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Abstract. Comparisons of various methods for solving stochastic control eco-
nomic models can be done with Monte Carlo methods. These methods have
been applied to simple one-state, one-control quadratic-linear tracking mod-
els; however, large outliers may occur in a substantial number of the Monte
Carlo runs when certain parameter sets are used in these models. Building
on the work of Mizrach (1991) and Amman and Kendrick (1994, 1995), this
paper tracks the source of these outliers to two sources: (1) the use of a zero
for the penalty weights on the control variables and (2) the generation of near-
zero initial estimate of the control parameter in the systems equations by the
Monte Carlo routine. This result leads to an understanding of why both the
unsophisticated Optimal Feedback (Certainty Equivalence) and the sophisti-
cated Dual methods do poorly in some Monte Carlo comparisons relative to
the moderately sophisticated Expected Optimal Feedback method.
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The Parameter Set in an Adaptive
Control Monte Carlo Experiment:

Some Considerations

1 Introduction

One of the outstanding problems in the application of stochastic control meth-
ods to economic models is the relative performance of different ways of treat-
ing the uncertainties in these models and thus of different methods for solving
the models. For example, there has been considerable comparison of Optimal
Feedback (OF ), Expected Optimal Feedback (EOF ) and Dual Control (DC )
methods using Monte Carlo runs. 1 The first of these methods is a certainty
equivalence approach that ignores all the uncertainties in the model except the
additive noise terms in the systems equations. The second method considers
additive noise terms as well as parameter uncertainty in the system equations

1 For a classification of various methods of solving stochastic control models see
Kendrick and Amman (2006).
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but uses passive learning. The third method considers both additive noise and
parameter uncertainty and adds consideration of active learning methods that
include perturbation early in time to gain improved estimated of the model
parameters later in time.

The comparison of these methods has mostly been done applying Monte Carlo
methods to simple one-state, one-control quadratic-linear tracking models such
as the MacRae (1975) model and the Beck and Wieland (2002) model. 2 How-
ever, in some cases these comparisons have encountered a significant number
of outliers, viz Amman, Kendrick and Tucci (2007). The source of these out-
liers was a puzzle – particularly so because they occurred prominently in the
least sophisticated (Optimal Feedback) and the most sophisticated (Dual Con-
trol) methods but not in the intermediate sophistication method (Expected
Optimal Feedback).

In this paper we track the source of this puzzle to the choice of parameters
(i.e. the parameter set) in these models. In particular, we find that the use of
a zero for the penalty weight on the control variables in the criterion function
(the λ parameter) can cause problems. This is true when this weight is used in
conjunction with a parameter value near zero for the coefficient in the system
equation that is multiplied by the control variable (the b coefficient). If the
variance of the b parameter is sufficiently large, then the Monte Carlo routine
will generate values of this estimate around zero in a meaningful number
of runs. The combination of a zero value for λ and a near zero value for b
results in division by a number near zero and thus causes large values for some
components of the calculations and therefore outliers. However, this occurs in
the Optimal Feedback and the Dual Control methods but not in the Expected
Optimal Feedback methods as is discussed below.

The MacRae (1975) and the Beck and Wieland (2002) models are identical in
structure; however they use different sets of parameter values. In particular
the Beck and Wieland model uses a zero for the weight, λ, on the control vari-
ables in the criterion function. Consequently it is this model where the outlier
problem is pronounced, particularly when the variance of the b parameter is
relatively large.

In tracking down the source of the outliers we have made considerable use
of the research results on nonconvexities in the cost-to-go function of adap-
tive control problems. This work begin when the Tse and Bar-Shalom (1973)
algorithm for solving adaptive control problems as used by Kendrick (1978)
and, Norman, Norman and Palash (1979) found nonconvexities in the cost-

2 This work is a part of the Methods Comparison Project that seeks to compare
various ways of solving economic stochastic control models. For examples of the
various approaches under consideration see Cosimano (2007), Cosimano and Gapen
(2006), Amman, Kendrick and Tucci (2007) and Beck and Wieland (2002).

2



to-go function of a ten-period three-parameter version of the classic MacRae
(1972) problem. However, the computer codes were sufficiently complex that it
was difficult to be sure that the phenomena were not caused by programming
errors. Therefore, at the time it was uncertain whether nonconvexities were

(1) caused by a programming error;
(2) caused by the particular choice of parameters;
(3) fundamental to this class of problems.

Over a decade later Mizrach (1991) and Amman and Kendrick (1994, 1995)
returned to this problem showing, by analytical methods, that nonconvexities
are fundamental in this type of models.

In the Tse and Bar-Shalom (1973) approach for solving active learning stochas-
tic control problems, the total cost-to-go is approximated by a function which
can be decomposed into three terms: deterministic, cautionary and probing.
Nonconvexities are caused by the probing and/or cautionary components of
the cost-to-go. When only the parameter associated with the control variable
is unknown, the nonconvexities are determined by the changes in the path of
future state variables induced by modifying the value of the control. If more
than one parameter is unknown the covariance between the unknown param-
eters, e.g. the covariance between the unknown parameter associated with the
control and that associated with the state, and the relative magnitude of their
variances is another possible source of nonconvexities (Mizrach (1991)). 3

The situation with only one unknown parameter is further investigated in
Amman and Kendrick (1994, 1995). They find that nonconvexities depend
upon the magnitude of the initial variance of the unknown parameter, the level
of the parameter itself and the variance of the additive noise in the system
equation. Moreover, they show that particular combinations of the parameters
and of the penalty weights in the objective function can turn the usually
convex cautionary term of the cost-to-go into a concave term which, under
certain circumstances, may generate a concave cost-to-go. These results are
important because they clearly indicate that nonconvexities are fundamental
in the mathematics of the problem (Amman and Kendrick (1995, page 456))
and can arise even in very simple adaptive control problems.

3 According Mizrach (1991) even though “increases in the control variables ulti-
mately do reduce the parametric uncertainty to zero in the limit ... there will often
be at least one region in which increases in the control value raise parametric uncer-
tainty before it begins to decline.” This phenomenon can generate nonconvexities,
see Mizrach (1991, pages 516, 526-534). Furthermore when the planning time hori-
zon is short initial conditions are important. For instance in the 2 periods case,
different values of x0 affect the variance term in an interesting way, Mizrach (1991,
page 534).
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These conclusions have substantial computational consequences. When non-
convexities are absent, the stochastic control problem can be solved with gradi-
ent methods. However the ‘gradient solution’ may be a local optimum, rather
than a global optimum, when nonconvexities are present. For this reason a
globally optimizing algorithm should be generally preferred except in the one
control case where a grid search may be equally effective. Indeed as shown
in Tucci (1998, 2004), nonconvexities may be much more common and sub-
tle than the theoretical results suggest. For example, Amman and Kendrick
(1995, page 465) find that when the MacRae (1972) parameter set is used,
the nonconvexity appears when the variance of the estimate of the unknown
parameter is set to 2. On the other hand Tucci (1998, 2004) reports non-
convexities in 28% of the cases of a Monte Carlo experiment with the same
parameter set and a variance equal to .5 for the unknown parameter. There-
fore the need for a globally optimizing algorithm may be more stringent than
generally believed.

One side effect of the line of research discussed above on the origin of noncon-
vexities is that the analytical results contained in these papers allow one to
fully characterize these three components of the cost-to-go for the simplest one-
state, one-control, one unknown parameter, quadratic linear adaptive control
problem with a time horizon of two periods. It is therefore possible to compare
the ‘average’ or ‘representative’ cost-to-go associated with different parameter
sets and to study the impact of a certain parameter set on the individual runs
of a Monte Carlo experiment. 4 The former may help to understand the basic
characteristics of a certain parameter set. The latter may be useful to recon-
cile the theoretical results in Mizrach (1991) and Amman and Kendrick (1995)
with the computational findings in Tucci (1998, 2004) and to shed some light
on the outlier problem mentioned in Amman et al. (2007).

In the following a simple, but fairly general, one-state, one-control, one un-
known parameter, quadratic linear adaptive control problem is presented first
(Section 2). Then the probing, cautionary and deterministic components of
its dynamic programming cost-to-go are characterized (Sections 3 through 5).
This is done for the case in which the planning time horizon is 2, following
closely Amman and Kendrick (1994, 1995). In Section 6 it is shown that this
model encompasses as special cases both the MacRae (1972) and Beck and
Wieland (2002) models and parameter sets and the characteristics of the ‘rep-
resentative’ cost-to-go associated with these two problems are discussed. At
this point the impact of a certain parameter set on the individual runs of
a Monte Carlo experiment is investigated (Section 7). Its impact on the OF
and EOF solutions is discussed in Section 8. Conclusions are summarized in

4 By parameter set is here intended both the value of the parameters and their
covariances and the values used for the penalty matrices, desired paths for the
states and controls and the initial state.
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Section 9.

2 The Problem

Consider a simple control problem with one state, one control and a time
horizon of N periods in which the policy maker wants to find u0, u1, . . . , uN−1

to minimize

J = E

{
1

2
wN (xN − x̃N )2 +

1

2

N−1∑
k=0

[
wk (xk − x̃k)

2 + λk (uk − ũk)
2
]}

(1)

where E is the expectation operator, subject to

xk+1 = αxk + βkuk + γ + εk+1 for k = 0, 1, ..., N − 1 (2)

with xk and uk the state and control variables, respectively. Also α, βk and γ
are the parameters of the system equation and εk+1 is an error term identically
and independently distributed (i.i.d.) normal with mean zero and variance q.
Finally, the initial state x0 and the penalty weights w’s and λ’s are given
constants. The parameter associated with the control is assumed time-varying
with the following law of motion 5

βk+1 = dβk + (1 − d)β + ηk+1 for k = 0, 1, ..., N − 1 (3)

where d is the transition parameter, β is the unconditional mean of the stochas-
tic parameter and ηk+1 is the additive error term i.i.d. normal with mean zero
and variance σ2

η. Also, the states are measured without error. 6

It is worth while to point out that equation (3) includes as special cases sev-
eral relevant situations. For instance, when d and σ2

η are zero, βk reduces to
the usual time-invariant case. On the other hand, if d = 0 but σ2

η �= 0 equa-
tion (3) describes a random parameter, i.e. a parameter varying randomly

5 Tucci (1997, 1998) uses a similar model for the parameter associated with the
control variable. Tucci (2004) and Tucci et al (2007) consider the case where all the
parameters may be time-varying.
6 This is equivalent to setting H = I and R = 0 in Kendrick (1981, Chapters 10-11)
or Tucci (2004, Chapters 2-5).
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about the fixed mean β. When β = 0, equation (3) describes the usual vector-
autoregressive process of order one with mean zero. 7 Finally, parameters fol-
lowing a random walk are modeled setting d = 1. Alternatively, equation (3)
may be used to model the lack of knowledge about the parameters. For in-
stance when the true parameter associated with the control is constant but
unknown, setting d = 0 and σ2

η �= 0 in the parameter transition equation al-
lows one to interpret βk in equation (2) as the time-varying estimate, based
on observations up to time k, of the unknown β used to determine optimal
control. In this case σ2

η should be interpreted as the variance of the estimate
based on all information available at time k. 8

Following the Tse and Bar-Shalom (1973) method for solving active learn-
ing stochastic control problems, Kendrick (1981, 2002) and Tucci (1997, 2004)
compute the approximate cost-to-go at different values of the control and then
choose that value which yields the minimum approximate cost. 9 This approx-
imate cost-to-go can be decomposed into three terms and, for the present
problem, written as

JN = JD,N + JC, N + JP, N (4)

where JN is the total cost-to-go with N periods remaining and JD, N , JC, N and
JP, N are the deterministic, cautionary and probing components, respectively.
In equation (4) the deterministic component includes only terms which are
not stochastic. The cautionary term includes uncertainty only in the next time
period and the probing term contains uncertainty in all future time periods.
Thus the probing term includes the motivation to perturb the controls in the
present time period in order to reduce future uncertainty about parameter
values. 10

3 The probing component

Amman and Kendrick (1994, 1995) consider the case where the planning hori-
zon is N = 2 and all the parameters in equation (2) are constant except β
which is unknown. Therefore the optimal control is determined using the esti-
mate of β based on all the information available at time 0, i.e. β0 ≡ b, with a

7 See, e.g., Harvey (1981, Chapter 2).
8 Sometimes the more cumbersome notation σ2

b,k , with σ2
b,k ≡ σ2

η, may be preferred
to stress the fact it is the variance of the estimate of the unknown parameter β based
on the information available at time k, when this is the appropriate interpretation.
9 See Kendrick (1981, 2002, Chapters 9-10) or Tucci (2004, Chapter 2) for details.
10 See Kendrick (1981, pages 97-98)) for an introduction to this decomposition.
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variance equal to σ2
η ≡ σ2

b . They show that the probing component takes the
form 11

JP, 2 =
1

2

[
g(u0)

h(u0)

]
(5)

where g(u0) is a quadratic function reflecting the effect of the control u0 on
future states x1 and x2.

12 Also, h(u0) is a quadratic function whose inverse
defines the relationship between the control and the updated variance of the
unknown parameter b. 13 Consequently the probing component is the ratio of
two quadratic functions that can be written as 14

h(u0) =

(
1

σ2
b q

)
(σ2

bu
2
0 + q) (6)

and

g(u0) =

(
w2

2

λ1 + b2w2

)
(bu01 + x02 − x̃2)

2 (7)

with u01and x02 the nominal, or CE, values of u1 and x2 defined as 15

u01 =
(
− 1

λ1 + b2w2

) [
αb2w2u0 + α2bw2x0 + αbγw2 + bw2 (γ − x̃2) − λ1ũ1

]
(8)

x02 = b
(
α− αb2w2

λ1+b2w2

)
u0 + α2x0 + αγ + γ

+ b
(
− 1

λ1+b2w2

)
[α2bw2x0 + αbγw2 + bw2 (γ − x̃2) − λ1ũ1]

(9)

Substituting (8)-(9) into (7) and simplifying yields

11 See Amman and Kendrick (1994) for a detailed derivation.
12 The term g(u0) is the same as the script R term in Mizrach (1991) and Amman
and Kendrick (1995) and the Θ term in Tucci (2004, Chapters 2-5).
13 The updated variance of the parameter can be obtained using the Kalman filter
and is independent of the actual observations. See, e.g., Tucci (2004, Chapter 2) for
a brief discussion or Harvey (1981, Chapter 4) for a more technical presentation.
14 See Amman and Kendrick (1994) for details.
15 Equations (8)-(9) correspond to (2.17) and (2.19) in Amman and Kendrick (1994),
respectively.
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g(u0) = φ1 (φ2u0 + φ3)
2 (10)

with

φ1 =
(

w2
2

λ1+b2w2

)
φ2 = αb

(
1 − 2b2w2

λ1+b2w2

)
φ3 = 2b

(
− 1

λ1+b2w2

)
[α2bw2x0 + αbγw2 + bw2 (γ − x̃2) − λ1ũ1]

+ α2x0 + αγ + γ − x̃2

(11)

So the probing component of the cost-to-go is the ratio of two quadratic func-
tions in u0.

16

From (5) with h and g defined as in (6) and (10)-(11), respectively, it follows
that the probing function in this case is

JP,2 =

(
σ2

b qφ1

2

)
(φ2u0 + φ3)

2

σ2
bu

2
0 + q

(12)

From equation (11) φ1 will be positive regardless of b and u0 when the λ’s
and w’s are positive. Under this condition the first term in parenthesis on the
right-hand side of (12) will be positive provided that the variances σ2

b and q
are nonzero. If these conditions are met,JP,2 is positive for all values of u0.

Next Amman and Kendrick (1994, 1995) consider the roots of the probing
term. The first derivative of equation (12) with respect to the control is

16 To investigate the behavior of this component of the probing cost, Mizrach (1991)
studies its partial derivative with respect to the control at time 0, i.e. [∂g(u0)/∂u0] =
2φ1 (φ2u0 + φ3) [∂ (φ2u0 + φ3) /∂u0] . Given that φ1 is positive regardless of b and
u0 when the λ’s and w’s are positive, the signs of the term in parenthesis and of the
partial derivative appearing on the right-hand side are critical. If both of them are
positive an increase in the control increases the volatility of the future states path
and, depending upon how fast the variance of the uncertain parameter decreases
when the control is increased, this can cause the appearance of nonconvexities in the
probing component of the cost-to-go. This derivative is indeed positive when the set
of parameters is α = .7, b = −3.5, c = 3.5, q = −3.5, σ2

b = 2.5, x0 = 2, λ1 = λ2 =
w1 = w2 = 1 , x̃0 = x̃1 = x̃2 = 0 and ũ0 = ũ1 = ũ2 = 0 . In this case movements
in the control variable produce changes in g(u0) large enough to overcome the drop
in the updated variance of b caused by the same movement in the control and give
rise to nonconvexities in the probing component Mizrach (1991).
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∂JP,2

∂u0

=
σ2

b qφ1

[
(φ2

2u0 + φ2 φ3) (σ2
bu

2
0 + q) − σ2

bu0 (φ2u0 + φ3)
2
]

(σ2
bu

2
0 + q)

2 (13)

Since both the term outside the square brackets in the numerator of equation
(13) and the denominator are strictly positive as long as the λ’s, w’s, σ2

b and
q are positive, they focus on the condition under which the bracketed term
would be zero. Expansion of the term in brackets yields

−φ2φ3σ
2
bu

2
0 +

(
φ2

2q − σ2
bφ

2
3

)
u0 + φ2φ3q (14)

This expression is in general a quadratic function in u0 with roots

r1 = − φ3

φ2

and r2 =
φ2q

φ3σ
2
b

(15)

So the first derivative of the probing function with respect to the control in
period zero has two roots. In other words the probing function has two extreme
points.

At this point Amman and Kendrick (1994, 1995) evaluate the function at
these two extremes. Substitution of the first root r1 into equation (12) yields
JP,2 = 0. To evaluate the function at the second root they substitute r2 into
(12) to obtain

JP,2 =
(

σ2
b qφ1

2

) (
φ2

2q+φ2
3σ2

b

φ3σ2
b

)2 {
φ2

2q2+φ2
3σ2

b q

φ2
3σ2

b

}−1

A B C
(16)

If the variance of the parameter, (σ2
b , and the variance of the additive error

term, q, are nonzero then the term A will be strictly positive given the fact
from equation (11) that φ1 is positive. Term B is a square so it will be strictly
positive provided that either of the variances are non-zero. Term C will also
be positive under the same restriction. Therefore the probing function JP,2 in
general will be strictly positive at the second root provided that σ2

b and q are
non-zero.

To check the limit of the probing term as u0 goes to either plus or minus
infinity use (5) with h and g defined as in (6) and (10)-(11), respectively, to
obtain
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Figure 1.
The probing cost function JP, 2

Probing function

Control in period 0

P
ro

b
in

g
 c

o
s
t

lim
u0→±∞ JP,2 =

σ2
b qφ1φ

2
2

2σ2
b

=
qφ1φ

2
2

2
(17)

The right hand side of (17) is positive so long as q is nonzero so the probing
term approaches a positive limit when u0 approaches either plus or minus
infinity.

Summarizing the probing function (5) with h and g defined as in (6) and
(10)-(11), respectively, has the general form shown in Figure 1. The function
is positive at all values of u0. The first derivative of the function has two roots
which correspond to the maximum and minimum shown. At the minimum the
value of the function is zero. The limits of the function as u0 approaches plus or
minus infinity are strictly positive and identical. The intuition associated with
this function is that the probing component is decreased by actions which make
u0 large in either the positive or negative directions. Thus the perturbations
to the system which come from making u0 large in absolute value decrease the
variance of the parameters in future time periods and therefore decrease the
total cost-to-go.
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4 The cautionary component

Following Amman and Kendrick (1994, equation 5.17), the cautionary com-
ponent of the approximate cost-to-go can be written as

JC,2 =
σ2

b w2

2
(αu0 + u01)

2 +
σ2

b

2

(
− 1

λ1+b2w2

)
(αbw2u0 + bw2u01 + w2x02 − w2x̃2)

2

+ q
2

[
α2w2 + w2 + w1 +

(
− 1

λ1+b2w2

)
(αbw2)

2
]
+

σ2
b
w1

2
u2

0

(18)

with u01 and x02 defined as in (8) and (9), respectively. As is shown in Ap-
pendix A, when these quantities are replaced by their definitions, equation
(18) takes the form 17

JC,2 = δ1u
2
0 + δ2u0 + δ3 (19)

with

δ1 =
σ2

b

2

[
ν2

1

(
w2 − 4b2w2

2

λ1+b2w2

)
+ w1

]
δ2 = σ2

bw2ν1

{
ν2 −

2bw2(2bν2+ν3)
λ1+b2w2

}

δ3 =
σ2

b

2
w2

{
ν2

2 −
w2(2bν2+ν3)

2

λ1+b2w2

}
+ q

2

{
α2w2 + w2 + w1 − (αbw2)

2

λ1+b2w2

} (20)

where

ν1 = α
(
1 − b2w2

λ1+b2w2

)
ν2 =

(
− 1

λ1+b2w2

)
[α2bw2x0 + αbγw2 + bw2 (γ − x̃2) − λ1ũ1]

ν3 = α2x0 + αγ + γ − x̃2

(21)

This component of the cost-to-go is convex if δ1 > 0. When the penalty weights
w1 and w2 are positive

1 − 4b2w2

λ1 + b2w2
=
λ1 − 3b2w2

λ1 + b2w2
> 0 (22)

17 See also Amman and Kendrick (1995).
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or, alternatively, λ1 > 3b2w2is a sufficient condition for δ1 to be positive. 18

In summary, “even if the cautionary term is concave, the ... cost-to-go ...
will usually be convex because the deterministic term is always convex and
is frequently larger in magnitude than the cautionary term. ... Only when
the (parameter) variance gets large ... (the) ... concave cautionary ... (term)
can overcome the deterministic (one) ... to produce a concave cost-to-go”, see
Amman and Kendrick (1995, page 466).

5 The deterministic component and the total cost-to-go

Finally Amman and Kendrick (1994, equation 6.8) write the deterministic
component as

JD,2 =
λ0

2
(u0 − ũ0)

2 +
w2

2
(x02 − x̃2)

2 +
w1

2
(x01 − x̃1)

2 +
λ1

2
(u01 − ũ1)

2 (23)

with u01 and x02 defined as in (8) and (9), respectively and

x01 = αx0 + bu0 + γ

.

Replacing these quantities in equation (23), squaring and rearranging the
terms yields a convex quadratic function of the initial control value u0 which
can be written

JD,2 = ψ1u
2
0 + ψ2u0 + ψ3 (24)

with

18 This condition however is not necessary. It may happen that it is not satisfied
and δ1 is still positive. The bracket term in (20) may be positive thanks to the
squared term in (21), or to w2 , being sufficiently small to make the effect of w1

overwhelming.
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ψ1 = λ0

2
+ w2

2
(bν1)

2 + w1

2
b2 + λ1

2

(
− 1

λ1+b2w2

)2
(αb2w2)

2

ψ2 = λ0ũ0 + w2bν1 (bν2 + ν3) + w1 (αx0 + γ − x̃1) b+
(
− λ1

λ1+b2w2

)
αb2w2 (ν2 − ũ1)

ψ3 = λ0

2
ũ2

0 + w2

2
(bν2 + ν3)

2 + w1

2
(αx0 + γ − x̃1)

2 + λ1

2
(ν2 − ũ1)

2 .

(25)

Then, as in equation (4), the total cost-to-go for period k = 0, i.e. with two
periods remaining, can be written as

J2 = JD,2 + JC,2 + JP,2 (26)

Substitution of (12), (19) and (24) into (26) yields 19

J2 = (ψ1 + δ1) u
2
0 + (ψ2 + δ2)u0 + (ψ3 + δ3) +

(
σ2

bq

2

)
φ1 (φ2u0 + φ3)

2

(σ2
bu

2
0 + q)

(27)

6 The ”representative” cost-to-go

The model analyzed in the previous sections encompasses as special cases
both the MacRae (1972) and Beck and Wieland (2002) models and parameter
sets. 20 It is therefore possible to characterize the ‘representative’ cost-to-go
of these two popular problems. The parameter set used in MacRae (1972) is

α = .7 β0 ≡ b = −.5 γ = 3.5 σ2
ε = q = .2

wk = 1 ∀k λk = 1 ∀k σ2
η ≡ σ2

b = .5 x0 = σ2
α = σ2

γ = 0

(28)

19 As noticed in Amman and Kendrick (1994, 1995), the derivative of this function
is a complex function of u0 and the function has several extreme points. However by
taking the second derivative of the cost-to-go at u0 = 0 it yields

(
∂2J2

/
∂u2

0

)∣∣
u0=0

=
2ψ1 + 2δ1 + σ2

bψ1ψ
2
2 − (σ4

bφ1φ
2
3

/
q
)
. Then they conclude that a higher variance, as

well as a lower value of q, usually makes nonconvexities more likely.
20 The Excel spreadsheet that we have used for many of the calculations and the
creation of the graphs in this and the following section is available from Marco Tucci
(tucci@unisi.it).
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and the desired path for the state and control is set equal to zero. Then, as
already noticed in Amman and Kendrick (1994, 1995), the coefficients of the
probing cost are

φ1 =
(

1

1 + b2

)
= .8

φ2 =αb

(
1 − b2

1 + b2

)
= −.21 (29)

φ3 =(αγ + γ)

(
1 − b2

1 + b2

)
= 3.57

and this function reaches its minimum 0 at r1 = 17 and its maximum JP,2 =
2.553 at r2 = −.023529. The limits of the probing cost function as u0 ap-
proaches plus or minus infinity are equal to JP,2 = .0035 and it has the general
form shown in Figure 1

The coefficients for the cautionary component of the approximate cost-to-go
are

ν1 =α
(

1

1 + b2

)
= .56

ν2 =
(
− 1

1 + b2

)
b (αγ + γ) = 2.38 (30)

ν3 =αγ + γ = 5.95

therefore

δ1 =
σ2

b

2

[
ν2

1

(
1−3b2

1+b2

)
+ 1

]
= .2657

δ2 = σ2
bν1

{
ν2 −

2b(2bν2+ν3)
1+b2

}
= 1.4661

δ3 =
σ2

b

2

[
ν2

2 − (2bν2+ν3)
2

1+b2

]
+ q

2

[
α2 + 2 − (αb)2

1+b2

]
= −.8937

(31)

and the cautionary component is convex. Finally the deterministic component

JD,2 = ψ1u
2
0 + ψ2u0 + ψ3 (32)

has coefficients

14



Figure 2.
Approximate cost-to-go in the first time period for the MacRae (1972) model

in the Monte Carlo ‘representative’ run, i.e. when b is -0.5.

ψ1 = 1
2

[
1 + (bν1)

2 + b2 +
(
− 1

1+b2

)2
(αb2)

2
]

= .674

ψ2 = bν1 (bν2 + ν3) + γb+
(
− 1

1+b2

)
αb2ν2 = −3.416

ψ3 = 1
2
(bν2 + ν3)

2 + 1
2
γ2 + 1

2
ν2

2 = 20.286 .

(33)

Using these values the ‘representative’ cost-to-go for the MacRae (1972) prob-
lem can be plotted as in Figure 2 with the ‘flat looking’ portion around control
0 due to the fact that in that portion the cost-to-go decreases at a slower pace.
Table 1 shows, that when the control at time zero is increased the cost-to-go
decreases. The optimum cost in Figure 2 is 18.87 at u0 = 1.25.

Table 1

u0 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

cost-to-go 22.53 22.26 22.20 21.94 21.10 20.13 19.43 19.03 18.87 18.90

Next we shift from the MacRae (1972) model to the Beck and Wieland (2002)
model. The parameter set for that model is

15



α = 1. β0 ≡ b = −.5 γ = 0.0 σ2
ε = q = 1 .0

wk = 1 ∀k λk = 0 ∀k σ2
η ≡ σ2

b = .25 σ2
α = σ2

γ = 0

(34)

and the desired paths for the state and control variables are set equal to zero.
Also the initial state is x0 = 1 as set in Amman et al. (2007). In this case the
coefficients of the probing component are

φ1 =
(

1

b2

)
= 4, φ2 = αb (−1) = .5, φ3 = −x0 = −1 (35)

and this function reaches its minimum 0 at r1 = −2 and its maximum JP,2 = 1
at r2 = 2. The limits of the probing cost function as u0 approaches plus or
minus infinity are equal to JP,2 = .5 and, again, it has the general form shown
in Figure 1. From equation (35) it follows that setting no penalty on the use
of the control variable, i.e. λk = 0, makes the probing component of the cost-
to-go extremely sensitive to the value of b. Thus the parameter φ1 reduces to
the inverse of b2. Furthermore assuming a null intercept in equation (11) with
w2 = 1, i.e. γ = 0, makes φ3 solely dependent on the initial state.

The coefficients for the cautionary component of the approximate cost-to-go
are

ν1 = α

(
1 − b2

b2

)
= 0, ν2 =

(
− 1

b2

)
α2bx0 = −1

b
= 2, ν3 = α2x0 = 1

(36)

therefore

δ1 =
σ2

b

2

[
ν2

1

(
1 − 4b2

b2

)
+ 1

]
= .125

δ2 = σ2
bν1

{
ν2 −

2(2bν2+ν3)
b

}
= 0

δ3 =
σ2

b

2

[
ν2

2 − (2bν2+ν3)
2

b2

]
+ q = q = 1

(37)

and the cautionary component is convex. From equation (37) it is apparent
that δ3 is always equal to q in this model. Moreover these coefficients appear
to be independent of the value of b with δ2 always equal to zero. Finally the
deterministic component

16



Figure 3.
Approximate cost-to-go in the first time period for the Beck and Wieland
(2002) model in the Monte Carlo representative run, i.e. when b is -0.5.

JD,2 = ψ1u
2
0 + ψ2u0 + ψ3 (38)

has coefficients

ψ1 = 1
2
(bν1)

2 + 1
2
b2 = .125

ψ2 = bν1 (bν2 + ν3) + αx0b = −.5
ψ3 = 1

2
(bν2 + ν3)

2 + 1
2
(αx0)

2 = .5

(39)

and the ‘representative’ cost-to-go function for the Beck and Wieland (2002)
model can be plotted as in Figure 3. The optimum cost in Figure 3 is 1.32 at
u0 = 1.25.

7 The Parameter set and Monte Carlo experiments

The analysis carried out in the last section focuses on the shape of the ‘repre-
sentative’ cost-to-go. Therefore it sheds little light on the results obtained in
each run of a Monte Carlo experiments carried out using the MacRae (1972),
or Beck and Wieland (2002), models and parameter sets. In a typical Monte
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Carlo experiment the initial estimate of the unknown parameter β, i.e. b, in
each run is drawn from a distribution having the true value of the unknown
parameter as mean and the estimated variance σ2

b as variance (Figure 4). 21

This means that, when the MacRae problem is used, the actual value for b is
between 0.2 and -1.2 in approximately 68% of the Monte Carlo runs, in the
interval (0.9, -1.9) approximately 95% of times and over 99% of time between
1.6 and -2.6. 22 The same intervals for the Beck and Wieland problem are,
respectively, (0.0, -1.0), (0.5, -1.5) and (1.0, -2.0).

It is therefore useful to study the shape of the approximate cost-to-go when
the parameter b takes on values on these different intervals. Even though
the probability that b takes on a specific value is zero, as is well known, the
probability that it falls in a certain interval, no matter how small, is not.
Amman and Kendrick (1995, page 470) consider the effects of changes in the
b parameter and they notice that for the MacRae problem “the cost-to-go
function will be convex for values of b either substantially above or below zero
but will be nonconvex for values of b close to zero”. However they do not
explicate the relationship between this result and the outcome of Monte Carlo
experiments. This is the main task of the present section.

In the MacRae problem, as originally suggested in Amman and Kendrick
(1995), the approximate cost-to-go shows a nonconvexity when b is close to 0.
Indeed a nonconvexity appears in all those runs where the value of b is between
-0.45 and 0.45 and it becomes more pronounced as b gets closer to 0 (Figure
5 and Figure 6). 23 The probability for b to fall in the interval (-0.45, 0.45)
in this problem is equal to the probability for the standard normal to be in
the interval (0.07143, 1.3571). Therefore in a Monte Carlo experiment based
on the MacRae (1972) problem nonconvexities will be encountered in about
38% of the runs which is even higher than the result, namely 28%, reported
in Tucci (1998, page 216) and Tucci (2004, page 105). When the value for b is
outside the interval (-0.45, 0.45) the cost-to-go appears as in Figure 7.

21 This is equivalent to assuming that the estimator of the unknown parameter is
unbiased.
22 In the first time period (0 time period) when computing u0 the only uncertain
element is the b , i.e. θ0 . Therefore u0 depends only on the uncertain b but u1 will
depend also on the additive noise terms as well as the uncertain parameter.
23 In the MacRae (1972) problem the optimal control for period 0 is -1.25, with an
associated cost of 19.163, when b = 0.4. A local optimum is at u0 = 0.75 with a cost
of 21.96. The maximum cost between these two optima is 22.68 and is associated
with u0 = 0. When b = −0.4 the cost function looks like in a mirror with the global
optimum at u0 = 1.25, the local optimum at u0 = −0.75 with a cost of 19.163 and
21.96, respectively, and the maximum cost between the two optima is again 22.68 at
u0 = 0. The cost function is perfectly symmetric around u0 = 0 when b = 0. In this
case there are ‘two global optima’ at u0 = −1.25 and u0 = 1.25 with a cost equal
to 18.392, and the maximum cost between the two optima is 24.075 at u0 = 0.
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Figure 4.
Probability density function of the unknown parameter b with the Beck and

Wieland (2002) parameter set (NORMAL.25), with the MacRae (1972)
parameter set (NORMAL.5) and with the Amman et al. (2007) parameter

set (NORMAL1.25)

Some relevant information about a certain set of parameters may be gained
studying the relationship between the stochastic parameter b and the optimal
control, for the first period, and its associated cost-to-go. This can be done, for
each value of b, by computing the coefficients of the approximated cost-to-go,
see Appendix B, and selecting the optimal control. When b is in the interval
(-3.0, -0.02), the optimal control is always between 1.00 and 2.00 with a cost
ranging from 2.08 to 19.16 (Figure 8). 24

In the Beck and Wieland problem, it follows from equation (35) that when
b = 0 the parameter φ1 is infinity and as reported in Appendix B most of
the relevant coefficients of the approximate total cost-to go are not available

24 The optimal control associated with b = 3.0 is the opposite of the optimal control
for b = -3.0 and the approximate cost-to-go is the same for the two controls. The
same is true for all the positive values of b.
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Figure 5.
Approximate cost-to-go in the first time period for the MacRae (1972)

problem in the Monte Carlo run where b is 0.4.

Figure 6.
Approximate cost-to-go in the first time period for the MacRae (1972)

problem in the Monte Carlo run where b is 0.
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Figure 7.
Approximate cost-to-go in the first time period for the MacRae (1972)

problem in the Monte Carlo run where b is 0.9. The optimal control is -1.75
with a cost of 14.127.

because they include a ‘division by zero’ term. When the parameter b happens
to be around 0, say 0.02 as in Figure 9, φ1 is extremely high and the approx-
imate total cost-to go takes on almost completely the shape of its probing
component, see Appendix B.

Also recall that in the Beck and Wieland model the weight λ1 on the control
variable deviation in the criterion function is set to zero. When this is combined
with a Monte Carlo run in which the coefficient b on the control variable
term in the systems equations is near zero as was discussed above, then from
equation (11) the coefficient

φ1 =

(
w2

2

λ1 + b2w2

)

in the probing term of the cost-to-go becomes very large. As Figure 9 shows
the probing term is large enough in this case to make the entire cost-to-go
function nonconvex.

The intuition here is that the probing component in the cost-to-go provides
a measure of future cost depending on the amount of probing. If there is not
enough probing to move the state variable x1 around, the cost is high because
the unknown parameter value is not learned effectively and its variance re-
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Figure 8.
Relationship between b and the optimal control in the first time period, and

its approximate cost-to-go, for the MacRae (1972) problem.

mains high. Thus there is an incentive, as Figure 9 shows, for the control to
be made large in either the positive or negative direction in order to learn
the parameter and reduce the cost. However, when b is very small it takes
large movements in the control variable u0 to bring about shifts in the state
variable x1 in order to learn the coefficient b and reduce its variance. Also, in
the Beck and Wieland model, with λ1 equal to zero there is no cost in the
criterion function associated with using large positive or negative values of
the control. Thus there is a need, when b is near zero, for large values of the
control in order to learn and there is no constraint from the criterion cost.
These two factors together bring about the shape of the cost-to-go function
shown in Figure 9.

Moreover it should be noticed that in the Beck and Wieland (2002) problem
the cautionary cost is constant in the various run, i.e. is independent of b, as
indicated by the δ coefficients reported in Table B.2 of Appendix B. When the
absolute value of b is in the interval (0.03, 0.19) the cost-to-go function has a
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Figure 9.
Approximate cost-to-go in the first time period for the Beck and Wieland

(2002) problem in the Monte Carlo run where b is 0.02.

‘sombrero like’ shape as in Figure 10. 25 The nonconvexity is very pronounced
for values of b close to the lower end of the interval and it becomes less and less
prominent as ‘b moves’ toward the higher end of the interval. For b = 0.2 the
cost-to-go appears as in Figure 11. The ‘flat looking’ portion around a control
equal to 1 is due to the fact that in that portion the cost-to-go increases at
a slower pace. Namely, when the control at time zero is increased from 0.5 to
0.75, 1, 1.25, 1.5, 1.75 and 2 the approximate cost-to-go increases from 5.20
to 5.35, 5.45, 5.49, 5.51, 5.52 and 5.54 respectively.

The probability for b to fall in the interval (-0.2, 0.2) in the Beck and Wieland
problem is equal to the probability for the standard normal to be in the interval
(0.6, 1.4). Therefore, in a Monte Carlo experiment based on this model and
parameter set, from mild to severe nonconvexities will be encountered in about
20% of the runs. Half of them will be severe and around 2% will be associated

25 In the Beck and Wieland (2002) problem the optimal control for period 0 is 3.75,
with an associated cost of 4.034, when b = −0.1. A local optimum is at u0 = -4.25
with a cost of 8.875. The maximum cost between these two optima is 14.55 and is
associated with u0 = −0.50. From Figure 10 when b = 0.1 the cost function looks
like in a mirror with the global optimum at u0 = −3.75, the local optimum at
u0 = 4.25 with a gobal optimum cost of 4.034 and a local optimum cost of 8.875,
respectively, and the maximum cost between the two optima is again 14.55 at u0 =
0.50.

23



Figure 10.
Approximate cost-to-go in the first time period for the Beck and Wieland

(2002) problem in the Monte Carlo run where b is 0.1.

Figure 11.
Approximate cost-to-go in the first time period for the Beck and Wieland

(2002) problem in the Monte Carlo run where b is 0.2.
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Figure 12.
Approximate cost-to-go in the first time period for the Beck and Wieland

(2002) problem in the Monte Carlo run where b is 0.5. The optimal control is
-1.25 with a cost of 1.316.

with a cost-to-go as in Figure 9. 26 When the value for b is outside the interval
(-0.2, 0.2) the cost-to-go appears as in Figure 12.

Summarizing (as shown in Figure 13) when b is in the interval (-3.0, -0.1),
the optimal control goes from .25 to 3.75 with a cost ranging from 1.04 to
4.03. 27 As b gets closer to 0 both the optimal control and its associated cost
skyrocket. At b = -.02 the former is 9.25 and the latter is 21.30.

The discussion of this section reveals that the variance of the unknown pa-
rameter estimate plays a ‘dual role’ in making nonconvexities more or less
likely to occur in a certain Monte Carlo experiment. On one hand it enters
the coefficients of the approximate cost-to-go and its second order derivative
with respect to the control, as pointed out in Amman and Kendrick (1994,
1995), effecting directly the shape of the cost function. On the other hand it
affects the probability with which values of the parameter drawn from certain

26 The probability that the value of b used in the Monte Carlo run falls in the
intervals (-0.1, 0.1) and (-0.02, 0.02) in the Beck and Wieland (2002) problem is
equal to the probability for the standard normal to be in the intervals (0.8, 1.2) and
(.96, 1.04), respectively.
27 Again the optimal control associated with a positive b is the opposite of the
optimal control for a negative b and the approximate cost-to-go is the same in both
cases.
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Figure 13.
Relationship between b and the optimal control in the first time period, and

its approximate cost-to-go, for the Beck and Wieland (2002) problem.

intervals of the parameter space are used. Therefore the role of σ2
b is more sub-

tle then so far expected. Nonconvexities may appear frequently even in cases
where the ‘representative’ run shows no indication of it and a smaller variance
does not necessarily imply fewer nonconvexities. For instance, in the Beck and
Wieland (2002) problem when σ2

b = 1.25 the probability that b is drawn from
the interval (-0.02, 0.02) is approximately 1%, instead of 2% as with the orig-
inal data set. 28 This means that cost functions similar to that reported in
Figure 9 will be encountered less frequently with this higher variance.

This completes the discussion of the main line of argument of this paper
about the effect of parameter sets on the adaptive or dual control solutions.
However, before closing it is appropriate to add a short additional section on
the effect of the parameter set selected for a certain numerical experiment on
the optimal feedback (OF) and expected optimal feedback (EOF) solutions
since it is anticipated that comparisons of these two methods may occur with

28 This probability is approximately equal to the probability that the standard nor-
mal is in the interval (0.43, 0.47).
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some frequency in the future.

8 The Importance of Penalty Weights on the OF and EOF Solu-
tions

Suppose that the optimal feedback (OF ) control, the expected optimal feed-
back (EOF ) control and Dual control (DC ) are compared. 29 Dual control
minimizes the approximate cost-to-go defined in equation (27). The EOF con-
trol is determined using the feedback rule

u0 = G0x0 + g0 (40)

with

G0 = − [λ0 +K1 (b2 + σ2
b )]

−1
(αK1b)

g0 = − [λ0 +K1 (b2 + σ2
b )]

−1
(bK1γ + bp1)

(41)

and the Riccati quantities K1 and p1 defined as

K1 =w1 + α2K2 − (αbK2)
[
λ1 +K2

(
b2 + σ2

b

)]−1
(αbK2)

p1 = (αγK2) + αp2 − (αbK2)
[
λ1 +K2

(
b2 + σ2

b

)]−1
[bγK2 + bp2] (42)

where the terminal conditions are given by K2 = 1 and p2 = 0. 30 The OF
control is obtained using equations (40)-(42) with σ2

b = 0. When these three
control methods are applied in a situation like that depicted in Figure 9, Dual
control diverges either to the right or left, EOF control is equal to 0 and OF
control is infinity. 31 As indicated in the sixth column of Table 2 the EOF
control is not too affected by a parameter value for b close or equal to 0 in
the Beck and Wieland (2002) problem. It goes from a maximum of 1 to a
minimum of minus 1 for the selected b’s.

Completely different is the situation for the OF control which, for the set of

29 See Kendrick and Amman (2006) for a description of the three different methods.
30 See, e.g., Kendrick (1981, 2002, Chapter 6).
31 Consequently, in a Monte Carlo experiment based on the Beck and Wieland (2002)
problem both OF and Dual control will exhibit around 10% of very unfavorable runs
and around 2% of severe outliers compared with EOF.
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selected values of b, ranges from infinity to -100 as reported in the last column
of Table 2. The situation looks more balanced when the MacRae problem is
used. As reported in Table 3 the difference between EOF and OF control is
not too big and as shown in Figure 6 the shape of the cost-to-go is not such
as to cause the Dual algorithm to diverge.

9 Conclusion

As work on the application of various stochastic control methods to economic
models proceeds Monte Carlo and similar stochastic methods will probably be
used to compare the performance of the various methods on simple models.
When this is done outliers of the type we have encountered in doing such
studies on the MacRae (MacRae (1972)) and the Beck and Wieland (Beck
and Wieland (2002)) are likely to occur. We have traced a major cause of
these outliers to the choice of parameter sets and in particular to the weight
on the control term in the criterion function and the estimate of the unknown
parameter that is multiplied by the control variable. When and is drawn near
zero in the Monte Carlo runs the cost-to-go function is likely to be nonconvex
and the criterion value may be large.

Therefore, in conducting Monte Carlo experiments to compare various meth-
ods of solving stochastic control methods in quadratic-linear tracking models
it is important to be careful in the choice of parameter sets. We would rec-
ommend that whenever possible that calculations similar to those we have
performed here be done before large Monte Carlo runs are done. As indicated
above, we are happy to provide to interested users the spreadsheet we have
used to make the calculations in Sections 7 and 8 in this paper and which
can easily be modified for other parameter sets in one-state, one-control, one
uncertain parameter cases.
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A Appendix: Intermediate Steps in the Derivation of the Caution-
ary and Deterministic Components of the Cost-To-Go

First derive equation (19) and equation (20) – the cautionary cost term. To
do so begin with equation (18), namely

JC,2 =
σ2

b
w2

2
(αu0 + u01)

2 +
σ2

b

2

(
− 1

λ1+b2w2

)
(αbw2u0 + bw2u01 + w2x02 − w2x̃2)

2

+ q
2

[
α2w2 + w2 + w1 +

(
− 1

λ1+b2w2

)
(αbw2)

2
]
+

σ2
b w1

2
u2

0 ,

(A-1)

and replacing u01 and x02 by their definition, that is (8) and (9) respectively,
it yields

JC,2 =
σ2

b
w2

2

(
αu0 +

(
− 1

λ1+b2w2

)
[αb2w2u0 + α2bw2x0 + αbγw2 + bw2 (γ − x̃2) − λ1ũ1]
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+
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b

2

(
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) {
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+ bw2 (γ − x̃2) − λ1ũ1] + w2
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(A-2)

or
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b
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2
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(A-3)

31



Use the quantities ν1, ν2 and ν3 as defined in equation (21), i.e.

ν1 = α
(
1 − b2w2

λ1+b2w2

)
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− 1

λ1+b2w2

)
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ν3 = α2x0 + αγ + γ − x̃2

(A-4)

and rewrite equation (A-3) as
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(A-5)

Squaring the terms in equation (A-5) yields
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(A-6)

or, alternatively,
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(A-7)

which is identical to equation (19) when the δ’s are defined as in (20).
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Next derive equation (24) and equation (25) – the deterministic component.
Begin with equation (23) i.e.

JD,2 =
λ0

2
(u0 − ũ0)

2+
w2

2
(x02 − x̃2)

2+
w1

2
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2
(u01 − ũ1)

2 (A-8)

Again by replacing u01 and x02 by their definition, that is (8) and (9) respec-
tively, using x01 = αx0 + bu0 + γ , and equation (21) one obtains
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2 + w2

2
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(A-9)

Squaring and rearranging the terms in equation (A-9) yields
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(A-10)

or, alternatively,
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(A-11)

Equation (A-11) is identical to (24) when the ψ’s are defined as in (25).
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B Appendix: The Coefficients of the Cost-To-Go Function for Se-
lected Values of b

This appendix contains some of the coefficients of the cost-to-go function, at
selected values of b, used to derive Figures 8 and 13. Table B.1 contains the
coefficients for the MacRae (1972) problem. It is worthwhile to point out that
the sign of b affects only the sign of the linear coefficients in the approximate
cost-to-go, namely φ2, δ2 and ψ2. Table B.2 contains the coefficients for the
Beck and Wieland (2002) problem. For b = 0 most of the relevant coefficients
of the approximate total cost-to go are not available because they include a
division by zero term. When the parameter b happens to be around 0, say 0.02
as in Figure 9 is extremely high and the approximate total cost-to go takes on
almost completely the shape of its probing component.
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