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Abstract - In this paper I provide a descriptive model of choice over time by a population of constrained 
maximizing agents. Agents’ choice sets are markovian in the sense that they depend on previous choices. 
The unperturbed dynamics turns out to be trapped into local maxima whatever the length of memory. In the 
presence of perturbations efficiency is got with a memory of at least two periods. This provides a useful insight 
for what drives to efficient evolution in this setting: perturbations create variety and a two period long memory 
allows comparisons and selection. 
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1 Introduction

Quoting Simon,

“. . . the task is to replace the global rationality of economic man
with a kind of rational behavior that is compatible with the
access to information and the computational capacities that are
actually possessed by organisms, including man, in the kinds of
environments in which such organisms exist.” (Simon, 1955)

This paper arises, in accordance with the above-stated Simon’s precept,
from the recognition that decision problems are often characterized by lack of
information, which may be seen as a consequence either of the limited access
to information agents have or of the process of reduction of complexity they
face when trying to cognitively structure problems (limited computational
capacities).

This lack of information is assumed to concern mainly those alterna-
tives that are far from the personal experience of decision-makers. In more
detail, in order to evaluate and compare alternatives an agent is supposed
to need a deep knowledge of their benefits and costs.1 Personal experience
is assumed to be the channel2 for the acquisition of that deep information
required to assess the value of an alternative. In particular, personal ex-
perience is supposed to reveal enough information not only about directly
experienced alternatives, but also indirectly about the alternatives which
are similar, in that they share most of the information which allows their
evaluation. Therefore, previous choices - a synthetic representation of per-
sonal experience - affect current choices by providing deep information only
about a subset of alternatives. Moreover, if agents are assumed to choose
only among the alternatives they are able to correctly evaluate, then past
behavior defines the set of possible current behaviors, among which an agent
chooses her actual current behavior. By so doing her personal experience
can change and, as a consequence, the set of possible future behaviors as
well. My aim is to set up a descriptive model of choice which allows to
explore the consequences of this kind of assumptions.

A simplified decision theory framework is adopted, where there is no
strategic interaction and no uncertainty, and hence choices and outcomes
coincide. Preferences are directly defined over the entire set of choices and

1Because of the often large numerosity of possible alternatives, global maximization
generally presumes that agents have an incredibly large amount of information at their
disposal. According to similar arguments many economists, among whom Hayek (1937),
Keynes (1937) and Shackle (1973), have criticized the global maximization hypothesis.

2Of course, personal experience is a very important channel but not the only one,
imitation for instance playing an important role too. Boncinelli (2007b) investigates the
case where individual choice is affected both by personal experience and by imitation of
others.
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they are aimed at representing the true welfare comparison between alter-
natives for an individual, meaning that an agent would be better off by
choosing a preferred alternative.

Given a set of alternatives and a preference relation over it, some peculiar
features are introduced to the effect of shaping the model in a substantial
way.

- Constrained maximization. There exist constraints defining a set of
accessible alternatives. Agents pick out their best alternative within
such set. Hence, an inferior alternative comes out to be selected when
any superior choice is left out of the accessible set. Constraints can be
thought of as operating on the preference relation - interpretable as
objective preferences - by reducing it to subjective preferences, which
are truthful but incomplete.

- Repetition over time. Agents choose repeatedly over time, keeping
fixed the set of existing alternatives and the preference relation. A
time-dimension is here required in order both to represent personal
experience as previous choices and to make it possible for the analysis
not to be highly dependent on initial conditions.

- Markovian constraints. The specification of constraints depends, in
the basic version of the model, only upon the alternative selected at
the previous time. In other words, the set of alternatives an agent is
allowed to choose among is a function of the previous choice. These
selectable alternatives should be interpreted as those that share a rel-
evant amount of information with the experienced choice. Afterwards
the model will be enriched by endowing agents with memory and let-
ting them choose among alternatives which are accessible from one of
those in memory.

These features3 justify the indexing of the model with respect to time, which
is treated as a discrete variable, and the introduction of the notion of acces-
sibility, formally represented by an adjacency matrix showing which alter-
natives are accessible from every alternative.

Some other elements characterize the model, but their importance is
mainly formal.

- Finite alternatives. The set of alternatives is assumed to be finite. The
reason is mainly technical, since the mathematical techniques used for
the derivation of results have been developed for a finite state space.
Moreover, reality is likely to be finite; therefore the hypothesis of finite-
ness seems easier to be accepted than the hypothesis of infiniteness.

3From a more general point of view, the methodological framework which this paper
belongs to is dealt with in Boncinelli (2007a).
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- Infinite population. The variables under analysis in the model are the
fractions of population choosing each alternative. Since the preference
relation over alternatives does not depend on what others do, the be-
havior of a single agent could be analyzed. However, population is
supposed to be infinite in order to interpret transition probabilities as
actual frequencies.

- Identical agents. Agents are assumed to have identical preferences.
Since no interaction among agents is allowed, there is no need to con-
sider hetherogeneity in preferences, this last case being decomposable
in several models with homogeneous preferences.

As regards the relation to the existing literature, it is worth mention-
ing the stream based on landscapes. It makes an extensive use of local
maximization techniques and shares some of the principles underlying the
present paper, even if it is rather different from a technical point of view. It
is a cross-disciplines literature, born in population biology (Wright, 1949;
Kauffman, 1993) and now spreading in economics too (Kauffman et al.,
2000; Friedman and Yellin, 1997). The techniques used in this paper are
standard ones for dynamic models based on finite Markov chains. When
perturbations are inserted the analysis resorts to the stochastically stable
distribution, as developed in economics by Foster and Young (1990), Young
(1993), Kandori et al. (1993), Ellison (2000).

The outline of the paper is as follows. Section 1 has been presenting
the paper. Section 2 introduces the basic model. A population of agents
chooses repeatedly over time within a set of possible alternatives, ranked
according to a common order relation. At each time every agent can select
only among the alternatives which are accessible (because similar) from the
one she has selected the previous time. Section 3 modifies the model allowing
agents to store in their memory a sequence of past choices, hence potentially
enlarging the set of accessible alternatives. In both cases the behavior of
the unperturbed dynamics and of the perturbed one is analyzed from an
aggregate point of view. The dependence of results on perturbations and
memory provides a natural interpretation for their roles in the evolution
of the system towards the efficiency. Section 4 briefly explores possible
extensions for the model. The final section 5 deals with some concluding
remarks, summarizing and interpreting assumptions and results. Proofs are
collected in appendix A.

2 The model

Definitions. Consider an infinite population of agents who at any discrete
point in time have to choose within a finite set of alternatives C of cardinality
n. Let x be a vector describing, from an aggregate point of view, how
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population is shared out among alternatives; every component xa represents
the fraction of population choosing alternative a ∈ C.

All agents have preferences defined on C. These preferences are assumed
to be identical across agents and representable by means of a linear order4

relation ≻. The possibility of ties is ruled out, because this allows a simpler
analysis without modifying the substance of results.

Finally, I introduce a notion of accessibility between alternatives, for-
mally represented by a (n×n)-adjacency matrix A where Aab = 1 (Aab = 0)
means that alternative b is (is not) accessible from a. In order to correctly
represent the idea of similarity - that is sharing a large amount of the infor-
mation required to be evaluated - such a matrix is supposed to be reflexive,
Aaa = 1 for all a ∈ C, and symmetric, Aab = 1 ⇒ Aba = 1 for all a, b ∈ C.

With the purpose of simplifying the following exposition, define matrix B
such that Bab = 1 if and only if b is the best alternative according to ≻ among
those accessible from a, and Bab = 0 otherwise. With abuse of notation, I
will refer to A(a) as the choice set available from a, formally A(a) ≡ {b ∈
C : Aab = 1}, and to B(a) as the best alternative accessible from a, formally
B(a) ≡ b such that Bab = 1. In the terminology of Mas-Colell et al. (1995,
pp. 9-11), you can think of {A(a) : a ∈ C} as a family of budget sets and of
B(·) as a choice rule. Notice that B(·) is a well-defined function because ties
among alternatives have been ruled out by the assumption of linear order
preferences.

An alternative a is a local maximum when a = B(a). The global maxi-

mum is that alternative which is first-ranked according to ≻; obviously, it
is a local maximum too.

The following representation will turn out to be useful in explaining and
understanding the main results throughout the paper. Consider alternatives
as nodes (I will often refer to alternatives as nodes when dealing with this
kind of graph representation), with a directed edge from a to b if and only
if b 6= a and Bab = 1. A particular example of such a representation is
depicted in figure 1, where every edge is to be interpreted as directed from
bottom to top.

In this example there are two trees and, in general, any matrix B can
be represented in this way as a collection of trees, as a consequence of the
uniqueness of the best accessible alternative and of the impossibility of hav-
ing cycles (by transitivity of ≻). The number of trees forming the graph
is determined by the number of local maxima. A tree can naturally be
interpreted as the basin of attraction of its root.

Finally, let Sr(a) be the set of nodes from which a is reached with r steps
following an ascending path in the graph representation,5 with S0(a) = {a}.
Let db(a) ≡ r denote the distance from b to a when b ∈ Sr(a), and let db be

4A linear order is a binary relation which is antisymmetric, transitive and total.
5Formally, for r ≥ 1, b ∈ Sr(a) ⇔

`

Br(b) = a ∧ Br−1(b) 6= a
´

.
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Figure 1: Basins of attraction.

the maximum over a of db(a), that is the number of iterations of B taking b
to a local maximum. Let S̃(a) ≡

⋃

r Sr(a) be the set of nodes containing a
itself and all the nodes from which a is reachable by some number of steps,
and let l(a) be the cardinality of such a set. When a is a local maximum I
will refer to l(a) as the size of its basin of attraction.

Dynamics. At any point in time agents select the best available alterna-
tive. What is available is determined by their previous choice on the basis
of the accessibility matrix A. What is best is determined by the preference
relation ≻. The overall information of best accessibility is summarized by
matrix B, as explained in the previous paragraph. From an aggregate point
of view such a choice rule produces the following dynamics in population
choices:

xt+1 = xtB (1)

Lemma 1 provides a description of the behavior of dynamic system (1).

Lemma 1 (Equilibria). Let x0 be the initial population state.

1. The system will reach an equilibrium population state x̃ such that for

all a ∈ C,

x̃a =







0 if a /∈ B(a)

∑

b∈S̃(a) x0
b if a ∈ B(a)

(2)
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2. The time d(x0) required to reach x̃ is equal to the maximum distance

to be covered by some initially existing fraction of population,

d(x0) = max
a∈C:
x0

a>0

da

Perturbations. By lemma 1 it is known that if the global maximum is the
only local maximum of the system, then there exists a unique equilibrium
with the whole population concentrated in the global maximum. However,
if the best accessibility matrix is such that more local maxima exist, then
the dynamic system has infinitely many equilibria - all the ways population
can be shared out among local maxima - and it will converge to a particular
one depending on the initial condition.

With the aim of selecting among equilibria, perturbations are inserted in
the above-described dynamics. Consider matrix Bǫ such that Bǫ

ab = ǫ when
Bab = 0 and Bǫ

ab = 1 − (n − 1)ǫ when Bab = 1. The resulting Markov chain
is irreducible and aperiodic.6 Hence it is known that the population state
will converge to the solution of x̂ = x̂Bǫ. The next objective is to provide
a characterization of the invariant distribution x̂; this is what proposition 1
performs.

While a proof is given in the appendix, an intuitive explanation of the
results is here provided. Since x̂ = x̂Bǫ, then x̂a =

∑

b∈C Bǫ
bax̂b, that is the

long run frequency of an alternative a is equal to the sum over all alternatives
of their long run frequency multiplied by their transition probabilities to a.
Consider an alternative a which is never a best accessible alternative. There-
fore it is reachable only by mistake, x̂a = ǫ

∑

b∈C x̂b, and since
∑

b∈C x̂b = 1,
it comes out that x̂a = ǫ. In a graph representation alternatives like the one
just described are those at the bottom of an inverted tree; in figure 1 their
collection is {l,m, k, i, d, g, j, f}. Consider now an alternative which is one
step up in a tree, being the best accessible one from some terminal nodes
only, for instance alternative h in figure 1. Its long run frequency is

x̂h = (x̂m + x̂k)(1 − (n − 1)ǫ) + (1 − x̂m − x̂k)ǫ

Hence, x̂h = ǫ(3 − 2nǫ). Notice that l(h) = 3. This can be interpreted
as follows. Any given alternative is adopted with probability ǫ as a conse-
quence of a perturbation. Alternative h can be reached either directly by
a perturbation or by the dynamic mechanism of best accessibility starting
from a node in S̃(h) \ {h} previously reached through a perturbation. This

6In this footnote a state is meant in Markovian sense and does not refer to a population
state. In particular, a state corresponds here to an alternative c ∈ C. A Markov chain is
said irreducible when there is a positive probability of moving from any state to any other
state in a finite number of periods, and it is said aperiodic when for every state s unity is
the greatest common divisor of the set of all the integers r such that there is a positive
probability of moving from s to s in exactly r periods.
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explains l(a)ǫ. The negative higher order terms in ǫ measure the probabil-
ity that going from a node in S̃(h) \ {h} towards h something goes wrong,
that is some perturbation moves agents out of the best accessibility path.
Generalizing this result for every node, the result in the upper part of (3)
is obtained. For the long run frequency of local maxima an adjustment is
required in order to take into account that they are left only by mistake;
this has the main effect of lowering the degree of the polynomial.

The results in (4) are got simply by taking the limit as ǫ goes to zero of
(3).

Finally, (5) provides a bound to the distance between the actual system
after a certain number of periods and the invariant distribution. The use-
fulness of this result relies on the long run type of the analysis so far done;
previous results are asymptotically relevant as time tends to infinity. The
triangular distance is used in (5) instead of standard euclidean distance,
since it is reputed more appropriate in this framework. In fact, for instance,
the distance between a population state where all agents select alternative
a and another where all agents select alternative b is for my concern equal
to the distance between a population state where agents are shared out
among alternatives a and b and another where agents are shared out among
alternatives c and d. The triangular distance in (5) expresses the amount
of population out of the invariant distribution. Notice that convergence to
the latter may be faster than established by the bound - exploiting the flow
through the basins of attraction during the initial periods - but obviously
never slower.

Proposition 1 (Equilibrium Distribution). Let x̂ be the solution of x̂ =
x̂Bǫ. Then:

1. for all a ∈ C,

x̂a(ǫ) =















ǫ
(

l(a) −
∑

b∈S̃(a)

(

1 − (1 − nǫ)db(a)
)

)

if a /∈ B(a)

l(a) −
∑

b∈S̃(a)

(

1 − (1 − nǫ)db(a)
)

n if a ∈ B(a)

(3)

2. for all a ∈ C,

lim
ǫ→0

x̂a(ǫ) =











0 if a /∈ B(a)

l(a)
n if a ∈ B(a)

(4)

3. for any initial population state x0,

∑

a∈C

|xt
a − x̂a| ≤ (1 − nǫ)t

∑

a∈C

|x0
a − x̂a| (5)

7



3 The Addition of Memory

In the last paragraph of the previous section perturbations have been in-
troduced into the dynamics of (1). With a probability nǫ agents who are
selecting the global maximum find themselves choosing another alternative,
which is surely inferior and possibly belonging to another basin of attrac-
tion. Being interested in preserving a cognitive interpretation for local max-
imization, one might reasonably expect those agents to jump back to their
previous superior alternative. This kind of intuition relies on the idea that
agents have memory and they can actually choose alternatives accessible
from any remembered choice. In order to introduce agents with memory
and to analyze the effects of such an introduction, an enrichment of the
model is required.

The natural way to proceed is to enlarge the population state represen-
tation from the aggregate description of population choices to the aggregate
description of population sequences of choices of length equal to the length of
memory. Let k be the length of memory, that is the number of periods agents
can store information about. A population state is now a nk-dimensional
vector y such that its component ya1a2...ak

represents the fraction of agents
whose choices have been a1 in time t, a2 in time t−1, . . ., ak in time t−k+1.

Relying on intuition, the notion of accessibility between sequences of
choices is defined as follows: a sequence is accessible from another one if
it is obtainable from the latter by deleting the oldest choice, moving any
other choice one step to the right and adding in the first position an al-
ternative accessible from at least one of the choices in memory. Using the
same notation employed for the k-th power of matrix A, I denote by Ak the
adjacency matrix representing accessibility when the length of memory is k,
being confident that the context always clarifies the meaning of Ak. For-
mally, rows of A are such that Ak

(a1a2...ak)(b1b2...bk) = 1 if and only if bi = ai−1

for i = 2, . . . , k and b1 ∈
⋃k

i=1 A(ai).
Similarly to the case without memory (or, with the notation used in this

section, when k = 1), and with the same abuse of notation as for Ak, let Bk

be the matrix such that Bk
(a1a2...ak)(b1b2...bk) = 1 if and only if (b1b2 . . . bk) is

accessible from (a1a2 . . . ak) and b1 is the alternative which is highest ranked
in preference within the set

⋃k
i=1 A(ai) of possible choices.

Local maxima of matrix Bk, i.e. sequences for which Bk(a1a2 . . . ak) =
(a1a2 . . . ak), consist of k occurrences in a row of the same local maximum of
matrix B, hence occupying all positions in memory, ai = ai+1 = a = B(a)
for i = 1, . . . , k−1. Therefore, the number of local maxima does not change
with the length of memory. Analogously, the global maximum of matrix Bk

is the sequence with all positions held by the global maximum of matrix B.
Figure 2 shows a couple of graph representations for the same underlying

model with a change only in the length of agents’ memory, which in the upper
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part is one period long while in the lower part is two period long. Notice
that in the latter case nodes are no longer alternatives but sequences of
alternatives.7 The underlying preference order is such that a ≻ b ≻ c ≻ d ≻
e. In the basic case, when k = 1, two local maxima exist, the first accessible
from two alternatives while the second, which is the global one, accessible
from only one alternative.

e

a

dc

b

Case k = 1

aabb

Case k = 2

bc bd

cb cc cd db dc dd ca ce da de ba be ea eb ec ed ee

ac ad ab ae

Figure 2: Graph representation with memory.

Clearly, by changing the length of memory the relative numerosity of
the basins of attraction changes. Here the basin of attraction of the global
maximum becomes larger relatively to the basin of attraction of the local
maximum. However, this is not a general result. Take for instance the ex-
ample in figure 3. Notice that without memory l(b)/l(a) = 2/5. Preferences
are such that a ≻ b ≻ c ≻ d ≻ e ≻ f ≻ g. Now consider the case when
k = 2. In the basin of attraction of aa there are aa, dd, da and ad, all the
ways a and d are preceded or followed by any other alternative, which are
2 × 2 × 5 in number, and all the dispositions with repetition of e, f and g,
which amount to 3×3. In the basin of attraction of bb there are bb, cc, bc and
cb, and all the ways b and c are preceded or followed by e or f or g, which

7The example I have chosen is extremely simple in order not to get an extremely
involved figure, a very likely occurrence when k > 1.
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are 2 × 2 × 3 in number. Therefore, l(bb)/l(aa) = 16/33 > 2/5 = l(b)/l(a).

b a

ge f

d

c

Figure 3: Changes in the relative size of the basins of attraction.

Dynamics. The preliminary work in the previous paragraph has produced
a representation of the model with memory which is formally equivalent to
the one of the model without memory. The unperturbed dynamics of such
a system is described by the following equation.

yt+1 = ytBk (6)

The dynamics in (6) is analogous to that in (1). Hence, one may refer
to lemma 1 to have a characterization of its behavior.

Perturbations. The same drawback encountered in the version of the
model without memory - possibly infinite equilibria - suggests again to resort
to perturbations with purpose of selection.

First suppose that perturbations occur in the same way as in the model
without memory. Let Bk,ǫ be such that starting from any sequence (a1 . . . ak)
with probability 1− (nk −1)ǫ agents select the best accessible sequence, and
with probability ǫ a perturbation occurs moving agents to any other se-
quence. The invariant distribution and the stochastically stable distribution
of the irreducible and aperiodic Markov chain yt+1 = ytBk,ǫ are charac-
terized as in proposition 1. Here the introduction of memory has the only
effect to modify the relative long run frequency of local maxima by means
of the changes it has caused on the relative size of the basins of attraction,
as already mentioned.

However, from an interpretative point of view, some problems arise
when thinking of perturbations which may lead an agent from a sequence
(a1 . . . ak) to a sequence (b1 . . . bk) such that it is not true that bi = ai−1 for
i = 2, . . . , k. The only conceivable interpretation is obtained if one imagines
that when a perturbation happens, an agent is replaced by a new one whose
sequence in memory is somehow randomly selected.
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It seems to me more convincing to represent perturbations as something
(mistakes, experimentation, . . . ) which affects only agents’ choices at the
current time. According to this idea, matrix Bk,ǫ of perturbed transition
probabilities should be such that from any sequence (a1 . . . ak) with proba-
bility 1 − (n − 1)ǫ the best accessible sequence is selected, with probability
ǫ any other sequence (b1 . . . bk) such that bi = ai−1 for i = 2, . . . , k is got
by perturbation, while any sequence which is not accessible receives zero
probability. Notice that the just defined Markov chain still remains irre-
ducible and aperiodic, because the composition for k times of matrix Bk,ǫ

has all positive entries. Hence the system will converge to the solution of
ŷ = ŷBk,ǫ. Since the invariant distribution ŷ(ǫ) consists of a large variety
of terms hard to be interpreted, proposition 2 only provides a description of
the limit of ŷ when the perturbation goes to zero - that is the stochastically
stable distribution - and a couple of bounds to the time of convergence.

According to (7), even with a length of memory of only two periods
agents are able to converge to the global maximum, hence obtaining effi-
ciency. The result is intuitively understandable with the following sketched
mutation counting argument. Take the case of two period long memory. If
a and b are the global maximum and a local maximum respectively, then
consider the sequences (a, a) and (b, b). In order to go from (a, a) to (b, b)
two perturbations are required to occur, since once (b, a) is reached by a
single mutation memory allows to go back to the superior choice. Only one
perturbation instead is needed to move from (b, b) to (a, a).

This result allows to reflect on the evolutive meaning of perturbations
(or mistakes) in this framework. To say that in biological terms, when a
mutation has occurred some kind of mechanism which allows a comparison
between the mutant and the wild type and hence the selection of the best
one is needed to push evolution towards efficiency. Memory makes room for
such a comparison.

Inequality in (8) is obtained similarly to the corresponding inequality
in (5) and plays the same role of bound to the time of convergence to the
invariant distribution. However, the greater k becomes the higher is the
over-estimation in (8).8 Another bound, which proves to be tighter for
sufficiently small ǫ, is provided by (9), where the following consideration is
exploited: starting from two sequences of choices, after a trial of the global

8A strictly better bound would be:

X

a1...ak∈Ck

|yt

a1...ak
− ŷa1...ak

| ≤ (1 − Pr(t, nǫ, k))
X

a1...ak∈Ck

|y0
a1...ak

− ŷa1...ak
|

where Pr(t, nǫ, k) is the probability to have at least a string of k consecutive perturbations
in a sequence of t trials, computable thanks to the recurrence Pr(t, nǫ, k) = Pr(t − 1, nǫ, k)
+ (1 − nǫ)nkǫk(1 − Pr(t − k − 1, nǫ, k)), with Pr(j, nǫ, k) for j = 1, . . . , k − 1 and
Pr(k, nǫ, k) = nkǫk. However the application of this bound would require computations
case by case because of the recursion.
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maximum - which happens with at least probability ǫ - then the probability
distribution of the choice at the next time is identical for the two sequences.
That leads to the same sequence after k − 1 periods.

Notice that when k = 1 the current model is exactly the same as the
model without memory. Therefore in that case proposition 1 applies.

Proposition 2 (Equilibrium Distribution with Memory). Let ŷ be the so-

lution of ŷ = ŷBk,ǫ. If k ≥ 2, then

1.

lim
ǫ→0

ŷa1...ak
=







1 if ai is the global maximum, for i = 1, . . . , k

0 otherwise

(7)

2. for any initial population state y0,

∑

a1...ak∈C
k

|yt
a1...ak

− ŷa1...ak
| ≤ (1 − nkǫk)[t/k]

∑

a1...ak∈C
k

|y0
a1...ak

− ŷa1...ak
|

(8)
with [t/k] the integer part of the ratio t/k;

3. for any initial population state y0,

∑

a1...ak∈C
k

|yt
a1...ak

−ŷa1...ak
| ≤ (1−ǫ)t−k+1

∑

a1...ak∈C
k

|y0
a1...ak

−ŷa1...ak
| (9)

4 Extensions

With the aim to understand the robustness of the result of convergence to
the global maximum stated in proposition 2, some extensions of the previous
framework might be considered. For instance, population may be thought
as divided into several groups characterized by different lengths of memory.
In this case the resulting model can simply be decomposed into as many
different models - each of the type discussed in this paper - as existing lengths
of memory. Alternatively, instead of being fixed, the length of memory may
be assumed to be variable according to a certain distribution. Even if its
formal representation would be rather complicated, intuition suggests that,
as long as the probability to have no memory (or k = 1 in the previously
used notation) is bounded away from zero, the system is bounded away from
the population state where all agents select the global maximum, since a non
negligible fraction of population will be taken by loss of memory and will
not come back after a perturbation. Therefore, as far as forgetful people
exist (or as far as people may be forgetful with a positive probability in the
version with variable memory) efficiency is not got.
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Other possible extensions might concern the variability of the preference
relation and/or of the matrix of accessibility. Some care must be given to
that, since their constancy over time plays the role of constant environment
in an evolutive theory, hence being crucial for the long run type of analysis
in this paper. Anyhow, some interesting research may be done for particular
cases of environmental changes.

As regards the case of variable preference relation, one may consider a
game theoretic framework of the model, where others’ choices affect indi-
vidual preferences. Think for instance of alternatives as investment oppor-
tunities whose yields depend on aggregate investment decisions. One might
analyze how different matrices of accessibility and different stylized rules for
the determination of yields affect results in terms of efficiency or equality of
returns among investment opportunities.

Coming to possible extensions regarding the variability of the accessi-
bility matrix, it should be first noticed that such matrix is meant to repre-
sent the existing informative similarities between alternatives. Therefore it
should be considered inherently determined by exogenous factors. However,
one may reasonably think of an external agent (a public authority or a con-
sumer association) having the power to modify to some extent the structure
of accessibility between alternatives by paying a cost. An analysis of the
optimality of interventions in this framework might be usefully carried out.

Finally, the temporal evolution of the system might be investigated in
deeper details. Bounds to the rate of convergence have been calculated for
the perturbed dynamics without and with memory, because results hold
asymptotically. However those bounds might be refined and the depen-
dence of the rate of convergence on the length of memory might be more
carefully analyzed, even by exploiting computer simulations when analytical
techniques become ineffective.

5 Conclusive Discussion

In this paper a descriptive model of choice has been presented. An infinite
population of agents chooses repeatedly over time within a finite set of alter-
natives. Choices are taken on the basis of a common preference relation in
the presence of markovian constraints, this meaning that available choices
at a certain time depend upon previous choices.

An unperturbed dynamics selects, as equilibria which the system con-
verges towards, those population states where all agents are shared out only
among local maxima; however, which particular equilibrium is selected de-
pends on the initial condition.

A perturbed dynamics is then analyzed and its unique prediction is fully
characterized: population tends to be shared out only among local maxima,
as in the unperturbed dynamics, and the fraction choosing a local maximum

13



tends to the relative size of its basin of attraction as the perturbation tends
to zero. Being such a perturbed analysis relevant in the long run, a bound
to the rate of convergence to the equilibrium population state is provided.

The possibility to choose back a previous alternative when a perturba-
tion has brought to an inferior alternative is then considered. Agents are
given the possibility to store in their memory a sequence of choices of a
certain length and to choose among all the alternatives which are accessible
from at least one of those in memory. Without perturbations the system
converges to a population state where only local maxima are chosen. No
significant differences arise with respect to the case with no memory, even if
the relative numerosity of the basins of attraction comes out to be modified
in an ambiguous way.

When perturbations are inserted into this setting a deep change in pre-
diction instead occurs. The whole population ends up choosing the global
maximum, with no respect to the length of memory (the result holds for
k ≥ 2 with the notation used in the paper). By pairing mutations and
memory the efficient population state is reached and their respective roles
in the evolution towards efficiency turn out to be clarified: human ratio-
nality is limited by accessibility constraints and is only able to select local
maxima; mutations bring novelties and allow to overcome human bounds,
while memory creates the possibility to compare the old with the new (the
wild type with the mutant in biological terms) and hence to select the best.

Finally, a couple of bounds to the rate of convergence are established.
Some interesting research may concern a detailed analysis of the relation
between the length of memory and the rate of convergence to the global
maximum.

A comparison between the results got in this paper and the case of global
accessibility may be useful. Under global accessibility, that is by using a ma-
trix of accessibility where every entry is equal to 1, the global maximum is
immediately reached. In the case of perturbed local accessibility unforgetful
agents converge to the global maximum only after a long time, and they
may not reach it at all if environmental changes occur in the meanwhile.
The longer the time required for convergence the more demanding the re-
quirement of constancy for the accessibility matrix and, above all, for the
preference relation. Therefore, from the perspective of a public authority in
the model there is room for a welfare enhancing intervention to the extent
that convergence can be quickened.
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A Appendix

Proof of lemma 1. Since Bt
ba = 1 ⇔ a = Bt(b) and Bt

ba = 0 ⇔ a 6= Bt(b),
then

xt
a =

∑

b∈C

x0
bB

t
ba =

∑

b∈C:
a=Bt(b)

x0
b (10)

Since cycles are not admitted by transitivity of ≻ and the set of alternatives
C is finite, then for any b ∈ C there must exist a positive integer db such that
Bdb+1(b) = Bdb(b) ≡ a. Alternative a is the local maximum whose basin of
attraction b belongs to. Since C is finite, then there exists the maximum of
db over all the alternatives b such that x0

b > 0. Denote such maximum by
d(x0).

For any alternative a, if t ≥ d(x0) and xt
a > 0, then a is a local maximum

since any b such that x0
b > 0 has already reached its local maximum. On the

contrary, if t < d(x0) there exists an alternative b which has not got its local
maximum yet. This implies that an equilibrium cannot be reached before
d(x0) periods. Finally, since for any local maximum a and t ≥ d(x0)

xt
a =

∑

b∈C:
a=Bt(b)

x0
b =

∑

b∈C:

a=Bd(x0)(b)

x0
b =

∑

b∈S̃(a):
x0

b
>0

x0
b =

∑

b∈S̃(a)

x0
b (11)

then an equilibrium is reached in exactly d(x0) periods. Define x̃ ≡ xd(x0)

and the desired result is got. �

Proof of proposition 1. Let x̂ be the solution of x̂ = x̂Bǫ. By taking
into consideration that for any a, c ∈ C, it is true that Bca = (1 − (n − 1)ǫ)
if B(c) = a and Bca = ǫ if B(c) 6= a, any x̂a can be expressed as follows:

x̂a = (1 − (n − 1)ǫ)





∑

c:B(c)=a

x̂c



+ ǫ



1 −
∑

c:B(c)=a

x̂c



 (12)

The proof of point 1 of the proposition is by induction. First notice that if
an alternative is not the best accessible choice for any alternative, then it is
selected by a fraction of population equal to ǫ, as stated by (4). Then notice
that (12) can be re-written as

x̂a = ǫ +
∑

c:B(c)=a

(1 − nǫ)x̂c (13)

Now suppose that all the alternatives c from which a is the best accessible
alternative, a = B(c), are selected by fractions of population in accordance
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with (4) in proposition 1. Then, for any c : B(c) = a

(1 − nǫ)x̂c = (1 − nǫ)ǫ



l(c) −
∑

b∈S̃(c)

(

1 − (1 − nǫ)db(c)
)



 =

= ǫl(c) − nǫ2l(c) − ǫ
∑

b∈S̃(c)

(

(1 − nǫ) − (1 − nǫ)db(c)+1
)

=

= ǫ



l(c) −
∑

b∈S̃(c)

(

1 − (1 − nǫ)db(c)+1
)



 (14)

When a is not a local maximum, a 6= B(a), the following relations hold:

i) 1 +
∑

c:B(c)=a

l(c) = l(a)

ii) db(c) + 1 = db(a) if a = B(c) and b ∈ S̃(c)

iii)
∑

b∈S̃(a)

(

1 − (1 − nǫ)db(a)
)

−
∑

c:B(c)=a

∑

b∈S̃(c)

(

1 − (1 − nǫ)db(a)
)

=

=
(

1 − (1 − nǫ)da(a)
)

= 0

Therefore, the equilibrium fraction of population selecting whatsoever non
locally maximal alternative a is so determined:

x̂a = ǫ + ǫ
∑

c:B(c)=a



l(c) −
∑

b∈S̃(c)

(

1 − (1 − nǫ)db(c)+1
)



 =

= ǫ



1 +
∑

c:B(c)=a

l(c)



 − ǫ
∑

c:B(c)=a

∑

b∈S̃(c)

(

1 − (1 − nǫ)db(c)+1
)

=

= ǫl(a) − ǫ
∑

b∈S̃(a)

(

1 − (1 − nǫ)db(a)
)

(15)

Now consider the case where a is a local maximum, a = B(a). The expres-
sion in (12) can be re-written as

x̂a =

ǫ +
∑

c:B(c)=a,
c 6=a

(1 − nǫ)x̂c

nǫ
(16)

The expression in (14) remains the same. Similarly to the case of non locally
maximal alternatives, when a is a local maximum the following relations
hold:
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i) 1 +
∑

c:B(c)=a,
c 6=a

l(c) = l(a)

ii) db(c) + 1 = db(a) if c 6= a, a = B(c) and b ∈ S̃(c)

iii)
∑

b∈S̃(a)

(

1 − (1 − nǫ)db(a)
)

−
∑

c:B(c)=a,
c 6=a

∑

b∈S̃(c)

(

1 − (1 − nǫ)db(a)
)

=

=
(

1 − (1 − nǫ)da(a)
)

= 0

Therefore, the equilibrium fraction of population selecting whatsoever lo-
cally maximal alternative a is so determined:

x̂a =
1

n



l(a) −
∑

b∈S̃(a)

(

1 − (1 − nǫ)db(a)
)



 (17)

As regards the results in point 2, they are got by taking the limit as ǫ → 0
of the above-calculated expressions. Such limits are easy to be computed
since the expressions in (15) and (17) are polynomials.

Finally, I deal with the bound to the rate of convergence stated in point
3. Consider two population states, x̃ and x̄ and let 2h be their triangular dis-
tance,

∑

a∈C |x̃a − x̄a| = 2h. I am interested in establishing a bound to the
distance of their images according to matrix Bǫ,

∑

a∈C |(x̃Bǫ)a − (x̄Bǫ)a| =
∑

a∈C |((x̃ − x̄)Bǫ)a| =
∑

a∈C |
∑

b∈C(x̃b − x̄b)B
ǫ
ba|. Let x+ be a vector such

that x+
a = x̃a − x̄a when x̃a − x̄a > 0 and x+

a = 0 otherwise, and let x−

be a vector such that x−
a = x̃a − x̄a when x̃a − x̄a < 0 and x+

a = 0 other-
wise. Notice that

∑

a∈C x+
a = h and

∑

a∈C x−
a = −h. Moreover, each entry

in matrix Bǫ is not lower than ǫ. Therefore, for every a ∈ C, (x+Bǫ)a ≥ hǫ
and (x−Bǫ)a ≤ −hǫ. This means that at least hǫ of the positive excess of
x̃ over x̄ will merge with at least hǫ of the negative excess of x̃ over x̄, so
determining an overall reduction of at least 2hǫ for every alternative. Since
there are n alternatives and x+

a + x−
a = x̃a − x̄a, the triangular distance be-

tween the images of x̃a and x̄a according to matrix Bǫ is at most 2h(1 − nǫ).
The distance after t repetitions of Bǫ is hence 2h(1 − nǫ)t. If one of the
two initial population states is the equilibrium one, then the result in (5) is
obtained. �

Proof of proposition 2. I prove point 1 by relying on the radius-coradius

theorems of Ellison (2000). The global maximum of Bk is an ergodic set
of the unperturbed dynamics. Its radius R(a), that is the minimum cost
in terms of mutations for leaving its basin of strong attraction, is easily
established to be equal to k. Its coradius CR(a), that is the maximum over
all states of the minimum cost in terms of mutations for reaching the global
maximum from a given state, is trivially equal to 1. By theorem 1 of Ellison
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(2000), since R(a) > CR(a) for k ≥ 2, only the global maximum can have a
positive probability in the stochastically stable distribution, so proving what
desired.

Now, I prove the inequality in (8). Consider matrix (Bk,ǫ)k coming out
from the composition of matrix Bk,ǫ for k times. The resulting matrix is
such that each of its elements is not lower than ǫk, since at any period
with at least probability ǫ anything may be chosen and after k periods any
sequence may be formed starting from any other sequence. The number of
different sequences of alternatives is nk, and (8) is simply got in the same
way of 5, where ǫ is substituted by ǫk, n is substituted by nk since the latter
is the number of different sequences of alternatives, and the power to which
(1−nkǫk) is raised is equal to the number of complete repetitions of matrix
(Bk,ǫ)k, that is the integer part of the ratio t/k.

Finally, I deal with (9). Take two population distributions over sequences
of choices, ỹ and ȳ, and let 2h be their triangular distance,

∑

a1...ak∈C
k |ỹa1...ak

−
ȳa1...ak

| = 2h. Let y+ be a vector such that y+
a1...ak

= ỹa1...ak
− ȳa1...ak

when
ỹa1...ak

− ȳa1...ak
> 0 and y+

a1...ak
= 0 otherwise, and let y− be a vector such

that y−a1...ak
= ỹa1...ak

− ȳa1...ak
when ỹa1...ak

− ȳa1...ak
< 0 and y−a1...ak

= 0
otherwise. Notice that

∑

a∈C y+
a1...ak

= h and
∑

a∈C y−a1...ak
= −h. Moreover,

matrix Bk,ǫ is such that with at least probability ǫ whatever choice can be
the next. Hence, at least hǫ in y+Bk,ǫ and −hǫ in y−Bk,ǫ are choosing the
global maximum as last choice. From then on the vector of probabilities
describing the next choice for both of the sequences will be the same, with
probability 1− (n−1)ǫ to choose the global maximum again and probability
ǫ to choose any other alternative. Hence, recalling that y+ + y− = ỹ − ȳ,
after k − 1 more periods at least 2hǫ of the difference between the initial
population states will have disappeared. After t periods, with t ≥ k, at
least 2h(

∑t−k+1
α=1

(t−k+1
α

)

(1 − ǫ)t−k+1−αǫα) of the difference between the ini-
tial population states will have merged into the same sequences of choices,
since

∑t−k+1
α=1

(

t−k+1
α

)

(1−ǫ)t−k+1−αǫα is an inferior bound to the probability
of selecting at least once the global maximum in the first t − k + 1 periods.
Therefore, noticing that ŷt = ŷ for any t,

∑

a1...ak∈C
k

|yt
a1...ak

− ŷa1...ak
| ≤

≤

(

1 −

t−k+1
∑

α=1

(

t − k + 1

α

)

ǫα(1 − ǫ)t−k+1−α

)

∑

a1...ak∈C
k

|y0
a1...ak

− ŷa1...ak
| =

= (1 − ǫ)t−k+1
∑

a1...ak∈C
k

|y0
a1...ak

− ŷa1...ak
| (18)

�
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