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Abstract - Collective Identification Procedures (CIPs) model admission rules regulating membership in 
associations, communities and clubs: the Libertarian identification rule Fl is the CIP which essentially relies 
on self-certification. This paper studies Fl in an arbitrary finite atomistic lattice, allowing an unified treatment 
of collective identification problems with either exogenous or endogenous choice of classification labels. An 
elementary axiomatic characterization of Fl in that general setting is provided and contrasted with previously 
known characterizations which only work in more specialized (e.g. distributive) lattices, and are therefore 
confined to collective identification problems with exogenously fixed labels. Non-manipulability properties 
of Fl on a certain simple restricted domain are also considered and shown to hold for any finite atomistic 
lattice. 
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1 Introduction

Collective identification procedures (CIPs) model the admission rules that
are used in order to identify the legitimate members of certain formal or
informal associations, clubs, or communities, treating such rules as opinion-
aggregating functions. Given a certain population, each agent submits an
assessment of membership qualifications concerning the entire population,
and a CIP amalgamates the resulting profile of assessments to establish who
is to be considered a member. In the last decade, following the lead of a sem-
inal paper by Kasher and Rubinstein (see Kasher and Rubinstein (1997))
some work has been devoted to the formal social-choice-theoretic study of
CIPs. The extant literature has been mostly focussed on classifications with
exogenously given labels ( and in fact, on binary labels, with ‘being a J(ew)’
-the original issue addressed by Kasher and Rubinstein- mostly acting as a
paradigmatic case: this version of the identification problem will be denoted
here as the standard binary classification problem). Here, we are interested
in the self-certification-based ‘libertarian’ rule. In general terms, this rule
may described as follows: for any possible opinion profile, the resulting asso-
ciative structure is the one engendered by those agents who self-certify their
qualifications to join it as members, namely the smallest associative structure
that includes all willing, self-certifying agents. The libertarian rule and its
characterizations have attracted much attention, playing a central role in the
literature as a prominent benchmark (see e.g. Samet and Schmeidler (2003),
Sung and Dimitrov (2005), Miller (2006), Houy (2007), and of course Kasher
and Rubinstein (1997)). Indeed, whenever population units are to be clas-
sified according to a prefixed set of exhaustive explicit (intensional) labels,
either binary such as member/nonmember or not, the libertarian rule simply
states that each agent is classified under a certain label if and only if that
label is attached by that agent to itself. Put otherwise, under the libertarian
rule a) providing self-certification ensures membership (positive effectiveness
of self-certification), while b) denying self-certification prevents it (negative
effectiveness of self-certification). However, one might also want to consider
the case of a fully endogenous self-classification problem, where agents simul-
taneously decidememberships and the set of relevant (mutually incompatible)
classes, with corresponding implicit (extensional) labels1. Apparently, such
a case can be modelled as follows: each population unit (or rather each pair

1Hence, in this case labels are implicit and essentially determined by memberships
themselves, and their distribution. In a more formal vein, exogenous labelling denotes

1



of population units) proposes a partition of the population, and a CIP ag-
gregates the resulting profile of partitions to produce a final partition: here,
the relevant labels are the blocks of the latter, i.e. their extensions. Un-
fortunately, it turns out that, as it is easily checked, no CIP for partitions
can ensure both positive and negative effectiveness of self-certification: if
two pairs A,B of population units think they should stay together and pair
C also wish to join them within the same block, but pair A agree while B
refuse, then there is no way to accommodate all the relevant self-certificatory
claims in the final partition.
But then, does there exist any appropriate formulation of the libertarian

identification rule which works for the standard binary and the fully endoge-
nous classification problems?
This paper addresses this issue pursuing the analysis within the general

framework of an arbitrary atomistic lattice. In fact, an atomistic lattice is
by definition a lattice with a minimum whose elements are all composed (i.e.
joins) of atoms (an atom is an element ‘just’ greater than the minimum i.e.
greater than the minimum but with no elements in between). When -as in the
collective identification setting- lattices model coalition structures, atomistic
lattices correspond to those coalition structures which can be reduced to some
basic nonnegligible agents (in fact, their ‘members’, or constitutive elements).
Now, the natural settings for the standard binary classification problem

(for a finite population) and for the fully endogenous classification are, re-
spectively, the (boolean) lattice of subsets of the (finite) set of population
units, and the lattice of partitions of the set of population units, which are
both atomistic lattices.
The libertarian CIP F l in (finite) atomistic lattices is thus defined, and

studied. A characterization of F lis provided and contrasted with previously
known characterizations of the libertarian CIP in the more specialized setting
of (finite, boolean) distributive lattices. Some basic manipulability and co-
operative stability properties of F l in simple environments with self-oriented
preferences are also discussed.
The present paper is organized as follows: Section 2 is devoted to a pre-

sentation of the model, and the results. Section 3 is devoted to a discussion of
strategy-proofness properties of the libertarian rule in simple environments.

use of a set of labels which is unrelated to population parameters, while on the contrary
endogenous labelling entails use of a set of admissible labels whose cardinality does depend
on population size.
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Section 4 includes a discussion of some related literature. Section 5 provides
some short comments on the main results of the paper.

2 Notation, model, and results

Let L = (L,6) be a finite lattice namely a finite partially ordered set2 such
that for any x, y ∈ L both the greatest lower bound x∧y and the least upper
bound x∨y of {x, y} do exist. For any A ⊆ L, ∧A and ∨A are defined in the
obvious way by induction on cardinality of A. Clearly, L has also a minimum
0L = ∧L, and a maximum 1L = ∨L. A join irreducible element of L is any
j ∈ L such that j 6= ∧L and for any x, y ∈ L if j = x∨y then j ∈ {x, y}. The
set of all join irreducible elements of L is denoted JL: it is also assumed that
#JL ≥ 2 in order to avoid tedious qualifications or trivialities. An atom of
L is any j ∈ L which is an upper cover of 0L- written 0Ll j- i.e. 0L < j and
l = j for any l ∈ L such that 0L < l 6 j. The set of all atoms of L is denoted
AL. It is easily checked that in general AL ⊆ JL, while the converse may not
hold3. L is atomistic if and only AL = JL i.e. equivalently whenever each
element l ∈ L is the least upper bound of a set of atoms. An atomistic lattice
L may or may not be distributive i.e. such that a∧ (b∨ c) = (a∧ b)∨ (a∧ c)
for any a, b, c ∈ L. This paper will be dealing with both distributive and
nondistributive atomistic lattices.
The suggested interpretation in the collettive identification problem is

the following: L denote the set of all possible associative structures, and AL

the set of all their basic constitutive units, i.e. the set of relevant agents in
the collective identification process under consideration. For any associative
structure a ∈ L, and atom i ∈ AL , i 6 a denotes that i is a component of a.
ACollective Identification Procedure (CIP) onAL is a function F : LAL →

L. In particular, for any i, j ∈ AL, it will be said that j accepts/nominates
i at opinion profile x = (x1, ..., x#AL

) whenever i 6 xj. At each opinion
profile x, F (x) denotes the resulting associative structure, whose set of basic
components/atoms is given by A(F (x)) := {j ∈ AL : j 6 F (x)}.
For any pair F,F 0 of CIPs on JL, it will be written F 0 5 F whenever

2Thus, by definition, L is a finite set, and 6 is a transitive, reflexive and antisymmetric
binary relation on L.

3To see this, just consider a finite totally ordered set i.e. a chain (L,6) with #L ≥ 3:
the only atom of (L,6) is the 6-minimum of L\ {∧L}, while any x ∈ L\ {∧L} is a join-
irreducible element.
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F 0(x) 6 F (x) for all x ∈ LJL i.e. when F is more inclusive than F 0.
The two basic motivating examples of our model are the following distinct

and somewhat ‘polar’ versions of the collective identification problem.

Example 1: Collective identification as collective binary self-
classification with an exogenous label
That is the case the extant literature on collective identification proce-

dures is typically focussed on: the legitimate members of a certain association
or group are to be determined. Each agent provides a positive or negative
assessment of all agents, and the resulting profile of assessments determines
membership. Thus, the lattice is (P(N),⊆), where N is the (finite) popula-
tion of agents: it is both atomistic and distributive. Indeed, in that lattice
the atoms or agents are the singletons i.e. the population units themselves.
Thus the standard case with set of agents N reduces to a special instance of
our model with L = P(N), 6=⊆, and AL = JL ' N .

Example 2: Collective identification as collective self-classification
with implicit endogenous labels
In this case, population units form a partitional coalition structure i.e.

partition themselves into disjoint coalitions, or blocks. Labels as such are
clearly not important: they are implicitly defined by blocks themselves, and
are therefore endogenously defined by the resulting partition. Thus, if N
denotes the set of population units, the relevant lattice here is the lattice
(Π(N),v) of partitions of N , where v is the coarsening order defined as
follows: for any π1, π2 ∈ Π(N), π1 v π2 iff for any A ∈ π1, and h, k ∈
N , if {h, k} ⊆ A then there exists B ∈ π2 such that {h, k} ⊆ B. This
lattice is atomistic but nondistributive4: the atoms are those partitions πhk
of N consisting of singletons except for an unique two-unit block {h, k}.
Therefore, the relevant agents are pairs of distinct population units. Hence,
we have here another special instance of our model with L = Π(N), 6=v,
and AL = JL ' (N ×N) \∆N ( where ∆N = {(i, i) : i ∈ N}).

The Libertarian CIP F l as defined on an arbitrary finite atomistic lattice
establishes that the associative structure induced by an opinion profile is the

4The partition lattice only satisfies upper semimodularity (a condition strictly weaker
than distributivity), namely for any a, b ∈ Π(N) if a is an upper cover of a ∧ b then a∨ b
is an upper cover of b.
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one engendered by those agents who self-certify their own qualifications -or
willingness- to join, namely

Definition 1 (The Libertarian CIP F l): for any x ∈ LJL,
F l(x) = ∨ {j ∈ JL : j 6 xj }

Hence, the libertarian rule identifies as members precisely those agents
who are components of the smallest associative structure comprising as com-
ponents all those who declare themselves to qualify. It might seem that the
libertarian rule may also be described in a less cumbersome way saying it
identifies as members all those agents who declare themselves to qualify. How-
ever, it turns out that those two descriptions are not equivalent whenever
the relevant lattice of associative structures is nondistributive: this is a key
observation which underlies all of the ensuing analysis.
In that connection, a basic property of (finite) distributive lattices is to

be recalled, namely

Fact: (see e.g. Grätzer (1998), Monjardet (1990)). Let L = (L0,6)
be a (finite) lattice, and J∗ the set of join-irreducible elements of (L0,6).
Then, i) if L is distributive, then for any x ∈ L0 there exists a unique
J(x) = {j1, ..., jk} ⊆ J∗such that x = ∨J(x) and x < ∨J 0 for any J 0 ⊂ J(x);
ii) L is distributive if and only if for any j ∈ J∗, and any l1, ..., lh ∈ L0, if
j < l1 ∨ ... ∨ lh then there exists i ∈ {1..., h} such that j 6 li.

Thus, if L is (atomistic and) distributive, for any CIP F : LAL → L, and
any x ∈ LAL, there exists a unique (minimal or irredundant) set {j1, ..., jk} ⊆
AL such that F (x) = j1 ∨ ... ∨ jk (i.e. {j1, ..., jk} is an irredundant join-
decomposition of F (x)). Hence {j1, ..., jk} = A(F (x)) as defined above,
and the identity F (x) = j1 ∨ ... ∨ jk may be taken to denote without any
ambiguity that CIP F at opinion profile x identifies agents j1, ..., jk as
the only legitimate members constituting the associative structure under con-
sideration. If, however, L is nondistributive then neither i) nor ii) above
hold. Failure of i) entails that there may exist several distinct irredundant
join-decompositions of some l ∈ L. Hence, in particular it may the case
that F (x) = j1 ∨ ... ∨ jk while {j1, ..., jk} ⊂ A(F (x)), hence that there ex-
ist i ∈ A(F (x)), i /∈ {j1, ..., jk} such that -by definition of atom- i ­ jh,
h = 1, ..., k (violating ii) as well).
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To check this, just consider the partition lattice (Π({1, 2, 3}),v), and its
atoms π12, π13, π23. Of course, π12∨π23 = {{1, 2, 3}}, the coarsest partition.
Hence, of course, π13 @ π12∨π23, while both not π13 v π12 and not π13 v π23.
Concerning the libertarian CIP, the consequences of this simple fact are

momentous. Indeed, consider the following properties for a CIP F :

Negative Atomic Self-Determination (NASD) : For any x ∈ LJL

and any j ∈ AL, if j ­ xj then j ­ F (x).

Positive Atomic Self-Determination (PASD) : For any x ∈ LJL and
any j ∈ AL, if j 6 xj then j 6 F (x).

Clearly enough, NASD establishes that any agent can effectively decline
participation in the relevant association, while PASD requires that, con-
versely, any willing agent may join it.
Now, it is easily shown that in the binary classification problem the liber-

tarian CIP is the only one which satisfies both NASD and PASD, whereas in
the general classification problem with endogenous labels NASD and PASD
are mutually inconsistent. Indeed, a much more general statement holds
true, namely

Claim 2 i) Let L = (L,6) be a finite distributive atomistic lattice. Then
F l is the only CIP that satisfies both NASD and PASD; ii) let L = (L,6)
be a finite nondistributive atomistic lattice. Then no CIP F : LAL → L can
satisfy both NASD and PASD. In particular, F l satisfies PASD but violates
NASD.

Proof. i) Let j ∈ AL, and x ∈ LAL such that j ­ xj and j 6 F l(x). Then,
by definition of F l, there exist j1, ..., jk ∈ AL such that jh 6 xh, h = 1, ..., k,
and j 6 ∨ {j1, ..., jk}. But then, by distributivity, there exists ji ∈ {j1, ..., jk}
such that j 6 ji, whence by definition of AL, j = ji. Therefore, j 6 xj, a
contradiction. It follows that F l does satisfy NASD. On the other hand, let
j ∈ AL, and x ∈ LAL such that j 6 xj. Then, by definition of F l, j 6 F l(x)
and F l also satisfies PASD.
Moreover, let F : LAL → L be a CIP that satisfies both NASD and PASD.

Then, for any j ∈ AL, and x ∈ LAL if j 6 F (x) then, by NASD, j 6 xj
hence j 6 F l(x). Therefore, F 6 F l (since L is atomistic). Conversely, for
any j ∈ AL, and x ∈ LAL if j 6 F l(x) then there exist j1, ..., jk ∈ AL such
that jh 6 xh, h = 1, ..., k, and j 6 ∨ {j1, ..., jk}. But then, by distributivity
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of L, there exists ji ∈ {j1, ..., jk} such that j 6 ji, whence j = ji and j 6 xj.
It follows that j 6 F (x), by PASD. Thus, F 6 F l (since L is atomistic),
hence F = F l.
ii) By contradiction: let us assume that L is a finite nondistributive atom-

istic lattice, and F : LAL → L a CIP which satisfies both NASD and PASD.
Since L is, in particular, nondistributive, there exist j ∈ JL = AL and
y1, ..., yk ∈ L such that j ­ yh, h = 1, ..., k, and j 6 ∨ {y1, ..., yk}. Moreover,
since L is atomistic there exist m ≥ k, and j1, ..., jm ∈ AL\ {j} such that
j 6 ∨ {j1, ..., jm}. Now, consider x ∈ LAL such that jh 6 xh, h = 1, ...,m,
and j ­ xj. Then, by NASD, j ­ F (x). However, by PASD, jh 6 F (x),
h = 1, ...,m, whence j 6 ∨ {j1, ..., jm} 6 F (x), a contradiction.
In particular, it is immediately checked that, by definition, j 6 xj entails

j 6 F l(x) i.e. F l satisfies PASD, hence it must violate NASD.

The foregoing facts suggest a first, straightforward characterization of the
libertarian CIP in an arbitrary atomistic lattice, namely

Proposition 3 Let L = (L,6) be a (finite) atomistic lattice, and F : LAL →
L a CIP. Then, F = F l if and only if F is the least inclusive CIP that satisfies
PASD.

Proof. We know already from the previous Claim that F l does satisfy PASD.
Moreover, let F : LAL → L be a CIP that satisfies PASD. Then, for any
j ∈ AL and x ∈ LAL such that j 6 F l(x), there exist j1, ..., jk ∈ AL such
that jh 6 xh, h = 1, ..., k, and j 6 ∨ {j1, ..., jk}. By PASD, jh 6 F (x),
h = 1, ..., k. Hence j 6 ∨ {j1, ..., jk} 6 F (x) i.e. F l 5 F as claimed.

Notice that, conversely, the most inclusive CIP that satisfies PASD is
the Universal Acceptance CIP F∨L which invariably selects an associative
structure comprising all agents as members5. Clearly, Universal Acceptance
is strictly more inclusive than F l at any x ∈ LAL such that j ­ xj for some
j ∈ AL: hence the foregoing elementary characterization is tight.
It is immediately checked that, whenever L is distributive as well, F l also

admits a dual characterization as themost inclusive CIP that satisfies NASD.
Of course, in view of the foregoing Claim, such a dual characterization of F l

is bound to fail in the nondistributive case. Moreover, it has been already
noticed (see Claim i) above) that in the distributive case -as opposed to

5Thus, F∨L is defined as follows: for any x ∈ LJL , F∨L(x) = ∨L.
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the nondistributive one- F l can also be characterized as the only CIP that
jointly satisfies PASD and NASD. But then, what about the possility to
lift the latter characterizations of F l to arbitrary atomistic lattices by some
suitable generalization of NASD?6

It turns out that such a lifting is indeed feasible, thanks to the following
generalization of NASD.

Admission by Qualified Invitation (AQI) For any x ∈ LAL and any
j ∈ AL, if j 6 F (x) then there exist j1, ..., jk ∈ AL such that j 6 ∨ {j1, ..., jk}
and jh 6 xh ∧ F (x), h = 1, ..., k .

Notice that in the present setting relation j 6 ∨ {j1, ..., jk} may be inter-
preted as follows: ‘agent j is invited within the relevant associative structure
by agents j1, ..., jk’; such an invitation amounts to an arbitrary combination
of explicit, formal certifications (when j 6 xjh, h ∈ {1, ..., k}) and implicit,
tacit invitations (when j ­ xjh, h ∈ {1, ..., k}) on the part of agents in
{j1, ..., jk}.
Thus, AQI establishes that admission of an agent as member of the rel-

evant associative structure requires either a (possibly tacit) invitation or an
explicit certification on the part of some self-certified member(s). In general,
NASD implies AQI while the converse implication does not hold. However,
AQI and NASD are equivalent whenever L is distributive, namely

Claim 4 i) Let L = (L,6) be a (finite) atomistic lattice, and F : LAL → L
a CIP. Then, F satisfies NASD only if it also satisfies AQI. However, it may
be the case that F does satisfy AQI while violating NASD; ii) Let L = (L,6)
be a (finite) atomistic lattice. Then, L is distributive if and only if each CIP
F : LAL → L that satisfies AQI does also satisfy NASD.

Proof. i) Let F satisfy NASD. Therefore, if j ∈ AL and j 6 F (x) then it
must be the case that j 6 xj, hence AQI is satisfied (just take k = 1, and

6To be sure, one might rather take the notion of a ‘most inclusive NASD-consistent
CIP’ as the starting point of the tentative definition of a new, dual libertarian rule
F l∗defined pointwise by the least upper bound of the values of those CIPs that satisfy
NASD (if it exists). The main problem with this approach is that indeed the foregoing
least upper bound may not exist. Thus, such a ‘most inclusive NASD-consistent CIP’ (as
opposed to ‘one of many maximally inclusive NASD-consistent CIPs’) is typically not a
well-defined notion in the nondistributive case. The details, however, need not detain us
here, and will be discussed elsewhere.
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j1 = j). Conversely, consider the Libertarian CIP F l : F l trivially satisfies
AQI, but fails to satisfy NASD (to check that, just consider the partition
lattice L = (Π({1, 2, 3}),v), its atoms π12, π13, π23, and (with a slight abuse
of notation) opinion-profile x = (x12, x13, x23) where x12 = π12, x13 = π13,
x23 = {{1} , {2} , {3}}. Of course, π12 v F l(x) and π13 v F l(x). Now,
π12 ∨ π13 = {{1, 2, 3}} and π23 @ {{1, 2, 3}}, where @ denotes of course the
asymmetric component of v. Thus, F l(x) = {{1, 2, 3}} whence π23 v F l(x),
while not π23 v x23).
ii) Let L be a distributive lattice, F : LAL → L a CIP that satisfies AQI,

x ∈ LAL, and j ∈ AL. If j 6 F (x) then, by AQI, there exists a set of
atoms {j1, ..., jk} ⊆ AL such that jh 6 xh ∧F (x) for each h, h = 1, ..., k, and
j 6 ∨ {j1, ..., jk}. But then, by distributivity of L (see Fact ii) above), there
exists jh ∈ {j1, ..., jk} such that j 6 jh i.e. j = jh (by definition of atom).
Therefore, j 6 xj and NASD is satisfied, as claimed.
Conversely, suppose that for any CIP F : LAL → L, if F satisfies AQI

then it also satisfies NASD. Then, consider F l: since it satisfies AQI, it does
also satisfy NASD i.e. for any j ∈ AL, and any x ∈ LAL, if j 6 F l(x)
then j 6 xj. Let us now assume that L is nondistributive: then, by Fact
ii) above, there exist j ∈ AL, x1, ..., xk ∈ L such that j < x1 ∨ ... ∨ xk and
j ­ xh, h = 1, ..., k. Then, there exist j1, ..., jm ∈ AL such that -for each
i ∈ {1, ...,m}- ji 6 xh for some h ∈ {1, ..., k}, and j < j1 ∨ ... ∨ jm. Clearly,
by construction, j ­ ji, i = 1, ...,m. Next, consider opinion-profile x ∈ LAL

such that xjh = jh, h = 1, ...,m, and xi = ∧L for any i ∈ AL\ {j1, ..., jm}.
But then, j 6 j1 ∨ ... ∨ jm , and j /∈ {j1, ..., jm}, while by definition F l(x) =
j1 ∨ ... ∨ jm. Hence, j 6 F l(x). It follows that -by NASD- j 6 xj, a
contradiction.

The next elementary characterizations of the Libertarian rule based upon
AQI confirm that the latter is a suitable counterpart of NASD in the general
setting of arbitrary atomistic lattices.

Theorem 5 Let L = (L,6) be a (finite) atomistic lattice, and F : LAL →
L a CIP. Then, the following statements are equivalent: i)F is the most
inclusive CIP that satisfies AQI; ii) F satisfies both PASD and AQI; iii)
F = F l .

Proof. i)⇐⇒iii) F l does satisfy AQI as shown above. Now, let F : LAL → L
be a CIP that satisfies AQI, and x ∈ LAL, j ∈ AL such that j 6 F (x).
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Then, by AQI, there exist j1, ..., jk ∈ AL such that j 6 ∨ {j1, ..., jk} and
jh 6 xh ∧ F (x), h = 1, ..., k . Hence, by definition of F l, j 6 F l(x), i.e.
F 5 F l as required.
ii) ⇒iii): Let F : LAL → L be a CIP that satisfies both PASD and AQI,

x ∈ LAL, and j ∈ AL. If j 6 F (x) then by AQI there exist j1, ..., jk ∈ AL such
that j 6 ∨ {j1, ..., jk} and jh 6 xh∧F (x), h = 1, ..., k . Therefore, j 6 F l(x),
by definition of F l. Moreover, if j 6 F l(x) then there exist j1, ..., jk ∈ AL

such that jh 6 xh, h = 1, ..., k, and j 6 ∨ {j1, ..., jk}. Therefore, by PASD,
jh 6 F (x), h = 1, ..., k, hence j 6 ∨ {j1, ..., jk} 6 F (x).
iii)⇒ii): The Libertarian rule F l clearly satisfies PASD (see the previous

Claim). F l also satisfies AQI: just consider that, for any j ∈ AL, x ∈ LAL

such that j 6 F l(x) it must be the case that j ∈ AL .

Notice that the foregoing characterizations are tight, since there exist
CIPs which satisfy AQI and are strictly less inclusive than FL, while PASD
and AQI are mutually independent axioms. To check this, consider the Uni-
versal Acceptance CIP F∨L and the Universal Rejection CIP F∧L: F∨L satis-
fies PASD but not AQI, while F∧L satisfies AQI but not PASD, and is clearly
less inclusive than F l.

3 Non-manipulability of the Libertarian rule
in simple environments

Since CIPs are strategic game forms having opinions as strategies, it makes
sense to enquire about their manipulability or, more generally, their solv-
ability with respect to some suitable noncooperative or cooperative game-
theoretic solution concepts. We only need to specify the set of admissible
preferences over outcomes of each agent. Here I shall focus on a very sim-
ple set of admissible preference profiles, leaving a more general, full-fledged
analysis as a topic for further research.
Consider the most elementary case of self-oriented preferences, where each

agent i ∈ N only cares about her own status with respect to association.
Then, in the basic case of (binary) identification with exogenous labels agent
i will partition the outcome set L into two equivalence classes, namely the
two sets of best and worst outcomes, characterized by consistency with her
own preferred and dispreferred membership status, respectively. This case
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motivates the general notion of a simple environment as made precise by the
following

Definition 6 Let L = (L,6) be a finite atomistic lattice, AL the set of its
atoms, and x = (xj)j∈AL ∈ LAL. An AL-profile (<i)i∈AL

of binary (prefer-
ence) relations on LAL is simple w.r.t. x -written (<i)i∈AL ∈ SAL(x)- iff for
any i ∈ AL, and any y, z ∈ LAL: y <i z if and only if either [j 6 y and
j 6 xj] or [j ­ y and j ­ xj]. The simple environment (on (L, AL)) consists
of the set SAL = ∪x∈LALSAL(x) of all preference AL-profiles on LAL that are
simple w.r.t. some x ∈ LAL.

The significance of the simple environment rests both on its remarkable
tractability and on the fact that it apparently leaves as little scope as pos-
sible for strategic manouvering and manipulation. The relevant notion of
(coalitional) non-manipulability or strategy-proofness is a straightforward
adaptation of the standard concept for voting mechanisms, namely

Definition 7 Let L = (L,6) be a finite atomistic lattice, and F : LAL → L
a CIP. F is coalitionally strategy-proof on the simple domain SAL iff for any
x ∈ LAL, AL-profile (<i)i∈AL ∈ SAL(x), S ⊆ AL, zN\S ∈ LN\S, and yS ∈ LS,
there exists i ∈ S such that

F (xS, zN\S) <i F (yS, zN\S) .

It turns out that at least on a very restricted domain such as the simple
environment, the Libertarian rule studied in this paper is indeed coalitionally
strategy-proof, no matter whether the underlying (finite, atomistic) lattice is
distributive or not:

Proposition 8 Let L = (L,6) be a finite atomistic lattice. Then the Lib-
ertarian CIP F l : LAL → L is coalitionally strategy-proof on the simple
domain SAL.

Proof. Let L be an atomistic lattice, and AL = {j1, .., jk}. Then, consider
x = (xj)j∈AL

∈ LAL, (<i)i∈AL ∈ SAL(x).
Suppose there exist S ⊆ AL, yS ∈ LS and zN\S ∈ LN\S such that for each

i ∈ S
F l(yS, zN\S) Âi F

l(xS, zN\S).
Then, by definition of SAL(x), it must be the case that for any i ∈ S

either
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(i) i 6 xi , i ­ F l(xS, zN\S) and i 6 F l(yS, zN\S)
or

(ii) i ­ xi , i 6 F l(xS, zN\S) and i ­ F l(yS, zN\S).
However, by definition of F l, i 6 xi and i ∈ S entail i 6 F l(xS, zN\S) con-

tradicting (i). Hence, (ii) holds for each i ∈ S. Now, posit u = (xS, zN\S): for
any i ∈ S, since i ­ xi and i 6 F l(xS, zN\S), there exists Ji = {j1, ..., jki} ⊆
AL such that jh 6 uh, h = 1, ..., ki, and i 6 ∨ {j1, ..., jki}, by definition of
F l. But then, for any such profile (Ji)i∈S, S ∩ (∪i∈SJi) = ∅ whence, for any
i ∈ S, i ­ xi and i 6 F l(xS, zN\S) entail i 6 F l(yS, zN\S) for any i ∈ S, a
contradiction again.

Clearly, coalitional strategy-proofness of F l (on the simple domain) amounts
to saying that at any x ∈ LAL, x is a coalitionally dominant strategy equi-
librium7 of the game in strategic form G(F l, (<i (x))i∈AL

) := (AL, L, (Li =
L)i∈AL

, F l, (<i (x))i∈AL). But notice that a coalitionally dominant strategy
equilibrium of a game is also a strong equilibrium and a fortiori a coalitional
equilibrium with threats8 of the same game.
Therefore, for any atomistic lattice the Libertarian rule enjoys both non-

cooperative and cooperative stability at least on the simple domain9.

7An AL-profile y ∈ LAL is a coalitionally dominant strategy equilibrium of G(F, (<i

)i∈ALF ) iff for any T ⊆ AL, uN\T ∈ LN\T and zT ∈ LT there exists i ∈ T such that
F (yT , uN\T ) <i F (zT , uN\T ).

8An AL-profile y ∈ LAL is a coalitional equilibrium with threats of G(F, (<i)i∈ALF ) iff
for any T ⊆ AL and zT ∈ LT there exists wN\T ∈ LN\T and i ∈ T such that
F (y) <i F (zT , wN\T ).
Moreover, a coalitional equilibrium with threats y of G(F, (<i)i∈AL) is a strong equilib-

rium of G(F, (<i)i∈AL) iff in particular for any T ⊆ AL and zT ∈ LT there exists i ∈ T
such that
F (y) <i F (zT , yN\T ).
Of course, any strong equilibrium of F at (<i)i∈AL is a coalitional equilibrium with

threats of F at (<i)i∈AL , but not vice versa. Also notice that coalitional equilibrium with
threats is the strategic counterpart of the core, namely any l ∈ L is a core outcome of
G(F, (<i)i∈AL) iff there exists a coalitional equilibrium with threats y of G(F, (<i)i∈AL)
such that l = F (y).

9A strategic game form G is solvable (or stable) with respect to a certain solution
concept on a certain domain D of preference profiles, if at each preference profile < in D
the game (G,<) has a nonempty set of solutions.
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4 Related literature

As mentioned in the Introduction, a few axiomatic characterizations of the
libertarian rule have been provided in the literature on collective identifica-
tion with exogenous labels (both binary and nonbinary). In this section we
shall briefly review them with a view to assess whether they can be lifted
into the general case of arbitrary atomistic lattices, in order to cover the case
of collective identification with endogenous labelling. As it turns out, none of
the known characterizations of the libertarian CIP works within an arbitrary
atomistic lattice: in the process, we shall obtain generalizations of some of
the foregoing characterizations, showing that they hold if and only if the
underlying lattice of feasible associative structures is distributive.
Indeed, most known characterizations of the libertarian CIP for binary

classification problems rest on the basic requirement that membership of
any agent should only depend on the assessment of her own credentials, as
established by the most straightforward adaptation of arrowian Independence
to collective identification problems, namely
Independence (IND): For any x, x0 ∈ LAL and any j ∈ AL if [for all

i ∈ AL: j 6 xi iff j 6 x0i] then [j 6 F (x) iff j 6 F (x0)].
Samet and Schmeidler (2003) provide two characterizations of the Lib-

ertarian rule as defined on the lattice (P(N),⊆), relying on Independence
and the first three properties (the first, the second and the fourth property,
respectively) of the following list:
Nondegeneracy (NDG): For any j ∈ AL there exist x, x0 ∈ LAL such

that j 6 F (x) and j ­ F (x0).
Clearly, Nondegeneracy is a mild requirement ensuring that for any agent

there exist both opinion profiles resulting in her inclusion in the associative
structure and opinion profiles mandating her exclusion from the latter. Thus,
Nondegeneracy rules out trivial constant rules and guarantees that each agent
may be or may be not part of the relevant association, depending on the
prevailing opinion profile.
Monotonicity (MON): For any x, x0 ∈ LAL, if xj 6 x0j for each j ∈ AL

then F (x) 6 F (x0).
Monotonicity is also quite standard: it simply establishes that shifts to

opinion profiles acknowledging larger sets of qualified agents cannot result in
reduced memberships.
Collective Self-Determination (CSD): For any x, x0 ∈ LAL if [j 6 xi

iff i 6 x0j for any i, j ∈ AL] then F (x) = F (x0).

13



Collective Self-Determination is a symmetry condition for members which
rules out cooptation practices: reversing the roles of ‘certifiers’ and ‘certified’
agents should not affect membership.
Exclusivity of Self-Determination (ESD): For any x, x0 ∈ LAL and

any i, j ∈ AL if [((j 6 xi and j ­ x0i) or (j ­ xi and j 6 x0i)) iff (i ­ F (x)
and j 6 F (x))] then F (x) = F (x0).
Thus, Exclusivity of Self-Determination decrees the irrelevance of the

opinion of non-members: changes in the opinion of the latter should not
affect membership.
Notice that the Libertarian CIP satisfies NDG, MON, CSD and ESD in

any (finite) atomistic lattice, namely

Proposition 9 Let L = (L,6) be a finite atomistic lattice. Then the Liber-
tarian CIP F l : LAL → L does satisfy NDG, MON, CSD and ESD.

Proof. To see that F l satisfies NDG just consider profiles x = (xj = ∨L)j∈AL
and y = (yj = ∧L)j∈AL

: clearly, for any i ∈ AL, i 6 F l(x) and i ­ F l(y).
That F l satisfies MON is also straightforward: if i 6 F l(x) and xj 6 x0j for
any j ∈ AL then, in particular j 6 xj entails j 6 x0j, hence, by definition of
F l, i 6 F l(x0) as well. Concerning CSD, notice that by definition of x and x0,
i 6 xi iff i 6 x0i. Therefore j 6 ∨ {j1, ..., jk} with {j1, ..., jk} ⊆ {i : i 6 xi} iff
j 6 ∨ {j1, ..., jk} with {j1, ..., jk} ⊆ {i : i 6 x0i} whence F l(x) = F l(x0).
Finally, for any x, x0 ∈ LAL and any i, j ∈ AL if [((j 6 xi and j ­ x0i) or

(j ­ xi and j 6 x0i)) iff (i ­ F l(x) and j 6 F l(x))] then by definition of F l it
must be the case that xi 6= x0i entails i ­ xi hence in particular j 6 F l(x)
entails j 6 F l(x0). Conversely, j 6 F l(x0) entails j 6 ∨ {j1, ..., jk} with
{j1, ..., jk} ⊆ {i : i 6 x0i} hence, by definition of x0, {i : i 6 x0i} ⊆ {i : i 6 xi}.
Therefore, j 6 F l(x) as well. It follows that ESD is also satisfied by F l.

However, it turns out that Independence is satisfied by the Libertarian
CIP F l if L is distributive, but not in the general case, as made precise by
the following

Proposition 10 Let L = (L,6) be a finite atomistic lattice. Then the Lib-
ertarian CIP F l : LAL → L satisfies IND iff L is distributive.

Proof. Let L = (L,6) be a finite distributive atomistic lattice, j ∈ AL and
x, x0 ∈ LAL such that for all i ∈ AL, j 6 xi iff j 6 x0i. If j 6 F l(x) there must

14



exist j1, ..., jk ∈ AL such that jh 6 xh, h = 1, ..., k, and j 6 ∨ {j1, ..., jk}. By
distributivity, there exists h ∈ {1, ..., k} such that j 6 jh i.e. j = jh since
j ∈ AL. Therefore, j 6 xj hence, by assumption, j 6 x0j: it follows that
j 6 F l(x0). By a similar argument it is easily checked that j 6 F l(x0). Thus
F l does indeed satisfy IND.
Conversely, let us suppose that F l satisfies IND. If L is not distributive

then, by Fact (ii) above there exist j ∈ AL and x1, ..., xk ∈ L such that
jh ­ xh, h = 1, ..., k, and j 6 ∨ {x1, ..., xk}. Thus, again, there also exist
j1, ..., jm ∈ AL such that -for each i ∈ {1, ...,m}- ji 6 xh for some h ∈
{1, ..., k}, and j < j1 ∨ ... ∨ jm. Clearly, by construction, j ­ ji, i = 1, ...,m.
Now, consider opinion-profiles x = (xi)i∈AL

, x0 = (x0i)i∈AL
∈ LAL such

that xj = x0j = ∧L while for any i ∈ AL\ {j}, xi = ∧L and x0i = i.
Clearly {i ∈ AL : j 6 xi}={i ∈ AL : j 6 x0i}=∅ and j ­ F l(x) but j 6 F l(x0)
{i ∈ AL : j 6 xi}, so IND is violated: contradiction.

Thus, under the Libertarian CIP in an arbitrary atomistic lattice, the
assessment of the qualification of any agent may well also depend on the
assessment of the qualifications of other agents10. As a consequence, we have
the following generalization of the characterization(s) of the Libertarian CIP
due to Samet and Schmeidler (2003).

Proposition 11 Let L = (L,6) be a finite atomistic lattice, and F : LAL →
L a CIP that satisfies [NDG, MON, CSD] or [NDG, MON, ESD] . Then,
the following statements are equivalent:
i) L is distributive; ii) If F satisfies IND then F = F l.

Proof. i)=⇒ii) Suppose L is distributive. Then by a straightforward adap-
tation of the proof of Theorem 3 ( Theorem 4, respectively) of Samet and
Schmeidler (2003) to the case of a general distributive lattice, and by Propo-
sitions 9 and 10 above, F l uniquely satisfies IND, NDG, MON, CSD (IND,
NDG, MON, ESD, respectively). Therefore, if F satisfies IND as well then
F = F l.
ii)=⇒i) Suppose F does indeed satisfy IND. Then, by assumption, it must

be the case that F = F l. Therefore, F l does also satisfy IND. But then, by
Proposition 10 above, L is distributive.

10Incidentally, that is the central theme of Vannucci (2007).
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Another interesting characterization of the Libertarian CIP in the lattice
(P(N),⊆) - due to Kasher and Rubinstein (1997) and further refined by
Sung and Dimitrov (2005)- relies on the following properties

Conditional Independence (CI): For any j ∈ AL and x, x0 ∈ LAL, if
[ i) i 6 F (x) iff i 6 F (x0) for any i ∈ AL\ {j}, and ii) j 6 xh iff j 6 x0h for
all h ∈ AL] then j 6 F (x) iff j 6 F (x0).
Thus, CI is a very weak version of Independence (see section 3 below): it

requires that membership of any agent should only depend on the assessment
of her qualifications and on assignment of memberships to other agents.11

Positive Opinion Responsiveness (POR): For any x ∈ LAL, if there
exists j ∈ AL such that j 6 xj then there also exists i ∈ AL such that
i 6 F (x).

Clearly, POR requires that if some agent self-certifies her qualifications
to join the given associative structure then at least one agent (not necessarily
the same) should be admitted into the latter. POR amounts to a generalized
version of the ‘positive’ part of the so-called ‘Liberal principle’ due to Kasher
and Rubinstein (1997)).

Negative Opinion Responsiveness (NOR): For any x ∈ LAL, if there
exists j ∈ AL such that j ­ xj then there also exists i ∈ AL such that
i ­ F (x).

Hence, NOR is the ‘negative’ part of Kasher-Rubinstein’s ‘Liberal prin-
ciple’ saying that if some agent denies her own qualifications then the asso-
ciative structure should not include each agent.
Horizontal Symmetry (HS): For any i, j ∈ AL and x ∈ LAL, i 6 F (x)

iff j 6 F (x) whenever [i) i 6 xi iff j 6 xj, ii) i 6 xj iff j 6 xi, iii) i 6 xh iff
j 6 xh and h 6 xi iff h 6 xj, for any h ∈ AL\ {i, j}].
HS essentially requires equal treatment for any two agents whose qual-

ifications are assessed identically by themselves and by all other agents: it
is a generalized version of the so called ‘Symmetry’ property introduced by
Kasher and Rubinstein (1997) (see also Sung and Dimitrov (2005)).

11CI is also an adaptation of a property introduced by Kasher and Rubinstein (1997)
under the misleading label ‘Independence’.
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As it happens, the Libertarian CIP F l satisfies CI and POR in any atom-
istic lattice; however, NOR and HS are only satisfied by F l when the under-
lying lattice is distributive, namely

Proposition 12 Let L = (L,6) be a finite atomistic lattice. Then, i)
F l : LAL → L satisfies CI and POR; ii) if L is distributive then F l : LAL → L
does satisfy HS; iii) F l : LAL → L satisfies NOR iff L is distributive.

Proof. i) Let j ∈ AL and x, x0 ∈ LAL, such that [ i 6 F l(x) iff i 6 F l(x0) for
any i ∈ AL\ {j}] and [j 6 xh iff j 6 x0h for all h ∈ AL]. Now, suppose j 6
F l(x). Then, there exist j1, ..., jk ∈ AL such that jh 6 xh, h = 1, ..., k, and
j 6 ∨ {j1, ..., jk}. Hence, by definition, jh 6 F l(x), h = 1, ..., k, and therefore
jh 6 F l(x0) for any jh ∈ {j1, ..., jk}. It follows that j 6 ∨ {j1, ..., jk} 6 F l(x0).
By a similar argument j 6 F l(x0) entails j 6 F l(x). Thus, F l satisfies CI.
Moreover, for any x ∈ LAL, if there exists j ∈ AL such that j 6 xj then

by definition j 6 F l(x), hence POR is also satisfied by F l.
ii) Suppose L is distributive, and let x ∈ LAL, i, j ∈ AL be such that a)

i 6 xi iff j 6 xj, b) i 6 xj iff j 6 xi, c) i 6 xh iff j 6 xh and h 6 xi iff
h 6 xj, for any h ∈ AL\ {i, j}. Then, i 6 F l(x) implies that there exist
j1, ..., jk ∈ AL such that jh 6 xh, h = 1, ..., k, and i 6 ∨ {j1, ..., jk}. By
distributivity, there exists jh ∈ {j1, ..., jk} such that i 6 jh hence indeed
i = jh. Therefore, i 6 xi, whence by assumption a) j 6 xj. It follows that
j 6 F l(x) as well, as required by HS.
iii) Let us first assume that F l : LAL → L satisfies NOR and L is not

distributive. Then, by Fact (ii) above, there exist j ∈ AL and x1, ..., xk ∈ L
such that jh ­ xh, h = 1, ..., k, and j 6 ∨ {x1, ..., xk}. Thus, again, there
also exist j1, ..., jm ∈ AL such that -for each i ∈ {1, ...,m}- ji 6 xh for
some h ∈ {1, ..., k}, and j < j1 ∨ ... ∨ jm. Clearly, by construction, j ­ ji,
i = 1, ...,m.
Now, consider opinion-profiles x = (xi)i∈AL

∈ LAL such that xj = ∧L
while for any i ∈ AL\ {j}, xi = ∨L. Then in particular i 6 F l(x) for any
i ∈ AL (j included), while j ­ xj, which contradicts NOR. Conversely, if L
is distributive and x ∈ LALis such that there exists j ∈ AL with j ­ xj then
it can be shown that j ­ F l(x). Indeed, suppose that j 6 F l(x). Then, by
definition of F l, there exist j1, ..., jk ∈ AL such that jh 6 xh, h = 1, ..., k,
and j 6 ∨ {j1, ..., jk}. Since j ­ xj, j /∈ {j1, ..., jk} for any such set, a
contradiction in view of Fact (ii) above and distributivity of L.

17



Remark 13 Notice that if L is not distributive, then F l may not satisfy
HS. To check this, consider the partition lattice L = (Π({1, 2, 3, 4, 5}),v),
and (with a slight abuse of notation) opinion-profile x such that x12 = π12,
x13 = π13, xhk = {{1} , {2} , {3}} for any other atom (as indexed by hk). Of
course, not π23 v x23 and not π45 v x45 , not π23 v x45 and not π45 v x23,
and for any πhk ∈ AL\ {π23, π45}, both [not π23 v xhk and not π45 v xhk] and
[not πhk v x23 and not πhk v x45]. Nevertheless, since F l(x) = π12 ∨ π13, it
follows that π23 v F l(x) while not π45 v F l(x).

As a consequence of Proposition 11 we can establish the following gener-
alization of the characterization result for the Libertarian rule due to Kasher
and Rubinstein (1997), and Sung and Dimitrov (2005).

Proposition 14 Let L = (L,6) be a finite atomistic lattice, and F : LAL →
L a CIP that satisfies CI, POR and HS. Then, the following statements are
equivalent:
i) L is distributive; ii) If F satisfies NOR then F = F l.

Proof. i)=⇒ii) Suppose L is distributive. Then by a straightforward adap-
tation of the proof of Theorem 2 of Sung and Dimitrov (2005) to the case
of a general distributive lattice, and by Proposition 12 above, F l uniquely
satisfies CI, POR, NOR and HS. Therefore, if F satisfies NOR as well then
F = F l.
ii)=⇒i) Suppose F does indeed satisfy NOR. Then, by assumption, it

must be the case that F = F l. Therefore, F l does also satisfy NOR. But
then, by Proposition 12 above, L is distributive.

Remark 15 Other characterizations of the Libertarian Rule have been pro-
vided for the distributive case. In particular, Houy (2007) has a further char-
acterization of F l that relies on Independence, while Miller (2006) provides
a characterization that rests on Join-Separability (i.e. for any x, y ∈ LAL,
F (x∨y) = F (x)∨F (y)) which again may be not satisfied by F l if the under-
lying lattice is nondistributive. Thus, it transpires that virtually all known
characterizations of the Libertarian Rule provided in the extant literature are
not suitable for the general (atomistic) case.
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5 Concluding remarks

It has been shown that the Libertarian Identification Rule F l can be properly
defined in any atomistic lattice and thus applied in both binary classifica-
tion models with exogenous intensional labels and in general classification
problems with endogenous extensional labels. However, not all of the basic
properties of F l in the special (boolean) distributive case of binary classifi-
cations can be safely lifted to that general atomistic environment. As a con-
sequence, only some of the known characterizations of the Libertarian Rule
can be adapted to the latter. By contrast, (coalitional) strategy-proofness
of F l on simple domains turns out to hold for any finite atomistic lattice of
associative structures.
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