by its cardinality #A. For any pair of ordered sets
(A,60), (B,600) an order-isomorphism from (A,60) to (B,600) is a surjective
function f : A→ B such that for any x, y ∈ A, x 60 y if and only if f(x) 600
f(y)6. Subsets A,B ⊆ X are isomorphic in X if and only if there exists
an order-isomorphism from (A,6|A) to (B,6|B). The following notation will
also be used: for any A ⊆ X,

DX [A] := {x ∈ X : there exists y ∈ A such that y < x}, and
UX [A] := {x ∈ X : there exists y ∈ A such that x < y} .
The width function wX : P(X) → Z+of X attaches to each set Y ⊆ X

the size of any antichain A ∈ AX of maximum size amongst antichains of X
included in Y , namely wX (Y ) = #A, where i) A ⊆ Y , ii) A ∈ AX , and iii)
#A ≥ #B for any B which also satisfies clauses i) and ii) above.

Remark 1 It should be noticed that, by definition, wX is subposet-invariant
i.e. for any A ⊆ Y ⊆ X,wX (A) = wX|Y (A) where X|Y := (Y,6|Y ).
The following classic result due to Dilworth (see e.g. Anderson (1987),

chpt.2, or Trotter (1992), chpt.1) will be used in the ensuing analysis:

Theorem 2 (Dilworth). Let Y = (Y,6) be a finite poset. Then wY(Y ) =
min {#C : C is a chain decomposition of Y} .

6It is easily checked that, by definition, an order-isomorphism f has to be injective as
well. An order-isomorphism from (A,6) to itself is an order-automorphism of (X,6).
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We are mainly interested in two simple width-based rankings of opportu-
nity sets as defined below

Definition 3 The width-ranking induced by X = (X,6) on P(X) is the
total and transitive binary relation <∗wXdefined by the following rule: for any
A,B ⊆ X, A <wX B iff wX (A) ≥ wX (B) .

Definition 4 The undominated width-ranking induced by X = (X,6) on
P(X) is the total and transitive binary relation <∗wXdefined by the following
rule:
for any A,B ⊆ X, A <∗wX B iff wX (max6|A) ≥ wX (max6|B) iff
#(max6|A) ≥ #(max6|B) .

Clearly enough, the width-ranking decrees that an opportunity set to
be more diverse than another if and only if it includes a larger antichain.
Similarly, the undominated width-ranking declares an opportunity set to
be more diverse than another if and only if the antichain of its (locally)
undominated options is larger.7

We shall now provide a characterization of those width-based rankings
through the following axioms

Definition 5 Indifference between Isomorphic Sets (IIS) A binary re-
lational system (P(X),<) satisfies Indifference between Isomorphic Sets with
respect to poset X = (X,6) iff for any A,B ⊆ X, if A and B are order-
isomorphic in X then A < B.

In words, IIS simply requires that two order-isomorphic sets be equally
ranked in terms of diversity. It amounts to a strengthened, and adapted,
version of the standard notion of Indifference between No Choice Situations
i.e. between singletons (see e.g. Barberà, Bossert and Pattanaik (2004)).

Definition 6 Weak Monotonicity (WMON) A binary relational system
(P(X),<) satisfies Weak Monotonicity iff A < B for any A,B ⊆ X such
that B ⊆ A.

7Counterparts of the undominated width-ranking in multi-preferential settings are in-
troduced and characterized by Pattanaik and Xu (1998) and Peragine and Romero-Medina
(2006).
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Definition 7 Strict Monotonicity for Antichains (SMONA) A binary
relational system (P(X),<) satisfies Strict Monotonicity for Antichains with
respect to poset X = (X,6) iff for any A,B ∈ AX , B ⊂ A entails A Â B.8

Of course, WMON amounts to requiring that the diversity preorder pre-
serves the set-inclusion preorder. SMONA is the restriction of the strict
version of set-inclusion monotonicity to antichains.

Definition 8 Antichain Restricted Irrelevance of Connected Oppor-
tunities (ARICO) A binary relational system (P(X),<) satisfies Antichain
Restricted Irrelevance of Connected Opportunities with respect to poset X =
(X,6) iff A < A∪{x} for any antichain A of X and any x ∈ DX [A]∪UX [A].

Thus, ARICO is a restricted independence condition that requires the
addition to an antichain of alternatives that are comparable to some options
of the former to be diversity-irrelevant.

Definition 9 Irrelevance of Dominated Opportunities (IDO) A binary
relational system (P(X),<) satisfies Irrelevance of Dominated Opportunities
with respect to poset X = (X,6) iff for any A ⊆ X and any x ∈ X, if
x ∈ DX [A] then A ∼ A ∪ {x} .

IDO is also an independence condition that requires the addition to any
set of alternatives that are dominated by some options of that set to be
diversity-irrelevant.

4 Width-based rankings: characterizations

We are now ready to state and prove our characterization of the width-
ranking, namely

Theorem 10 Let X = (X,6) be a poset, and < a preorder i.e. a reflex-
ive and transitive binary relation on P(X). Then (P(X),<) satisfies IIS,
WMON, SMONA and ARICO if and only if <=<wX .

Proof. ⇐=:It is immediately checked that (P(X),<wX ) is a (totally) pre-
ordered set and satisfies WMON. Also, if A,B ∈ AX and B ⊂ A then by

8Of course, Â and ∼ denote, respectively, the asymmetric and symmetric components
of < .
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definition wX (A) = #A > #B = w(B), i.e. A ÂwX B, hence SMONA is
also satisfied.
To check that IIS holds, notice that if A, B ⊆ X are order-isomorphic

w.r.t. X , then #A = #B and for any x, y ∈ A, x 6 y iff f(x) 6 f(y) and
xky iff f(x)kf(y), where f is an order-automorphism of X such that f [A] =
B. It follows that for any antichain B0 of X|B, f−1[B0] is an antichain of
X|A. In particular, let B0 ⊆ B be an antichain of X of maximum size, i.e.
w(B) = #B0. Then, f−1[B] = A0 is an antichain of A, hence w(A) ≥ w(B)
i.e. A <wX B. Thus, IIS is satisfied.
To check that (P(X),<wX ) satisfies ARICO as well, take any antichain

A ⊆ X and any x ∈ DX [A] ∪ UX [A]. Clearly, wX (A ∪ {x}) = wX (A) hence
in particular A <wX A ∪ {x} .
=⇒:Conversely, let (P(X),<) be a preordered set which satisfies IIS,WMON,

SMONA, and ARICO.
First, suppose that A < B. By Dilworth’s Theorem as mentioned above,

B = ∪wX (B)i=1 C 0
i, A = ∪wX (A)i=1 Ci where {C 0

i}i∈{1,.,wX (B)}, {Ci}i∈{1,.,wX (A)} are
chain decompositions of minimum cardinality of (B,6|B) and (A,6|A), re-
spectively. Thus, there exist B0 =

n
c01, .., c

0
wX (B)

o
with c0i ∈ C 0

i, i = 1, .., wX (B),

and A0 =
©
c1, .., cwX (A)

ª
with ci ∈ Ci, i = 1, .., w(A) such that B0 is an an-

tichain of maximum size in (B,6|B), and A0 is an antichain of maximum
size in (A,6|A). Now, notice that, by construction, for any x ∈ A\A0 and
any y ∈ B\B0, x ∈ DX [A

0] ∪ UX [A
0] and y ∈ DX [B

0] ∪ UX [B
0]. Thus, by

suitably repeated applications of ARICO it follows that B0 < B and A0 < A,
while by WMON, A < A0 and B < B0. Therefore, A ∼ A0 and B0 ∼ B,
whence A0 < B0. Let us now assume that wX (B) > wX (A) i.e. #B0 > #A0.
Therefore there exists B00 ⊂ B0 such that #B00 = #A0. Since both A0 ∈ AX
and B00 ∈ AX it follows that A0 and B00 are order-isomorphic in X hence
by IIS A0 ∼ B00. However, B0 Â B00 by SMONA. Thus, by transitivity,
B0 Â A0, a contradiction. Therefore, it must be case that wX (A) ≥ wX (B)
i.e. A <wX B.
Next, suppose that A <wX B i.e. wX (A) ≥ wX (B). Let A0, B0 be an-

tichains of maximum size of (A,6|A) and (B,6|B), respectively, as defined
in the paragraphs above: clearly #A0 ≥ #B0. Also, notice that, again,
by ARICO and WMON, A ∼ A0 and B ∼ B0. Then, observe that if
#A0 = #B0 then since both A0 and B0 are antichains of X , they are also
order-isomorphic in X whence in particular A ∼ A0 < B0 ∼ B , by IIS.
Moreover, if #A0 > #B0 then there exists an antichain A00 ⊂ A0 such that
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#A00 = #B0. Again, A00 and B0 are order-isomorphic in X (since they are
both antichains), hence by IIS A00 ∼ B0. But A0 Â A00 by SMONA, hence
A ∼ A0 Â B0 ∼ B by transitivity.
In any case, A < B and the proof of the thesis is completed.

The foregoing characterization result is tight. Indeed, to check the inde-
pendence of the axioms employed let us consider the following list of exam-
ples.

Example 11 The independence of IIS can be shown by considering a poset
X = (X,6) with at least two distinct totally disconnected elements y, z ∈ X
(i.e. ykx for any x ∈ X\ {y} and zkx for any x ∈ X\ {z}), and taking
(P(X),<z

wX
) where <z

wX
is the‘refinement’ of <wXdefined as follows: for any

A,B ⊆ X, A <z
wX

B iff either wX (A) > wX (B) or wX (A) = wX (B) and
z /∈ B, or else wX (A) = wX (B) and either z ∈ A ∩ B or z /∈ A ∪B. Notice
that <z

wX is indeed a preorder: reflexivity is obvious, and transitivity also holds
(to see this, assume A <z

wX
B and B <z

wX
C: then (i) wX (A) > wX (B) and

wX (B) > wX (C) or wX (B) = wX (C) imply wX (A) > wX (C), and similarly
wX (A) = wX (B) and wX (B) > wX (C) imply wX (A) > wX (C) whence A <z

wX
C;(ii) if wX (A) = wX (B) = wX (C) and z /∈ B then B <z

wX C entails z /∈ C
(indeed z /∈ B ∪ C) whence again A <z

wX
C ; (iii) if wX (A) = wX (B)

= wX (C) and z /∈ C then A <z
wX

C by definition; iv) if wX (A) = wX (B)
= wX (C) and z ∈ A ∩ B then it cannot be the case that z /∈ B ∪ C: thus
B <z

wX C entails z ∈ B ∩ C, hence z ∈ A ∩ C, and therefore A <z
wX C).

Moreover, if B ⊆ A then by definition wX (A) ≥ wX (B) and either z /∈ B or
z ∈ A ∩ B. Thus, A <z

wX
B holds in any case, and (P(X),<z

wX
) satisfies

WMON. If A,B are antichains and B ⊂ A then wX (A) > wX (B) whence
both A <z

wX B and not B <z
wX A: it follows that (P(X),<z

wX ) satisfies
SMONA. Now, let us consider an antichain A and x ∈ DX [A] ∪ UX [A].
Clearly, wX (A) = wX (A ∪ {x}) and x 6= z, by definition of z. It follows
that either z /∈ A∪ {x} or z ∈ A, hence in any case A <z

wX
A ∪ {x}, and

ARICO is also satisfied by (P(X),<z
wX ). However, it is immediately checked

that {z} Âz
wX {y}: thus, IIS is violated by (P(X),<z

wX ).

Example 12 Independence of WMON from the other axioms can be shown
by considering the undominated width ranking (P(X),<∗wX ) as defined above.
Indeed, it is easily checked that (P(X),<∗wX ) is a preordered set that satisfies
SMONA, and IIS (see the proof of the next characterization result below).
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Moreover, (P(X),<∗wX ) satisfies ARICO: for any antichain A of X and any
x ∈ DX [A]∪UX [A], A∪{x} /∈ AX hence #(max6|A) = #(max6|B).However,
in general (P(X),<∗wX ) does not satisfy WMON. To see this, take X =
({x, y, z} ,6) with 6= {(z, x), (z, y)}. Clearly, max6|{x,y} = {x, y}, while
max6|{x,y,z} = {z}, hence {x, y} Â∗wX {x, y, z} .

Example 13 The independence of SMONA is immediately verified by con-
sidering the universal binary relation <U= P(X)×P(X). Clearly, (P(X),<U

) is a (totally) preordered set and satisfies IIS, WMON and ARICO, but vi-
olates SMONA.

Example 14 The independence of ARICO can be shown by considering the
binary relational system (P(X),<#k(X )) where <

#
k(X )is defined by the following

rule: for any A,B ⊆ X, A <#k(X ) B iff # {(x, y) : (x, y) ∈ A×A and xky} ≥
# {(x, y) : (x, y) ∈ B ×B and xky}. Clearly, <#k(X )is a (total) preorder. IIS,
WMON, and SMONA are also obviously satisfied. However, if A = {y, z} is
an antichain, x /∈ A, x ∈ DX [A] and 6|A∪{x}= {(y, x)} then {x, y, z} Â#k(X )
{y, z}. Thus, (P(X),<#k(X )) does not satisfy ARICO.

Let us now turn to our characterization of the undominated width rank-
ing.

Theorem 15 Let X = (X,6) be a poset, and < a preorder i.e. a reflex-
ive and transitive binary relation on P(X). Then (P(X),<) satisfies IIS,
SMONA and IDO if and only if <=<∗wX .

Proof. ⇐=:It is immediately checked that <∗wX is indeed a (total) preorder.
Moreover, if A,B ∈ AX and B ⊂ A then by definition wX (max 6|A) =
#A > #B = w(max6|B), i.e. A Â∗wX B, hence SMONA is also satisfied by
(P(X),<∗wX ).
To check that (P(X),<∗wX ) satisfies IDO as well, take any A ⊆ X and

y ∈ X such that y < x for some x ∈ A, and consider A0 = (A,6|A),
A00 = (A ∪ {y} ,6|A∪{y}). Clearly, max6|A = max6|A∪{y}hence in particular
A <∗wX A ∪ {y} as required.
Finally, if A, B ⊆ X are order-isomorphic w.r.t. X , then #A = #B

and for any x, y ∈ A, x 6 y iff f(x) 6 f(y) and xky iff f(x)kf(y) where f
is a suitable order-automorphism of X . It follows that for any antichain C
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of X|B, f−1[B] is an antichain of X|A. Moreover, f−1[max6|B] = max6|A .
Thus, A <∗wX B and IIS is satisfied.
=⇒:Conversely, let (P(X),<) be a preordered set which satisfies IIS,

SMONA and IDO.
First, suppose that A < B. By suitably repeated applications of IDO it

follows that max6|A ∼ A and max6|B ∼ B, whence max6|A < max6|B. Let us
now assume that #(max6|B) > #(max6|A). Then, there exists an antichain
B0 ⊂ max6|B such that #B0 = #(max6|A). Since both max6|A ∈ AX and
B0 ∈ AX it follows that max6|A and B0 are order-isomorphic in X hence by
IIS max6|A ∼ B0. Since, by construction, max6|B ∈ AX as well it follows
by SMONA that max6|B Â B0. Thus, by transitivity, max6|B Â max6|A, a
contradiction. Therefore, it must be case that #(max6|A) ≥ #(max6|B) i.e.
A <∗wX B.
Next, suppose that A <∗wX B i.e. #(max6|A) ≥ #(max6|B). First,

notice that, by IDO, A ∼ max6|A and B ∼ max6|B. Also, observe that
if #(max6|A) = #(max6|B) then since both max6|A and max6|B are an-
tichains of X , max6|A and max6|B are also order-isomorphic in X whence
max6|A < max6|B , by IIS. Moreover, if (max6|A) > #(max6|B) then there
exists an antichain A0 ⊂ max6|A such that #A0 = #(max6|B). Again, A0 and
max6|B are order-isomorphic in X (since they are both antichains), hence by
IIS A0 ∼ max6|B .But max6|A Â A0 by SMONA, hence max6|A Â max6|B by
transitivity.
Thus, in any case A < B as required.

The foregoing characterization of the undominated width ranking is also
tight, as shown by the following examples.

Example 16 The independence of IIS can be shown by considering a poset
X = (X,6) with at least two distinct totally disconnected elements y, z ∈ X
(i.e. ykx for any x ∈ X\ {y} and zkx for any x ∈ X\ {z}). Then, take
(P(X),<∗zwX ) where <∗zwX is the ‘refinement’ of <∗wXdefined as follows: for any
A,B ⊆ X, A <∗zwX B iff either #(max6|A) > #(max6|B) or #(max6|A) =
#(max6|B) and z /∈ B, or else #(max6|A) = #(max6|B) and either z ∈ A∩B
or z /∈ A∪B. It is easily checked that <∗zwX is a preorder: reflexivity is obvious,
and transitivity also holds. Indeed, assume A <∗zwX B and B <∗zwX C: then (i)
#(max6|A) > #(max6|B) and #(max6|B) > #(max6|C) or #(max6|B) =
#(max6|C) imply #(max6|A) > #(max6|C), and similarly #(max6|A) =
#(max6|B) and #(max6|B) > #(max6|C) entail #(max6|A) > #(max6|C);
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(ii) if #(max6|A) = #(max6|B) = #(max6|C) and z /∈ B then by B <∗zwX C it
must be the case that z /∈ C; (iii) if #(max6|A) = #(max6|B) = #(max6|C)
and z /∈ C then A <∗zwX C by definition; finally, if z ∈ B ∩ C then A <∗zwX B
entails z ∈ A∩B, hence z ∈ A∩C and thus A <∗zwX C, by definition. In any
case, A <∗zwX C and transitivity follows. If A,B are antichains and B ⊂ A
then #(max6|A) > #(max6|B) whence both A <∗zwX B and not B <∗zwX A: it
follows that (P(X),<∗zwX ) satisfies SMONA. Now, let us consider an antichain
A and x ∈ DX [A]. Clearly, max6|A∪{x} = max6|A hence A ∪ {x} ∼∗zwX A.
Thus, (P(X),<∗zwX ) satisfies IDO. However, it is immediately checked that
{z} Â∗zwX {y}: thus, IIS is violated by (P(X),<∗zwX ).

Example 17 Consider the universal binary relation <U= P(X)×P(X). Of
course (P(X),<U) is a (totally) preordered set and satisfies IIS and IDO but
-as observed above- it fails to satisfy SMONA.

Example 18 As observed above, the width-ranking (P(X),<wX ) is a pre-
ordered set and satisfies both IIS and SMONA. However, let X = (X,6),
A = {y, z, u, v} ⊆ X , 6|A= {(y, u), (z, v)}, x ∈ DX [{z}] ⊆ DX [A], and
x /∈ DX [A\ {z}] ∪ UX [A\ {z}]. Then, by definition wX (A ∪ {x}) = 3 while
wX (A) = 2. Hence A ∪ {x} ÂwX A and IDO is violated.

5 An illustration: the Noah’s ark problem
and the space voyager problem as knapsack
problems with partially undefined parame-
ters

The Noah’s ark problem was evoked by Weitzman (1998) as a paradigm
of biodiversity preservation issues: precisely as mythical Noah, the actual
environment-conscious decision-maker has to maximize diversity under a cer-
tain constraint (though most typically a budget, not a capacity constraint9).

9The text of Genesis is quite specific about the ark’s total capacity: “ (15) And this
is the fashion which thou shalt make it of: The length of the ark shall be three hundred
cubits, the breadth of it fifty cubits, and the height of it thirty cubits. (16) A window
shalt thou make to the ark, and in a cubit shalt thou finish it above; and the door of the
ark shalt thou set in the side thereof; with lower, second, and third stories shalt thou make
it. ”
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Notice that the original version of Noah’s ark problem is in fact a ‘pure’-
diversity constrained maximization problem: population sizes are entirely
disregarded, sustainability is apparently not an issue. Of course, the required
solution of the Noah’s ark problem is simply the best strategy to preserve
biological information as embodied in living species. The latter are indeed
depositories of genetic information content hence may regarded as libraries
or collections of different books. According to that apt metaphor suggested
by Weitzman, the ark may accommodate a collection of libraries and Noah
has to maximize the number of different books taken in (or more precisely
the total diversity value of the overall library embarked).
In order to solve the Noah’s ark problem, Weitzman introduces a suit-

able diversity function: the marginal diversity or distinctiveness of a species,
namely the diversity loss if it get extincts, amounts to an extended point-to-
set-distance induced by dissimilarities (see Weitzman(1998) p. 1292)). As
for the diversity function itself, it is a monotonic aggregate index indeed a
sum of distances/dissimilarities between options in an evolutionary tree.
Addressing a ‘local’ version of the Noah’s ark problem within their own

binary multi-attribute model of diversity, Nehring and Puppe (2002) also
introduce a dissimilarity pseudometric10: the dissimilarity attached to any
ordered pair of population units is given by the total weights of the attributes
possessed by the former but not by the latter. Their work addresses in a quite
general way the problem of establishing conditions under which diversity may
be regarded as aggregate dissimilarity, hence essentially computable from
binary dissimilarity comparisons. Nehring and Puppe’s results imply that
this is in fact the case when the relevant attributes are the clades of an
evolutionary tree11, or the clades of a philogenetic tree12(see Nehring and

10Some terminology is in order here. A premetric defined on set X is a function d :
X × X → R such that for any x, y ∈ X, d(x, y) ≥ 0 (non-negativity) and d(x, x) =
0 (‘indiscernibility of identicals’) hold. A premetric is symmetric if for any x, y ∈ X,
d(x, y) = d(y, x) (symmetry) holds. A pseudometric is a non-negative symmetric function
d : X ×X → R such that for any x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z) (subadditivity)
holds. A semimetric is a symmetric premetric such that for any x, y ∈ X, d(x, y) =
0 entails x = y (the ‘identity of indiscernibles’ principle). A metric is a subadditive
semimetric.
11A clade of an evolutionary tree is the set of all points that share a common ancestor,

with the latter included.
12Starting from an evolutionary tree, a philogenetic tree is a refinement of the former.

Such refinement is obtained through intersection between ‘evolutionary’ clades and the
taxa or similarity classes resulting from a certain taxonomic classification, under the as-
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Puppe (2002), pp. 1179-1182).
Thus, as a matter of fact, both Weitzman’s and Nehring-Puppe’s ap-

proaches to the Noah’s problem make an essential use of evolutionary trees,
which in turn embody a considerable amount of knowledge on the evolution-
ary biology of planet Earth’s life forms.
But then, what if the decision maker has no reliable information whatso-

ever on the evolutionary history of the relevant lineages? Indeed, precisely
that would be the likely predicament of, say, a robotic space voyager designed
to explore a remote solar system in search of alien forms of life. In the event
of a fateful arrival on a planet teeming with an exceedingly rich variety of
absolutely alien living entities, how is the robot to select an optimally diverse
subpopulation to single out for analysis given its limited resources? And, for
that matter, how would mythical Noah himself proceed to select an optimally
diverse subpopulation of earthlings to embark on his ship, under the not un-
reasonable assumption he is a creationist, totally unaware of evolutionary
biology including the notion itself of an evolutionary tree?
Presumably, both the robotic space voyager and creationist Noah would

have to rely on some practical binary or many-valued ordinal taxonomic cri-
teria. Therefore, the resulting data structure would be amenable to diversity
assessment via widths of the resulting dominance poset and subposets.
In fact, under the foregoing stipulations the space voyager’s problem can

be modelled as a partially unspecified instance of the classic knapsack prob-
lem, namely
(KP) max

n
d · x|a · x ≤ k,x ∈ 22P

o
where (P,6) is the relevant population poset, d ∈ Q2P+ denotes the un-

specified non-negative rational vector of diversity weights of subpopulations,
a ∈ Q2P+ is the non-negative rational vector of capacity requirements for sub-
populations, k ∈ Q+ is the non-negative rational scalar denoting available
capacity (see e.g. Schrijver (1986), chpt. 16). Reliance on width parame-
ters would enable the decision-maker to specify the diversity weights d, and
reduce the original space voyager problem to a well-defined instance of KP.

sumption that the latter is consistent with the evolutionary tree under consideration.
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6 Related literature and concluding remarks

Asmentioned in the Introduction, in recent years the general issue of diversity
measurement has been addressed in a number of distinguished contributions.
Weitzman (1992) introduces a ‘pure’ diversity function which relies on a

dissimilarity metric, and is uniquely defined up to an additive constant of
integration: the larger pairwise dissimilarities between options in the oppor-
tunity set, the larger the diversity of the latter. If the dissimilarity metric is
in fact an ultrametric13 which in a sense corresponds to a ‘perfect’ taxonomy,
then the diversity value of an opportunity set is the length of the associated
taxonomic tree. If not, the diversity value can be anyway regarded as “the
tightest or most parsimonious feasible reconstruction, in the sense of being
the minimal number of character-state changes required to account for di-
versity of a set” (Weitzman (1992), p.378).
A characterization of the ranking induced by Weitzman’s diversity func-

tion is provided by Bossert, Pattanaik and Xu (2001) within a ‘dissimilarity’
semimetric space (X, d): they first characterize the class of rankings consis-
tent with a certain ‘lexicographic distance’ induced by d, and then show that
the Weitzman’s diversity ranking is precisely the only ranking of that class
which satisfies two d-restricted monotonicity and independence conditions,
plus a d-related ‘indifference for link elements’ property requiring that certain
elements do not contribute to the diversity rank of certain opportunity sets.
Thus, the Weitzman ranking is essentially the lexicographic-distance-based
total preorder which is singled out by the requirement that the aggregation
of the distances involved be additive (see Bossert, Pattanaik and Xu (2001)).
As mentioned before, the instrumental role of option-diversity assess-

ments in the evaluation of opportunity sets in terms of freedom of choice
is another major source of the growing concern for diversity rankings (see
Barberà, Bossert and Xu (2004) for an extensive survey of the literature
on rankings of opportunity sets, including freedom-of-choice rankings). Pat-
tanaik and Xu (2000) is an early contribution to the literature on diversity
that is mainly motivated by the concern for such freedom-rankings of op-
portunity sets. That work relies on a simple i.e. two-valued ‘dissimilarity’
semimetric which induces in a obvious way a binary similarity relation on
the set of options. Then, Pattanaik and Xu provide a characterization of

13A metric δ : X ×X → R+ is an ultrametric if δ(x, z) ≤ max {δ(x, y), δ(y, z)} for all
x, y, z ∈ X.
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the total preorder that ranks opportunity sets according to the sizes of their
smallest i.e. coarsest similarity-based partitions.
In a subsequent work of theirs, the same authors consider a weaker (finite)

dissimilarity space (namely a symmetric premetric space, where the ‘identity
of indiscernibles’ principle may not hold), and offer a characterization of the
partial preorder of opportunity sets dictated by a dominance ranking induced
by the underlying premetric (see Pattanaik and Xu (2006)).
Working in the same vein, but within a much richer environment which

combines a binary similarity relation with a variable profile of preferences
chosen from a given reference set of total preorders on the set of options,
Peragine and Romero-Medina (2006) characterize two distinct total preorders
which rank opportunity sets according to the number of ‘dissimilar’ unilateral
optima (of unilateral ‘dissimilar’ optima, respectively) they include.
Van Hees (2004) also starts from a ‘dissimilarity’ metric space of options,

and considers several extended point-to-set distances relying on that ‘dissim-
ilarity’ metric. He shows that several combinations of distance-respecting
independence properties for diversity rankings are inconsistent with the re-
quirement of ‘equi-diversity’ for singletons when the underlying ‘dissimilarity’
space of options includes linear sequences of three or four options such that:
a) adjacent options are at equal distances and b) the distance between the
extremal options is given by the sum of intermediate distances (see Van Hees
(2004)).
Bossert, Pattanaik and Xu (2003) discuss the axiomatic foundations of

several (pre)metric-oriented diversity rankings proposed in the extant liter-
ature from a quite general perspective, distinguishing between ordinal and
ratio-scale (pre)metrics. By definition, the former -as opposed to the latter-
do not attach any significant role to comparisons concerning differences be-
tween distances. For instance, the Pattanaik-Xu similarity-based ranking and
the premetric-based dominance ranking mentioned above all rely on ordinal
(pre)metrics, while Weitzman’s diversity ranking and some of the diversity
rankings considered by Van Hees (2004) rely on a ratio-scale metric.
Some recent papers by Nehring and Puppe (2002, 2003) contribute a

quite different (pre)metric-free approach to diversity measurement. Indeed,
Nehring and Puppe (2002) introduce a binary multi-attribute representation
of opportunity sets. Next, starting from a submodular non-negative diver-
sity function they show via conjugate Möbius inversion that choosing that
function amounts to selecting the set of relevant binary attributes and their
(positive) weights. Moreover, they show that if i) the option set is suitably
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embedded in a mixture space of lotteries over opportunity sets, and ii) such
a mixture space is endowed with a total preorder (to be interpreted as pref-
erence for diversity) obeying the standard set of von Neumann-Morgenstern
axioms as supplemented with a mild positivity requirement, then the fore-
going diversity function may be regarded as an expected diversity function
representing those preferences (see Nehring and Puppe (2002)). Then, as
mentioned in Section 5, Nehring and Puppe focus on the problem of estab-
lishing some conditions on the structure of relevant binary attributes ensuring
that such a diversity function only depend on binary dissimilarity informa-
tion, with special emphasis on the case ofmonotonic dependence (see Nehring
and Puppe (2002,2003)).
To the best of our knowledge, width-based diversity rankings for opportu-

nity posets were first suggested and discussed in Basili and Vannucci (2000)
(but see also Vannucci (1999), that includes a short discussion of width in
concept lattices of game forms as a key parameter when contrasting distrib-
uted and hierarchical decision mechanisms). Subsequently, the width-based
ranking was suggested as a suitable complexity index for some environmental
systems as represented by the majorization posets of certain integer partitions
attached to them, namely their Young diagram lattices (see Seitz (2006)).
As for the undominated width-ranking, its counterpart in a multi-preferential
setting was first introduced and characterized in Pattanaik and Xu (1998).
Moreover, the criterion of ‘undominated diversity’ for allocations as strongly
advocated by Van Parijs (1995) amounts to selecting allocations whose indi-
vidual components form an antichain with respect to the unanimity partial
(pre)order and are therefore of maximum width for the relevant population
of agents. However, the characterizations of width-based rankings for gen-
eral posetic populations of options provided in Section 4 are apparently a
distinctive contribution of the present paper.
We wish to emphasize that our focussing on posets should not be con-

strued as an attempt to downplay the role and relevance of (pre)metric spaces
and other data structures in the measurement of diversity. In our view, the
main message of the present work is rather that a) distinct notions of di-
versity may conveniently apply to distinct data structures and b) even very
common and parsimonious data structures as posets may support several
interesting diversity rankings.
Finally, a short comment on the relationship between diversity and dis-

similarity in a posetic setting is in order here. Of course, the notion itself of
width rests on (binary) incomparability: thus, in a sense diversity as width
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depends by definition on (binary) dissimilarities and nothing else. On the
other hand, it is easily checked that neither the width-ranking nor the un-
dominated width-ranking are monotonic in dissimilarities. Clearly enough,
incomparability-monotonic diversity rankings might also be considered and
analyzed. This is however best left as a topic for further research.
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