
fabrizio
Casella di testo
Massimo D'Antoni

fabrizio
Casella di testo
Maria Alessandra Rossi

fabrizio
Casella di testo
n.510 - Agosto 2007

fabrizio
Casella di testo
Copyright vs. Copyleft Licencing
   and Software Delvelopment



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract - This article aims at clarifying the role played by licenses within the increasingly relevant Open 
Source Software (OSS) phenomenon. In particular, the article explores from a theoretical point of view the 
comparative properties of the two main categories of OSS license--copyleft and non-copyleft licenses--in 
terms of their ability to stimulate innovation and coordination of development efforts. In order to do so, the 
paper relies on an incomplete contracting model. The model shows that, in spite of the fact that copyleft 
licenses entail the enjoyment of a narrower set of rights by both licensors and licensees, they may be 
preferred to non-copyleft licenses when coordination of complementary investments in development is 
important. It thus provides a non-ideologically-based explanation for the puzzling evidence showing the 
dominance, in terms of diffusion, of copyleft licenses. 
 
 
Keywords: intellectual property rights, open source, copyright, copyleft, GPL license, incentives to 
innovation. 
 
JEL classification: L17, O34. 
 
 
We thank Simone Piccardi for his help and encouragement, and for providing invaluable information on the 
open source world, and Sam Bowles for his comments and suggestions. However, all errors remain ours. 
 
 
 
 
 
 

Massimo D’Antoni, Dipartimento di Economia Politica, Università di Siena 
Maria Alessandra Rossi, Dipartimento di Economia Politica, Università di Siena 

 



1. Introduction

Open Source Software (OSS) has reached a signi˛cant extent of market pen-
etration in recent years. A June 2006 report by research ˛rm Gartner sug-
gested that OSS would take away 22% of the traditional software market
over the next ˛ve years. In July 2006 IDC estimated that OSS held 7% of IT
software revenue and projected an increase to 15% of IT software budgets in
the next four years. Considering that a signi˛cant part of OSS products is
distributed for free, the latter projection may well underestimate the extent
of OSS di¸usion. Moreover, OSS is the market leader in the web server seg-
ment, where Apache holds about 54% of the market according to the latest
Netcraft survey (June 2007) and holds relevant market shares in the mail
server market (47,8%, according to the FalkoTimme mail server survey) and
in the database market (33% of European ˛rms use OSS databases, according
to IDC).

Economic scholarship has kept up with the pace of OSS market di¸usion,
exploring a wide range of OSS-related issues and reconciling many apparently
puzzling characteristics with conventional economic analysis (for a survey,
see Rossi, 2006). Yet, a few relevant issues|and particularly the role played
by licenses|remain under-researched. Indeed, the search for economics-
based explanations for the OSS phenomenon has led to the identi˛cation of
features, such as the interplay between intrinsic and extrinsic motivations to
contribute, that may make appear the very existence of licenses redundant,
so that OSS software is often assimilated to software in the public domain.

However, although OSS software is usually freely available to anyone who
cares about making use of it, di¸erently from software in the public domain
it is protected by copyright and distributed under various sorts of licenses
that may set restrictions to its redistribution. The rationale for the existence
of various sorts of licenses is also still relatively unclear. Indeed, OSS licenses
vary greatly as regards the amount of restrictions they impose on licensees.
In particular, so-called copyleft licenses grant developers a narrower set of
rights with respect to non-copyleft licenses and thus dramatically reduce
their ability to pro˛t from the direct sale of the software and make more
di‹cult the combined commercialization of OSS and proprietary software
programs.

In this regard Maurer and Scotchmer (2006), for instance, note that:

\[T]he need for licenses is not entirely obvious nor, assuming that
licenses are needed, is it clear which restrictions are necessary or
desirable. From a welfare standpoint, the best way to ensure use
and re-use of software would be to place it in the public domain

1



without any license at all." (p. 17)

Thus, it is not entirely clear whether licenses play a role in ensuring the
viability of OSS nor is it clear whether di¸erent types of OSS licenses do
have di¸erent implications for the pace and dynamics of development.

In this paper, we aim to contribute to the understanding of the OSS
phenomenon by focusing on the role licenses play within OSS projects, and
particularly on the comparative properties of the copyleft and non-copyleft
licenses (as exempli˛ed respectively by the GPL and the BSD license, the
most popular in their classes). We build a formal model that takes as a start-
ing point the recognition of the speci˛c nature of the investments in software
development{an aspect too often overlooked{and the associated ex-ante in-
e‹ciencies in the investment choices arising as a consequence of contractual
incompleteness. The model highlights the implications in terms of incen-
tives to invest in software development of the alternative property rights
allocations realized through di¸erent OSS licenses.

The model shows the (perhaps counterintuitive) result that, in spite of
the fact that copyleft licenses impose more stringent restrictions on both
licensors’ and licensees’ residual rights of control relative to non-copyleft
licenses, they may induce higher levels of coordination of investment and
thus be preferred to non-copyleft licenses in order to enhance the degree
of co-speci˛city of the investment e¸orts. In so doing, it allows both to
shed light on a number of empirical observations that have so far escaped
theoretical scrutiny and to provide insights on the implications of di¸erent
OSS licensing choices for ˛rms.

The incomplete contracting framework we adopt is loosely related to the
\GHM approach", namely the collection of contributions by Sanford Gross-
man, Oliver Hart and John Moore (Grossman and Hart, 1986; Hart and
Moore, 1990; Hart, 1995), and to the other few contributions that have ap-
plied some insights from the GHM approach to the analysis of issues arising
in innovative contexts (see, e.g. Aghion and Tirole, 1994; Arora and Merges,
2001). Di¸erently from the GHM approach and from the other mentioned
contributions, however, we introduce an additional dimension to the choice
of investments by agents. While in GHM-style models agents choose only
the level or intensity of speci˛c investments, agents in our model may choose
both the intensity and the degree of complementarity/speci˛city of invest-
ments1. Adding this further dimension is important because our focus is
on contexts of cumulative innovation in which it is important to assess not
only the intensity of incentives to invest but also the extent of coordination

1In this respect, our approach can remind of Cai (2003), where the choice of the degree
of speci˛city is used to justify forms of common property.

2



of investment. This, in turn, implies that in evaluating the e¸ects of di¸er-
ent licenses their impact on both of these dimensions should be taken into
account.

The paper is organized as follows. Section 2 explores the very rationale of
the choice of opening the source code. Section 3 describes the principal types
of OSS licenses, introducing the di¸erence between copyleft and non-copyleft
licenses. Section 4 presents a formal model that captures the main elements
of the comparison between copyleft and non-copyleft licenses. Section 5
discusses the mainresults of the model, introduces some stylized facts on
which the model may shed light, and concludes.

2. The choice of opening the source code

The de˛ning characteristics of OSS are (a) the free availability of its source
code, i.e. of the human-readable instructions expressing the di¸erent tasks
that have to be performed by the computer, and (b) the nature of the license
under which it is distributed, which grants licensees a number of rights,
namely the right to use (run) the program, to study how it works, to modify
and improve it, to redistribute it with or without modi˛cations2. Of course,
the ˛rst condition (free access to the source code) is a precondition for the
second in that no improvement is possible in absence of access to the source
code3.

It is important to note that the choice to release a piece of software
under an OSS license does not involve giving up the copyright over it. This

2The free software de˛nition makes explicit reference to the large set of rights (freedoms)
accorded by OSS licenses:

Free software is a matter of the users’ freedom to run, copy, distribute, study,
change and improve the software. More precisely, it refers to four kinds of free-
doms, for the users of the software: The freedom to run the program, for any
purpose (freedom 0). The freedom to study how the program works, and adapt
it to your needs (freedom 1). Access to the source code is a precondition for
this. The freedom to redistribute copies so you can help your neighbor (free-
dom 2). The freedom to improve the program, and release your improvements
to the public, so that the whole community bene˛ts (freedom 3). Access to the
source code is a precondition for this. A program is free software if users have
all of these freedoms. Thus, you should be free to redistribute copies, either
with or without modi˛cations, either gratis or charging a fee for distribution,
to anyone anywhere. Being free to do these things means (among other things)
that you do not have to ask or pay for permission.

3Note that OS software is to be distinguished from software whose licence allows to use
it freely, but not to modify it (e.g. Acrobat). In this case the software is free, in the sense
that is it distributed at no cost, but it is not open source.

3



distinguishes the choice to distribute the software under an OSS license from
the choice to release it in the public domain4. The release of the software in
the public domain entails that the consent of the author of the software is
no longer required for third parties to use and modify it. The same result
is achieved by OSS licenses through contractual means, rather than through
renouncing to property altogether. However, di¸erently from public domain
software, by using an OSS license the licensor may impose speci˛c restrictions
to some aspects of the redistribution of the software. This will become clearer
in what follows and will play an important role in explaining the comparative
properties of di¸erent types of OSS licenses.

Of course, in any case opening the source code reduces the extent to
which the developer of the software licensed under OSS terms (or any other
software developer) may pro˛t from the direct sale of it, although important
di¸erences exist in this regard in relation to the speci˛c type of OSS license
chosen (on which more will be said in the following section). The question
therefore arises of why a rational individual would ever choose to release her
software under an OSS license. This question|a \puzzle" for many|has
been for long prominent in the literature on OSS. Answers range from the
identi˛cation of the reputational and signalling bene˛ts of contributing to
OSS projects (Lerner and Tirole, 2002), to the recognition of bene˛ts in terms
of satisfaction of speci˛c user needs (von Hippel, 2002; Johnson, 2002), to the
pinpointing of various sorts of intrinsic motivations, including the enjoyment
of programming per se (Moglen, 1999) and an ideological commitment to
the norms of OSS communities and the very idea that source code should be
open (Raymond, 1998; Bergquist and Ljungberg, 2001).

In this paper, we disregard ideological explanations for the choice of an
OSS license by focusing on the incentives of pro˛t-oriented individuals or
˛rms, interested in maximizing the value of the software they work with5.
For this sort of agents, opening the source code is crucial to enable invest-
ment by multiple parties with heterogeneous human capital. Indeed, the
combination of free access to the source code and the wide scope of rights
over the licensed software creates an opportunity for multiple agents to have
simultaneous access to the same software program and eventually invest in

4In order to release his own work in the public domain, the author of a piece of software
must take some explicit legal steps in order to disclaim the copyright over it, given that
copyright immediately attaches to original creations under the Berne Convention for the
Protection of Literary and Artistic Works of 1886.

5Note that this does not mean taking any particular stance on the comparative relevance
of di¸erent motivations for releasing software under OSS licenses. In other words, we do
not rule out the possibility that in many cases intrinsic motivations may play an important
role.

4



its development. This is particularly relevant in light of two characteristics
of software development: cumulativeness and investment speci˛city. These
characteristics imply that, although an OSS strategy reduces the pro˛ts from
the direct sale of the software, it might entail greater bene˛ts than costs.

Consider the two aspects in turn. First, an OSS strategy entails impor-
tant technical bene˛ts in a context of cumulative innovation such as software
development. Software innovation is strongly incremental, i.e. it results from
a cumulative process in which improvements build on previous versions and
developers rely both on their own and on others’ existing designs and exam-
ples in order to incorporate them into new programs or adapt them to serve
new purposes.

Cumulativeness implies that a given software constitutes the input into
further development e¸orts. In this context, it is technically possible to
independently develop two programs or software modules meant to be used
jointly without having access to the source code as long as some instructions
on the realization of interfaces are provided by the licensor of the original
software input. However, in keeping the source code secret, important gains
in technical e‹ciency are foregone. By opening the source code, by contrast,
improvements and complementary programs can be developed in a way that
increases the value of joint use of the software and optimizes the interaction
between the di¸erent programs/modules. In particular, only if the source
code of a given software is open it is possible to coordinate the development
e¸orts of di¸erent agents operating in a decentralized fashion (i.e. outside
of the boundaries of a ˛rm). In addition to this, access to the source code
can bring about as a side e¸ect improvements in the form of bugs or error
corrections or of the provision of more substantial additions.

Secondly, the existence of an incentive to open the source code may be-
come even more apparent in light of the fact that investments made in the
development of a given software program are speci˛c. That investments in
software development are speci˛c is a truism too often overlooked in analyses
of software innovation that we think is crucial to understand both an initial
developer’s decision to release a piece of software under OSS terms and the
decision by other developers to subsequently contribute to the improvement
of that software6.

Investment speci˛city implies, on one side, that developers may pro˛t
from the sale of complementary services or customized solutions that include

6One important exception in this regard in the OSS context is the mentioned 2005 paper
by Lerner and Tirole where the authors stress in a footnote that the "hijacking" possible
under permissive licensing terms may deprive contributors of some of the bene˛ts from
participating to a project because it creates the possibility of hold up and that restrictive
licensing terms may be interpreted as a contractual response to this problem.

5



but do not coincide with the software program7. On the other side it implies
that, in a context of cumulative innovation, they are interested in having
access to the software they invest in also in the future. Being denied access
to future versions of the software in which they have made investments would
imply the loss of these investments.

Now consider how the two aspects|investment speci˛city and cumulative-
ness|interact. Cumulativeness entails that (a) the initial innovation(s) on
which improvements build upon is (are) always totally or partly incorpo-
rated into the ˛nal output; or that (b) even if not incorporated, the initial
innovation has to be available to developers/consumers in order for them to
be willing to use/buy the program. As a consequence, if the original inno-
vation input enjoys legal protection in the form of patents or copyright and
unless its improver is given ex ante a de˛ned set of rights to modify and re-
distribute modi˛cations of the input, development through software-speci˛c
investment gives rise to a situation of holdup between the producer/owner
of the input and the subsequent innovator.

Thus, the choice to open the source code under OSS licensing terms
might be considered the choice of a contractual mechanism that provides
safeguards against opportunism to all the potential contributors to devel-
opment. Indeed, such contractual mechanism ensures that both the original
and subsequent developers will have continued access to the software they
use to produce services in the ˛nal market. In so doing, it allows the original
developer to gather contributions from other developers similarly interested
in increasing the value of a software they use to provide complementary ser-
vices8. This turns out to be of particular relevance when the market value
of a given software is declining and the original developer risks losing the
speci˛c investment made in the ˛rst place.

It is important to note that the assumptions we make on the choice to
open the source code imply that we do not directly address the question
whether software development under an OSS license is superior to software
development under proprietary licenses in absolute terms. In other words,

7This is consistent with the fact that the business models currently adopted in the
software industry are increasingly based upon the idea that it is service provision that should
be sold rather than binary code (think about the increasing importance of the Software as
a Service model|SAAS model).

8This is consistent with all of the empirical analyses available to date that con˛rm the
relevance of user needs as the single most important driver of contributions to OSS projects.
Lakhani and Wolf (2003) in a web-based survey administered to 684 software developers in
287 F/OSS projects ˛nd user needs, both work- and non-work-related, to be the overwhelm-
ing reason for contribution and participation. Similar results are obtained also by Gosh,
Glott, Kreiger and Robles (2002); Hertel, Niedner and Hermann (2002)

6



we move from the empirically sound premise that the choice to open the
source code may be compatible with the incentives of a self-interested in-
dividual under speci˛c circumstances but we do not directly explore here
the issue of whether the same or better results could be achieved through
alternative means, such as for instance through a centralized organizational
solution involving the hiring of developers to work in-house on the project.

Although a comprehensive treatment of this problem is outside the scope
of this paper, it is possible to highlight some reasons why a decentralized so-
lution such as recourse to OSS license-mediated collaboration may be chosen
instead of a proprietary solution with centralized ownership. These rea-
sons have to do, in particular, with the usual agency problems associated
to employment contracts. A centralized solution involves a need to provide
remuneration in order to motivate developers that, in turn, implies a need
for e¸ective selection of the most talented individuals. This determines not
only selection and monitoring problems but also, and most importantly, a
necessary reduction of the pool of developers. If it is important to ensure
the participation of a large pool of developers with heterogeneous human
capital these drawbacks may be decisive (on some aspects of this issue see,
for instance, Johnson, 2006).

3. The choice of the OSS license: copyleft vs. non-copyleft licenses

As mentioned before, OSS licenses can be roughly said to belong to two
types: copyleft and non-copyleft. The di¸erence between the two types
resides in the nature of the constraints they impose on licensees’ freedom to
redistribute the modi˛ed version of the OSS-licensed software under terms
of his choice.

Non-copyleft licenses. This sort of licenses allows to release modi˛cations
of the software under a di¸erent license, even a proprietary one. Well
known examples are the Berkeley Software Distribution (or BSD) license,
the Apache License and the X11 license. The main obligation imposed by
these licenses concerns the need to give credit to contributors. All that is
needed for anyone to freely use non-copyleft-licensed software is to include
in the redistributed software the copyright notices (one of the notices, in
turn, requires that subsequent distributors also include the notice, so that it
passes from user to user).

Software put in the public domain (i.e. software whose author has ex-
plicitly given up copyright) can be described, in terms of its implications
for incentives, as a nonproprietary license with no associated constraints|

7



although in this case there is neither an owner nor a license.

Copyleft licenses. Copyleft licenses impose more stringent constraints rel-
ative to non-copyleft licenses. From our point of view, the most relevant
of such additional constraints concerns the obligation to license future de-
velopments under the same terms. Thus, developers of contributions to the
original software code retain copyright over their creations but they must
distribute them under the terms of the initial license. This constraint is
imposed, among others, by the General Public Licence, or GPL (see section
2(b) of the GPL)9, which is therefore a copyleft license and on which we will
focus in this paper.

Thus, copyleft and non-copyleft licenses di¸er in that the former signif-
icantly restrict both the original licensors’ and licensees’ freedoms with re-
spect to the latter. The most relevant of these restrictions relates to the fact
that the BSD (and in general all non-copyleft open source licenses) grants
developers the freedom to develop the OSS-licensed software and license de-
velopments as proprietary, while the GPL does not. In other words, the BSD,
di¸erently from the GPL, grants developers the possibility to exclude other
users and developers from access to an improved version of the software or
from a software using the original one as a component. This implies that the
BSD opens up the possibility to charge a price for access.

It is perhaps important to note that the wording of the GPL license does
not prevent developers from charging a fee as high as they wish (or can) for
the distribution of software. In fact, GPL licenses do not impose an express
obligation to release the software itself for free, although they impose an
obligation to apply the terms of the original license at no charge to all third
parties (see, for instance, section 2(b) of the GPL)10. However, the latter
provision, combined with the public good characteristics of software (and
thus with the possibility to reproduce copies of software code at virtually
zero cost by anyone), implies that the equilibrium price of the right of access
to the software is likely to be zero.

Given that conventional wisdom has it that the broader the rights granted
to an economic agent, the greater the stream of bene˛ts she can derive from
her property and therefore the greater her incentives, the absolute dominance

9Section 2(b) of the GPL reads:

You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.

10For more information refer, for instance, to the GPL FAQ webpage, available at
http://www.gnu.org/licenses/gpl-faq.html.

8



of the GPL in quantitative terms appears puzzling. Given that the BSD
grants a broader set of rights to both licensors and licensees we should observe
a prevalence of the BSD over the GPL. Instead, copyleft licenses are much
more widely adopted than non-copyleft licenses, in spite of the more stringent
restrictions they impose. Lerner and Tirole (2005), for instance, report that
72% of OSS projects on the Sourgeforge database adopt a GPL license, while
only 7% of the projects in their sample adopt the BSD.

Looking at \big" project, there are many well known examples of projects
which turned from proprietary to a GPL licence: OpenO‹ce, Mozilla/Firefox,
MySQL, Virtualbox, QEMU, OpenSolaris, Xsara Xtreme, the Qt libraries
and (announced) Java. There are no similar examples of software turned to
a BSD-like licence; the only case we know of software moved from the GPL
to BSD is the OSS standard for music compression (an alternative to MP3).

Most of the explanations o¸ered for why the GPL may work have to
do with ideology, either in the sense that the GPL constitutes a means to
ensure that the expectations of ideologically-motivated contributors are not
frustrated by the commercialization of the result of their e¸ort (see, for in-
stance, Frank and Jungwirth, 2001) or in the sense that the GPL allows to
attract ideologically-motivated contributions when other sources of motiva-
tion are weak (Lerner and Tirole, 2005). Other reasons have to do with
GPL’s ability to prevent forking (Maurer and Scotchmer, 2006) or to re-
duce the extent of free-riding, particularly in the form of the privatization of
existing OSS projects (Gambardella and Hall, 2005)11.

In fact, although we do not deny the importance of ideology, we contend
that there is no reason why the dominance of the GPL should be explained
only in terms of an ideological preference of developers. In our view, an
important element of the explanation of the relative success in terms of
di¸usion of copyleft and non-copyleft licenses is the fact that the two types
of licenses impact di¸erently on developers’ ability to access future versions
of the software originally released under OSS terms. This, in turn, in‚uences
developers’ investment choices. While both types of OSS licenses mitigate
to some extent the mentioned hold up problem arising from the combination
of cumulativeness and investment speci˛city relative to proprietary licenses,
copyleft and non-copyleft licenses have very di¸erent implications in this
regard. In particular, although copyleft licenses entail a narrower set of
freedoms for both the original licensor and licensees, they guarantee to both

11The comparison of the costs and bene˛ts of these two forms of licensing from an eco-
nomic viewpoint has so far received scant attention (with the exception of Gaudeul (2005);
Bezroukov (1999)). Indeed, while the literature highlights a number of reasons why recourse
to the GPL may make sense, it does not explore the question whether the GPL may make
more or less sense than the BSD and under what circumstances this is likely to be the case.

9



that they will have continued access to the software in whose knowledge they
have invested in and in all future versions of it and therefore constitute a
strong safeguard against the threat of hold up.

Non-copyleft licenses, by contrast, allow subsequent developers to turn
their contributions into proprietary and thus expose those developers that
stick to the OSS strategy to the the risk of opportunism and to a form of
ex-post hold up of the speci˛c investment in human capital they have made.
This holds even if developers are not excluded from access to older versions of
the software, as they might be excluded from the subsequent versions of the
software, which may include contributions important from a technical and
commercial viewpoint. This impacts both on the level and on the nature
of the investment chosen ex-ante, as it will become clear in the following
section.

4. A formal model of investment choice under different licenses

The previous section has explained that the principal di¸erence between
GPL and BSD licenses resides in the fact that the latter allows developers,
both licensors and licensees, to license their developments under proprietary
terms. Hence, if the choice between the BSD and the GPL is of some rele-
vance, it is because with positive probability, at a certain future stage, the
latest and most valuable version of a project under BSD can be excluded
from access and no longer be open source. Since the possibility to exclude
and make the project proprietary allows the developer to collect a price from
other users and developers, here is where the superiority of the BSD in terms
of incentives is alleged to reside.

In order to emphasize the di¸erence between the BSD and the GPL we
consider an \ideal" case where ex post contracting is without cost and there
are no \social norms" in the community of developers that keep developers
from excluding others and negotiating the conditions of access to their de-
velopments12. By focusing on a simple single-period model, we assume that
after development has taken place all developers may choose to sell their
contributions to others. We assume that bargaining is e‹cient, so that ex
post each developer has access to each other’s contribution. In so doing, we
consider a case which is at the same time more favourable to the choice of the
BSD than real world conditions are, and which makes the di¸erence between
the BSD and the GPL larger than it actually is.

We consider a software which is an input to the production by each de-

12The presence of social norms in the OSS community might be considered a substitute
for licenses as a means of coordination. More on this will be said in section 5.

10



veloper in the ˛nal market. Agents do not pro˛t from the direct sale of the
software but rather from providing assistance, customization or other services
to end-users and access to the source code constitutes a necessary input into
the provision of such services, so that software development constitutes a
byproduct of these activities, rather than the opposite.

4.1. Model setup

We assume that each developer i makes an investment yi speci˛c to soft-
ware under an open source license, whose technical quality is represented
by an index X. After the investment is made, she develops an innovation.
Innovations increase the value of X for developers as they use X to produce
services in their ˛nal market. Considering the set N of all developers, let
XS be the level of X when contributions by developers in S are included.
Clearly, XS – XR if R  S.

Let ıi be developer i’s pro˛t in the ˛nal market. We have ıi = ıi(yi; X),
with

@ıi(yi; X)

@yi
> 0

@ıi(yi; X)

@X
> 0

@2ıi(yi; X)

@X@yi
> 0 (1)

We allow for an e¸ect of yi on ı independent of the e¸ect through X in order
to consider that (1) the investment by i in the development of X can increase
her (X-speci˛c) human capital, or can have a signalling e¸ect on the ˛nal
market; (2) the investment can improve the software in a developer-speci˛c
way, since developers can use \specialized" versions of X. In this sense, the
e¸ect of yi on X must be thought of as the transferrable e¸ect of yi, the
e¸ect of yi which bene˛ts the whole community.

As mentioned in the previous paragraphs, the presence of the \direct"
e¸ect of yi on ı

i is very important in the explanation of why developers may
choose an open source solution.

We consider the ex post interaction under the two cases of GPL and BSD
license.

GPL. In the GPL case, contributions can be freely accessed by other de-
velopers; they will be included in X, and developers are rewarded for using
X to provide services in the ˛nal market. The payo¸ of developer i is:

ıi(yi; XN)` yi: (2)

BSD. When instead developers are allowed to exclude other developers
from access to their contribution, innovations are merged only after the in-
novator grants access to other developers. In order to make the innovation

11



available, the developer can ask a price, so that bargaining will take place
among developers in order to allocate the surplus from innovations. Each de-
veloper’s share in this surplus is determined by her bargaining power, which
in turn is a function of how important is her own contribution.

Considering that bargaining is e‹cient, we will make use of the concept
of Shapley value. The use of this concept has an established tradition in
the economic analysis of incomplete contracts and property rights Hart and
Moore (see, for instance, 1990). The Shapley value considers the share of a
bargainer as a function of her value for each possible coalition of bargainers
S „ N .

The value for developer i is

X
S„N ji2S

(S)
h
˝(S)` ˝(Snfig)

i
; (3)

where

(S) =
(jSj ` 1)!(jN j ` jSj)!

jN j!
(4)

and where ˝(S) is the total pro˛t obtained by coalition S, or

˝(S) =
X
j2S

ıj(yj; XS) (5)

so that ˝(S)` ˝(Snfig) is how much the pro˛t of coalition S is reduced if
i leaves it.

The share represented by the Shapley value is a weighted average of the
contribution of i’s development to all possible subsets of developments13.
The formula is often justi˛ed by imagining that the coalition N is formed
one actor at a time, with each agent obtaining her contribution (as if she
could make a take-it-or-leave o¸er to the agents already in the coalition),
and then averaging over the possible di¸erent permutations in which the
coalition can be formed14.

4.2. The choice of the level of co-speci˛city

In addition to the choice of the investment level yi, we consider as very
important the choice of the nature of the investment in development. Each
developer can choose to make her development based on X more or less
co-speci˛c to developments made by others. At one extreme, developer i’s

13Note that
P

S„N ji2S
(S) = 1.

14Taking all possible orderings of jN j agents as equally likely, (S) represent the proba-
bility that i will be ranked just after the agents in the set Snfig.

12



contribution can be stand alone and require only the basic version of the
software. At the other extreme, her contribution can have value only if used
together with all the other contributions. More generally, each developer can
decide to make her development more or less speci˛c to other developments.

Software development e¸orts are always to some extent co-speci˛c. How-
ever, increasing the degree of co-speci˛city of e¸orts generally allows to reap
important technical bene˛ts, by enhancing the e¸ectiveness of the combina-
tion of the various modules or functionalities. This is particularly important
in the a context of decentralized innovation typical of OSS development,
where typically each contribution is soon made available and \used" by other
developers.

We will say that the contribution by i is speci˛c to the subset of contri-
butions R „ N if its value is enhanced by the fact that it is used together
with the contributions in R, or

@XS

@yi
>

@XS0

@yi
when R „ S and R 6„ S 0: (6)

We will say that a developer whose contribution is speci˛c to R can
increase the level of cospeci˛city by choosing to make it speci˛c to R0 such
that R  R0; we assume that, as a consequence of increased cospeci˛city,
@XS=@yi is increased for all S such that R0 „ S, while it is decreased for
S such that (S \ R0) „ R. In other words, more cospeci˛city increases the
value of the investment when all contributions in R0 are included in S, while
it decreases it when it is made speci˛c to additional contributions which are
not included in S.

A somehow extreme assumption is that i’s R-speci˛c contribution doesn’t
add anything to XS (@XS=@yi = 0) if R 6„ S.

Hence, there is a trade-o¸ from increasing co-speci˛city (i.e. from choosing
to make an investment speci˛c to a larger set of contributions R0) when we
are not sure that all contributions in R0 are included, while cospeci˛city is
always good when all contributions in N are used.

When the objective is to maximize the development of X, co-speci˛city
should always be encouraged, since more cospeci˛city means a higher XN ,
and under the assumption of e‹cient ex post bargaining the coalition N will
always be formed (i.e. all contributions will be included).

Since the degree of co-speci˛city is an individual choice of each devel-
oper, the license can a¸ect this choice. Under the GPL, developers are sure
coalition N is always formed, and take their investment decisions on the ba-
sis of this expectation. Under the BSD, conversely, the bargaining power of
the parties depend on their \outside" options, i.e. the value with all coali-
tions di¸erent from N . In other words, under the BSD increasing the value

13



of coalitions di¸erent from S will be optimal from an individual point of
view15.

We summarize this ˛rst conclusion in the following

Proposition 1. Under the GPL, each developers will choose to be spe-
ci˛c to all other develpers (N-speci˛c), i.e. the highest possible degree
of co-speci˛city. Under a BSD license, a lower degree of co-speci˛city
will be chosen.

The second part of the proposition is best illustrated by using a simple
two-agents speci˛cation of the model presented above. This allows to discuss
the basic characteristics of the interaction in the simplest possible setting.

Let X be Xf1;2g = „1y1 + „2y2 when contributions are merged together,
and Xfig = —„iyi when only i’s contribution is used16.

Depending on the choice of the parties with regard to the degree of co-
speci˛city, „1 can assume the following values:

co-speci˛c investment by: both only 1 only 2 none

contributions merged „112 „11 „12 „10

contributions not merged —„11 —„10

Hence, we indicate by „i12 the marginal e¸ect of yi on X when both 1
and 2 choose to work on co-speci˛c projects and the two contributions are
merged; if the contributions are not merged, the e¸ect is —„ii (note that in
this case it is not relevant if the other developer has chosen a co-speci˛c
investment or not). The remaining notation is intuitive.

The assumption above about the e¸ects of incresed speci˛city translates
into „i12 > „ij > „i0: the choice of a co-speci˛c investment increases the value
of the investment when contributions are merged, and the value is maximum
when both choose the co-speci˛c investment. Although this is not necessary
to our result, it might be reasonable to assume strategic complementarity in
the choice to be co-speci˛c: „i12 ` „ij > „ii ` „i0.

If contributions are not merged, it is better not to make a co-speci˛c
investment, hence —„i0 > —„ii. We assume without loss of generality that —„ii = 0
(i = 1; 2): the value of the contribution is zero if i has chosen to be co-speci˛c
and the contributions are not merged.

15Note that if we took into account transaction costs, hence the possibility that the coali-
tion N is not formed in the end, this would only reinforce our point, as it would make it
less important to increase XN .

16Therefore, @Xf1;2g=@yi = „i and @Xfig=@yi = —„i.

14



Note that from a collective point of view the optimal choice is the co-
speci˛c investment, since in equilibrium all contributions are merged, and
all contributors have access to Xf1;2g.

Let us compare the two licensing regimes of GPL and BSD.
Under the GPL, each developer has access toX after development activity

has taken place. There is no reason not to contribute one’s development.
Each developer gets (2). The level of co-speci˛city will be chosen so that
Xf1;2g is maximized: the \socially" optimal outcome „

i
12 will result.

Things are di¸erent under the BSD. In this case, developers’ payo¸s de-
pend on their contractual force, which in turn depends on the value of their
contribution to all possible coalitions, not only to N (in the two-agents case,
each developer can belong to a coalition with the other developer or simply
stay alone). According to the solution de˛ned in (3), which in the two-agent
case coincides with the Nash bargaining rule (the parties split 50:50 the dif-
ference between the payo¸ with cooperation and the payo¸ when they do
not cooperate), i gets

1

2

h
ı1(y1; Xf1;2g) + ı2(y2; Xf1;2g)` ı1(y1; Xf1g)` ı2(y2; Xf2g)

i
+ ıi(yi; Xfig)

(7)
or, for developer 1:

1

2

h
ı1(y1; Xf1;2g) + ı2(y2; Xf1;2g)` ı2(y2; Xf2g)

i
+
1

2
ı1(y1; Xf1g) (8)

with a similar payo¸ function for developer 2.
We now consider the optimal choice of the level of co-speci˛city by the

parties. To simplify the analysis and make our conclusion more clear-cut, we
disregard the choice of yi assuming yi = 1. We will remove this restriction
in the following section.

Substituting for X in the payo¸ function (7), and de˛ning for notational
convenience ı̂(X) = ı1(X) + ı2(X), we can consider the (noncooperative
Nash) equilibrium of the choice of co-speci˛city by the parties.

Consider the case that developer 2 chooses co-speci˛city. Developer 1
will choose co-speci˛city only if

1

2
ı1(—„10) +

1

2

“
ı̂(„12 + „22)` ı2(0)

”
(9)

is lower than
1

2
ı1(0) +

1

2

“
ı̂(„112 + „212)` ı2(0)

”
(10)

or
ı1(—„10)` ı1(0) < ı̂(„112 + „212)` ı̂(„12 + „22) (11)

15



On the other hand, if developer 1 does not choose co-speci˛city, developer
2 will choose co-speci˛city only if

1

2
ı2(—„20) +

1

2

“
ı̂(„10 + „20)` ı1(—„10)

”
(12)

is lower than
1

2
ı2(0) +

1

2

“
ı̂(„12 + „22)` ı1(—„10)

”
(13)

or
ı2(—„20)` ı2(0) < ı̂(„12 + „22)` ı̂(„10 + „20) (14)

Therefore co-speci˛city, though e‹cient, might not be an equilibrium
strategy under the BSD. This will be the case if ıi(—„i0)`ıi(0) is high enough
with respect to the gains from co-speci˛city.

A numerical example To show that the e‹ciency loss can be substantial,
consider the following example with n + 1 developers, with a large agent
(named n + 1) and n small agents. By \large" and \small" we mean, re-
spectively, \with a large potential contribution" and \with a small potential
contribution". We assume that coalitions of small agents not involving the
large one give no advantage in terms of co-speci˛city, so that this example
can be seen as a straightforward extension of the simple two-agents case.

Assume that, when it is merged into X, developer i’s (i < n) contribution
to ı̂ is equal to:
- 24 both agent i and agent n+ 1 have chosen co-speci˛city;
- 20 if i has chosen co-speci˛city but n+ 1 has not;
- 12 if neither i nor n+ 1 has chosen co-speci˛city.
We are assuming that developers other than n+1 do not a¸ect developer i’s
contribution.

Assume that ıi (stand alone pro˛t for a small developer) is equal to 10
when he chooses not to be co-speci˛c, zero when co-speci˛city is chosen.

Finally, assume that by not being co-speci˛c the stand alone pro˛t ın+1

is higher by F than if she chooses to be co-speci˛c, with F > nˆ 2.
Consider the case that all n small developers choose co-speci˛city. The

total pro˛t is n ˆ 24 if n + 1 is co-speci˛c. However, this is not optimal
for n+ 1, since her payo¸ is 1

2
ı̂ + 1

2
ın+1 and she can increase ın+1 by F by

decreasing ı̂ by nˆ2 < F (this is the e¸ect of choosing not to be co-speci˛c).
However, if n+ 1 chooses not to be co-speci˛c, each i must compare his

pro˛t when co-speci˛c (1
2
20) and when not co-speci˛c (1

2
12 + 1

2
10). He will

choose not to be co-speci˛c, and this will be the only Nash equilibrium of
the game.

16



Note that, in the example, there is no real advantage from merging the
contributions: the total pro˛t is n ˆ 12 if contributions are merged, and
nˆ 10+F if they are not. In any case, it is much lower than if co-speci˛city
is chosen by all developers, in which case we would have nˆ 24.

4.3. The choice of the level of investment

The analysis of the previous sections disregarded the incentive to invest, i.e.
the choice of yi. Although the conclusion of proposition 1 is not a¸ected
by this simpli˛cation, the comparison between the two licenses is about the
level of X and of ıi, and the level of yi is relevant in this regard. Moreover,
recall that it is because it allegedly induces a higher level of yi that the BSD
is often considered superior to the GPL in terms of incentives, so that it is
important to consider this aspect explicitly.

In the GPL case, the value of a marginal increase in yi is:

@ıi(yi; XN)

@yi
+
@ıi(yi; XN)

@X

@XN

@yi
` 1 (15)

developers will invest as long as this is higher than zero.
In the case of the BSD, the marginal e¸ect of an increase in yi is (we

di¸erentiate (3)):

X
S„N ji2S

(S)

"
@ıi(yi; XS)

@yi
+

X
j2S

@ıj(yj; XS)

@X

@XS

@yi

3
5` 1 (16)

Comparing this expression with (15), we notice that:

› the incentive to invest due to the direct (hydiosincratic) e¸ect of yi on
i’s pro˛t on the ˛nal market, is lower under the BSD as, because of
(1),

@ıi(yi; XN)

@yi
>

X
S„N ji2S

(S)
@ıi(yi; XS)

@yi
; (17)

› in the BSD case, each developer reaps a share of the bene˛ts of her
development on the pro˛ts of all developers. If this is higher than the
bene˛t on ıi only, or

@ıi(yi; XN)

@X

@XN

@yi
<

X
S„N ji2S

(S)
X
j2S

@ıj(yj; XS)

@X

@XS

@yi
(18)

then the BSD scores better in this regard.

17



Under the GPL, the incentive to invest is given by the perspective to use
the software in one’s ˛nal market. Development is somehow a byproduct
of the investment to enhance one’s X-speci˛c skills and to introduce those
improvements in X that a¸ect most ıi.

Under the BSD, the incentive to increase ıi is less important, but there
is the opportunity to \sell" innovations to other developers.

Although it is not possible in general to conclude that the incentives to
invest by those who participate to the development of X is higher under one
system or the other, the presumption is that in many cases the second of the
two e¸ects is more important, and the BSD might induce a higher level of
yi.

It is worth emphasizing that even when the BSD induces a higher yi,
it is not possible to draw a conclusion on the superiority in general of one
license of the other, since the overall e¸ect of investments on X (hence on ˝),
depends on the combined e¸ect of the choice of the nature of the investment
(more or less co-speci˛c) and the intensity of investments.

However, a conclusion can be reached in some special cases.
Note that the inequality (18) is less likely to be veri˛ed the lower are

the terms @XS=@yi with respect to @XN=@yi, i.e. the more important is the
e¸ect of co-speci˛city.

This suggests what are the circumstances when the GPL induces a higher
yi. Once again, co-speci˛city can play a central role.

Consider the case in which developers choose to make a co-speci˛c in-
vestment, and make the assumption that their investment is valuable only if
the coalition N is formed (note that, under these circumstances, the choice
of a co-speci˛c investment is an equilibrium both with GPL and with BSD).
In other words, we are considering that @XS=@yi = 0 for S  N . In the two
agents case, this amounts to the assumption that —„ii = 0.

From (16), we have that the ˛rst order condition with regard to the choice
of yi is now:

1

jN j

@ıi(yi; XN)

@yi
+

1

jN j

X
j2N

@ıj(yj; XN)

@X

@XN

@yi
= 1 (19)

The second term on the left hand side represents the average e¸ect of an
increase in yi on the individual pro˛t of developers. Depending on the cases,
this can be higher or lower than the second term in the expression (15).

By comparing (19) with (15), we realize that the level of yi is likely to be
higher under the GPL for most i. The loss in incentives (with respect to the
GPL) is higher the more important is the e¸ect of yi on ıi, @ıi(yi; XN)=@yi.

A similar result is obtained under less extreme hypotheses on @XS=@yi,

18



if we assume that the use of the software is pro˛table only when the techno-
logical index XS reaches a certain threshold level. Hence, if we assume that
ıi(X) = 0 for X < —X and XN – —X only when the co-speci˛c investment
is chosen, the ˛rst order condition is once again (19), and the GPL will be
more attractive in terms of incentives to invest.

Such an assumption may be justi˛able in contexts where the degree of
technological advancement of X is the crucial variable to secure pro˛tability.
We expect this can be the case, for instance, in a market where competing
projects struggle for technological leadership. This is consistent with the
observation that the fact that a software is \lagging behind" is often a reason
why the open source solution is chosen, in the hope of spurring technological
advancement.

We summarize the conclusion of this section in the following

Proposition 2. Taking into account incentives to invest, the BSD li-
cense can be expected to induce a higher level of yi. However, the more
important is the e¸ect of co-speci˛city on X or on ˝, the lower is the
chance that yi will be higher under the BSD.

5. Discussion

The model introduced in the previous section may help to shed light on
three stylized facts. The ˛rst is the mentioned quantitative dominance of
the GPL license in the OSS world. The model suggests that, although the
BSD might have an advantage over the BSD in terms of incentives to expend
e¸ort in software development, it tends to distort the nature of development,
by providing sub-optimal incentives to make investments co-speci˛c to those
of other developers. This, in turn, suggests a reason why the GPL license
might be preferred to the BSD by a developer interested in maximizing the
subsequent rate of development, as we claim it is the case for many project
started as or moved to the open source.

The second is the fact that there tends to be a correlation between the
type of OSS project and the type of license adopted. BSD-like licenses seem
to be more widespread for setting standards that give rise to the articula-
tion of di¸erent projects, and they are often used for projects funded by third
parties (government, universities etc.)17. They are practically never observed
for end-user projects|i.e. for projects meant to produce a software that can
be directly used by ˛nal customers. GPL licenses are, by contrast, routinely
adopted for the latter type of projects. An interesting example that may

17Another case is the development of drivers for peripherals.

19



con˛rm this observation is given by the GNOME project{aimed at building
a complete desktop environment{that contains software packages licensed
under both BSD and GPL. Within this project, not a single end-user appli-
cation is licensed under BSD, although there is no restriction on the choice
of the kind of license to use. Consistently with these empirical observations,
our model identi˛es the di¸erential advantages of the two licenses, pointing
out that:

1. the GPL is better suited than the BSD to coordinate and encourage
joint e¸ort by many (possibly small) developers; while

2. the BSD is better suited than the GPL to generate positive spillovers
to other developers, when no feedback is required.

Indeed, standard-setting requires a relatively limited amount of feedback
and it is generally performed by a limited number of agents. By contrast,
end-user applications tend to require a much greater amount of co-speci˛c
investment.

Finally, a third relevant but relatively unnoticed empirical regularity is
the fact that BSD and GPL communities tend to be rather di¸erent. In
particular, BSD communities tend to be close-knit groups of developers who
work on projects where feedbacks from outside the relatively stable com-
munity are limited and tend to rely on strong social norms, repeated inter-
action as well as relatively structured coordination mechanisms other than
the license itself (one example is the adoption of a voting committee of co-
developers within the Apache community, which uses a variant of the BSD
license; another example is the setting up of a consortium within the X11
project). GPL communities, by contrast, tend to involve a higher number of
participants and a less prominent role of social norms.

In this regard, our model might be taken to suggest that, if co-speci˛city
of development e¸orts is important for a given BSD-based project, the license
alone may not be an e¸ective coordination mechanism, so that other means
of coordination should come into play. Thus, within BSD communities the
major role played by \face-to-face" interaction or the adoption of other formal
coordination arrangements may make the license of secondary importance in
securing co-speci˛c e¸ort, while at the same time a less constrained license
can encourage independent investments by other developers. The GPL is,
by contrast, a better choice when development feedbacks are important in a
context where relations between developers are more \anonymous".

As a ˛nal note, it is perhaps important to stress that, in spite of the impor-
tant di¸erences in the wording of the license, projects under BSD and under
GPL may show a similar degree of \persistence" as open source projects. In

20



other words, di¸erently from the assumptions we make in the model, real
world developers, though allowed to do so, can decide not to exclude other
developers from access to their contributions. This can be explained by the
existence of social norms and of other coordination mechanisms and ideolog-
ical reasons can play a role, as well as by the fact that the conditions that
made the choice of an OSS strategy the best solution at the ˛rst stage may
be still valid at subsequent stages for all developers. A complementary rea-
son is that, contrary to what we assumed, there might be high contracting
and marketing costs, and this is expecially true when the development is
of small importance and/or the contributor must incur high ˛xed costs to
market and enforce his property rights. When ex post contracting costs are
very high, the BSD behaves like a GPL18.

Future research might take into explicit account contracting costs. How-
ever, we think that the basic result in terms of di¸erences between the two
licences should not be a¸ected.

References

Aghion, P., Tirole, J., 1994. \On the management of innovation". Quarterly
Journal of Economics, vol. 109, pp. 1185{1207.

Arora, A., Merges, R. P., 2001. \Property rights, ˛rm boundaries and r&d
inputs". mimeo, Carnegie Mellon University and U.C. Berkeley School of
Law.

Bergquist, M., Ljungberg, J., 2001. \The power of gifts: organizing social re-
lationships in open source communities". Information Systems Journal,
vol. 11, pp. 305{320.

Bezroukov, N., 1999. \Open source software development as a special type of
academic research: critique of vulgar raymondism". First Monday, vol. 4.

Cai, H., 2003. \A theory of joint asset owneship". RAND Journal of
Economics, vol. 34, pp. 63{77.

Frank, E., Jungwirth, C., 2001. \Reconciling investors and donators|the
governance structure of open source". Working paper, University of Zurich.

Gambardella, A., Hall, B. H., 2005. \Proprietary vs. public domain licensing
of software and research products". Working Paper 11120, NBER.

18When they are high but not high enough, contracting takes place, though some cost is
paid. The project becomes proprietary and transaction costs reduce the payo¸.

21



Gaudeul, A., 2005. \Public provision of a private good:
What is the point of the BSD license?" URL
http://ideas.repec.org/p/wpa/wuwpio/0511002.html.

Gosh, R. A., Glott, R., Kreiger, B., Robles, G., 2002. \The free/libre
and open source software developers survey and study". URL
http://www.infonomics.nl/FLOSS/report.

Grossman, S. J., Hart, O. D., 1986. \The costs and bene˛ts of ownership: a
theory of vertical and lateral integration". Journal of Political Economy,
vol. 94, no. 4, pp. 691{719.

Hart, O. D., 1995. \Corporate governance: some theory and implications".
Economic Journal, vol. 105, pp. 678{89.

Hart, O. D., Moore, J., 1990. \Property rights and the nature of the ˛rm".
Journal of Political Economy, vol. 98, pp. 1119{1158.

Hertel, G., Niedner, S., Hermann, S., 2002. \Motivation of software develop-
ers in the open source projects: an internet-based survey of contributors
to the Linux kernel". Research Policy, vol. 327, pp. 1159{1177.

Johnson, J. P., 2002. \Open source software: public provision of a public
good". Journal of Economics and Management Strategy, vol. 11, no. 4,
pp. 637{62.

Johnson, J. P., 2006. \Collaboration, peer review and open source software".
Information Economics and Policy, , no. 18, pp. 477{497.

Lakhani, K., Wolf, R. G., 2003. \Why hackers do what they do: under-
standing motivation e¸orts in free/open source projects". Working Paper
4425-03, MIT Sloan School of Management.

Lerner, J., Tirole, J., 2002. \Some simple economics of open source". Journal
of Industrial Economics, vol. 52, pp. 197{234.

Lerner, J., Tirole, J., 2005. \The scope of open source licensing". Journal
of Law Economics and Organization, vol. 21, no. 1, pp. 20{56.

Maurer, S. M., Scotchmer, S., 2006. \Open source software: the new in-
tellectual property paradigm". In: Hendershott, T. (ed.), Handbook of
Economics and Information Systems, Elsevier, Amsterdam.

Moglen, E., 1999. \Anarchism triumphant: free software and the death of
copyright". First Monday, vol. 48.

22



Raymond, E. S., 1998. \The cathedral and the bazaar". First Monday, vol.
330.

Rossi, M. A., 2006. \Decoding the Open Source puzzle: a survey of theoret-
ical and empirical contributions". In: Bitzer, J., Schroder, P. (eds.), The
economics of Open Source Software development, Elsevier, Amsterdam.

von Hippel, E., 2002. \Horizontal innovation networks: by and for users".
Tech. Rep., MIT Sloan School of Management.

23




