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ARMA Models
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Abstract

In this paper we propose a method to derive the spectral density function of
Markov Switching ARMA models. We apply the Riesz-Fisher Theorem which
de�nes the spectral representation as the Fourier Transform of the autocovari-
ance functions.

JEL Classi�cation: C32
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1 Introduction

This paper proposes a tractable method to derive the spectral representation of a
general class of Markov Switching (MS) ARMA models. The procedure simply re-
lies on the Riesz-Fisher theorem, which de�nes the spectral density function of a
covariance-stationary stochastic process as the Fourier Transform of the autocovari-
ance functions. Markov Switching models are widely used for modelling dynamics
in di¤erent �elds, for instance in economic studies where applications have found a
great development from the seminal work of Hamilton (1989). However, to the best
of our knowledge, this is the �rst attempt to derive the spectral representation for
regime-switching cases1.
We consider a MSARMA (p,q) model of the following type:

xt =
pP
i=1

ai (�t)xt�i + "t +
qP
j=1

bj (�t) "t�j (1)

�Present Address: University of Tilburg, Warandelaan 2 Kamer K 508, P.O.Box 90153 5000LE
Tilburg, The Netherlands.E-mail: b.pataracchia@uvt.nl.

1Traditional studies of non linear models in frequency domain rest on the complex concepts of
Volterra Series Expansion or higher order cumulants and the corresponding Fourier transforms, the
polyspectra. See Priestley (1981), ch.11.
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where xt is a zero mean purely indeterministic process in RK , �t is an irreducible,
aperiodic and ergodic Markov Chain with �nite space � = f1; 2; :::; dg, stationary
transition probabilities denoted by pij = pr

�
�t = j j �t�1 = i

�
and unconditional (or

steady state) probabilities, �i = pr (�t = i) ; 1 � i � d, where
Pd

i=1 �i = 12: The
ai (�t) and bj (�t) are K � K real random matrices. To allow for the possibility of
change in variance, it is assumed that "t = � (�t) �t, where � (�t) is a K �K random
matrix and �t is supposed to be a white noise vector with E (�

0
t�t) = 
:

The paper is structured as follows. Section 2 reviews the main results of Francq
and Zakoïan (2001), who de�ne the second order moments for covariance station-
ary Markov Switching models. We complete the characterization of autocovariance
functions including also the case of negative time lags. The derivation of the spectral
matrix follows. In Section 3 we propose an economic application as a simple example
of a MSVAR(4) model. Section 4 concludes.

2 Markovian Representation: Stationarity, Second
Order Moments and Spectral Density

Francq and Zakoïan (2001), FZ hereinafter, propose the following Markovian repre-
sentation of (1): zt = �tzt�1+�t�t where zt =

�
xt xt�1 � � � xt�p+1 "t "t�1 � � � "t�q+1

�0 2
RK(p+q); � (�t) =

�
� (�t) 0 � � � 0 � (�t) 0 � � � 0

�0 2 R(p+q) and

�t =

26666666666666664

a1 (�t) � � � ap (�t) b1 (�t) � � � bq (�t)
IK 0 � � � 0 0 � � � 0
0 IK � � � 0 0 0
...

. . . . . . . . .
...

...
. . . . . .

...
0 � � � IK 0 0 � � � 0 0
0 � � � 0 0 � � � 0
0 � � � 0 IK 0 � � � 0
0 � � � 0 0 0 IK � � � 0
...

. . . . . .
...

...
...

. . . . . .
...

0 � � � 0 0 0 � � � IK 0

37777777777777775
is a K (p+ q)�K (p+ q) matrix. Letting � (k) be the matrix obtained by replacing
�t by k in �t; the following matrices are de�ned:

P =

26664
p11 f� (1)
 � (1)g p21 f� (1)
 � (1)g � � � pd1 f� (1)
 � (1)g
p12 f� (2)
 � (2)g p22 f� (2)
 � (2)g � � � pd2 f� (2)
 � (2)g

...
...

. . .
...

p1d f� (d)
 � (d)g p2d f� (d)
 � (d)g � � � pdd f� (d)
 � (d)g

37775
2Hamilton (2004), page 684, shows how to compute the ergodic probabilities �i.
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and

S =

26664
�1 f� (1)
 � (1)g
�2 f� (2)
 � (2)g

...
�d f� (d)
 � (d)g

37775 ;
which are, respectively, a dK2 (p+ q)2�dK2 (p+ q)2 and a dK2 (p+ q)2�K2 matrix.
The following theorem states the necessary and su¢ cient condition for second-

order stationarity of MSARMA models which is assumed to hold in the rest of the
paper.

Theorem 1 Suppose that
%(P ) < 1 (2)

where % (�) denotes the spectral radius, then, for all t 2 Z; the series xt =
"t+

1P
k=1

AtAt�1:::At�k+1"t�k converges in L2 and the process xt is the unique second-

order stationary solution of (1). Suppose that (1) admits a second order stationary

solution, then we have
1P
k=0

kI 0P kS�2"k < 1 where I 0 =
�
IK2(p+q); :::; IK2(p+q)

�
which

holds as long as (2) is true.
Proof. See FZ, page 347.

2.1 Second order moments

FZ de�ne the conditional variance of zt as follows:

�iE fvec(ztz0t) j �t = ig = �i f� (i)
 � (i)g vec (
) + (3)

+ f� (i)
 � (i)g
dX
j=1

pji�jE
�
vec
�
zt�1z

0
t�1
� ���t�1 = j � :

Let V = ((E (vec (ztz0t)) j �t = 1)�1; :::; (E(vec (ztz0t)) j �t = d)�d)
0; we then have

V = (I � P )�1 Svec (
) : (4)

The construction of the conditional expectations in (3) is quite intuitive: they are
made up by the sum of the conditional objects relative to the previous period weighted
by the respective probabilities. Notice that, by (2), I�P is an invertible matrix. We
can therefore compute the variance-covariance matrix of the vector xt : vec (Extx0t) =
(g0 
 f 0 
 f 0)V where g = (1; :::; 1)0 2 Rd and f 0 = (IK ; 0; :::; 0) is a K �K (p+ q)
matrix.
Similar calculations can be used to de�ne the autocovariance functions of xt;

�x (�), for all � > 0: Let W (�) be the matrix of size dK (p+ q) � K (p+ q) whose
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ith block (i = 1; :::; d) is the K (p+ q) �K (p+ q) matrix �iE
�
ztz

0
t�� j �t = i

	
: For

� > 0;

W (�) =

26664
�1E

�
ztz

0
t�� j �t = 1

	
�2E fztzt�� j �t = 2g

...
�dE fztzt�� j �t = dg

37775

=

26664
�1 f�z (�) j �t = 1g
�2 f�z (�) j �t = 2g

...
�d f�z (�) j �t = dg

37775
where �z (�) = E

�
ztz

0
t��
�
is the autocovariance of zt3. Then,

�i f�z (�) j�t = ig =
dX
j=1

E
�
� (i) zt�1z

0
t��
���t�1 = j	 pji�j

=
dX
j=1

� (i)
�
�z (� � 1)

���t�1 = j	 pji�j
from which we have

W (�) = P �W (� � 1) (5)

= P ��W (0) ; 8� > 0

where

P � =

26664
p11� (1) p21� (1) � � � pd1� (1)
p12� (2) p22� (2) � � � pd2� (2)

...
...

. . .
...

p1d� (d) p2d� (d) � � � pdd� (d)

37775
is a dK (p+ q) � dK (p+ q) matrix. Finally, we can compute the autocovariance of
the vector process xt: �x (�) = (g0 
 f 0)W (�) f:

For � < 0; let�s de�ne fW (�) be the matrix of size dK (p+ q) �K (p+ q) whose
ith block (i = 1; :::; d) is the K (p+ q)�K (p+ q) matrix �iE

�
ztz

0
t�� j �t�� = i

	
: It

3Notice that the matrix W (0) has the same elements as the matrix V. The latter is a vector
composed by K(p+ q) blocks corresponding to the rows of W (0) :
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is de�ned as follows

fW (�) =

26664
�1E

�
ztz

0
t�� j �t�� = 1

	
�2E

�
ztz

0
t�� j �t�� = 2

	
...

�dE
�
ztz

0
t�� j �t�� = d

	
37775

=

26664
�1
�
�z (�) j �t�� = 1

	
�2
�
�z (�) j �t�� = 2

	
...

�d
�
�z (�) j �t�� = d

	
37775

where �z (�) = E
�
ztz

0
t��
�
is the autocovariance of zt. Then for � < 0;

fW i (�) = �i
�
�z (�)

���t�� = i	 = �i �Eztz0t�� j�t�� = i	
=

�
�i
�
Ezt��z

0
tj�t�� = i

	�0
=

�
W i (��)

�0
from which we have

fW (�) = [P �W (�� � 1)]b
0

(6)

=
h
P �

��
W (0)

ib0
=

�
P �j� jW (0)

�b0
whereW i (�) represents the i-th block of matrixW (�) : Finally, for negative � ; we can
compute the autocovariance of the vector process xt: �x (�) = (g0 
 f 0)fW (�) f from
which it can be veri�ed that �x (�) = �0x (j� j) ;8� < 0:

2.2 Spectral Representation

In this section we apply the Riesz-Fisher theorem which de�nes the spectral matrix
as the Fourier Transform of the autocovariance function:

Fx (!) =
1X

�=�1
�x (�) e

�i!� (7)

=
1X
�=0

�x (�) e
�i!� +

�1X
�=�1

�0x (�) e
�i!�

1. The multivariate spectral matrix described the spectral density functions of each
element of the state vector in the diagonal terms. The o¤-diagonal terms are
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de�ned cross spectral density functions and they are typically complex numbers.
In this paper we are only interested to the diagonal terms. Therefore, we can
compute them, without loss of generality, considering the summation

Fx (!) =

1X
�=�1

�x (�) e
�i!�

=
1X

�=�1
�x (j� j) e�i!j� j

=
1X

�=�1
(g0 
 f 0)W (�) fe�i!j� j

=
1X

�=�1
(g0 
 f 0)P �j� jW (0) fe�i!j� j

where Fx (!) is the spectral density matrix of xt and !, the frequency, belongs to
[��; �]. If P � is diagonalizable4, it holds that P � = TDT�1where T is a matrix
made up by the linear independent eigenvectors of P � and D is a diagonal
matrix whose elements are the distinct eigenvalues of P �: By the properties of
the series of diagonalizable matrices we can write:

Fx (!) =
1X

�=�1
�x (�) e

�i!�

=
1X

�=�1
(g0 
 f 0)TDj� jT�1W (0) fe�i!�

= (g0 
 f 0)T
1X

�=�1
Dj� je�i!�T�1W (0) f

= (g0 
 f 0)Tdiag
" 1X
�=�1

�
j� j
1 e

�i!� ;
1X

�=�1
�
j� j
2 e

�i!� ; :::;
1X

�=�1
�
j� j
dK(p+q)e

�i!�

#
�

�T�1W (0) f

that we rewrite more compactly as

Fx (!) = (g
0 
 f 0)T

 
�dK(p+q)k=1

1X
�=�1

�
j� j
k e

�i!�

!
T�1W (0) f (8)

4A necessary and su¢ cient condition for a n � n matrix to be diagonalizable is that it has n
linearly independent eigenvectors. A natural relaxion of this requirement is the use of the Jordan
Canonical Form, whose properties still allow to compute the power series of a matrix as power series
of its elements. See Appendix A.
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where �k; with k = 1; ::; dK (p+ q) ; are the eigenvalues of the matrix P �: It is known

that each sum into the bracket converges to
1P

�=�1
�
j� j
i e

�i�! =
(1��2i )

(1+�2i�2�i cos!)
if and

only if
j �i j< 1: (9)

Condition (9) is always satis�ed in our context. Indeed, Costa et al. (2005)5 show
that % (P ) < 1) % (P �) < 1 .
Substituting in (8), we get:

Fx (!) = (g
0 
 f 0)T

 
�dK(p+q)k=1

�
1� �2k

��
1 + �2k � 2�k cos!

�!T�1W (0) f: (10)

which de�nes the spectral density matrix of model (11)6. In the next Section, we
present an example to investigate its characteristics.

3 Example: the case of a MSVAR(4)

The example is based on an estimated model of the US economy: a regime-switching
version of the quarterly backward looking model of Rudebush and Svensson (1999),
presented in Svensson and Williams (2005). The key variables are quarterly annual-
ized in�ation vt; the output gap yt and the instrument rate (the federal fund rate), rt.
The model is composed by a Phillips curve and an aggregate demand of the following
forms:

vt =
3X
i=1

�i (�t) vt�i +

 
1�

3X
i=1

�i (�t)

!
vt�4 + �4 (�t) yt�1 + �� (�t) �v;t; (11)

yt = �1 (�t) yt�1 + �2 (�t) yt�2 + �3 (�t) (rt�1 � vt�1) + �y (�t) �y;t

where �t 2 f1; 2; 3g indexes the regime, rt�1 �
P4

i=1 rt�i=4 and vt�1 �
P4

i=1 vt�i=4
are 4-quarter averages and the shocks �v;t and �y;t are each independent standard
normal variables. The estimated coe¢ cients are reported in Table 1, together with
the estimates for the linear case.
The estimated transition matrix P with elements p (j; i) 7 and its implied station-

ary distribution � = [�1 �2 �3]0 are

P =

24 0.83 0.03 0.04
0.09 0.92 0.05
0.08 0.05 0.91

35 ; � =
240.170:45
0:38

35 :
5See Costa et al. (2005), page 35, Proposition 3.6.
6It is possible to check that for d = 1 formula (10) reduces to the known expression of the spectral

density of a VAR(1) of dimensions K (p+ q) :We thank the referee for suggesting this observation.
7Each element pji represents the probability of moving from state j to i; so that columns elements

sum up to 1.
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Parameter Model 1 Model 2 Model 3 Constant
�1 0.2402 0.4236 1.2387 0.5697
�2 0.1654 -0.2219 -0.6911 0.0752
�3 1.0388 0.0714 0.5491 0.1276
�4 0.1514 0.2755 -0.0304 0.1451
�1 1.0015 1.0302 1.8943 1.1834
�2 -0.0853 -0.1069 -1.0312 -0.2651
�3 -0.3244 0.0315 -0.1011 -0.0510
�� 1.5504 0.1798 0.1562 1.0070
�y 1.2696 0.1447 0.2365 0.7540

Table 1: Estimated coe¢ cients of model (10). Source: Svensson and Williams (2005).

For both models we consider the simple model-independent Taylor rule

it = 
��t + 
yyt (12)

which minimizes the loss function Lt = (1=2)V ar (�t) + (1=2)V ar (yt)
8 so that,

substituting in (11), we get a MSVAR(4) bivariate model. In the terminology of
Section 1 we have d = 3; K = 2, p = 4 and q = 0: The idea is that the policymaker
set the policy facing uncertainty about the regime in which the economy is.
Figure 1 shows the comparison of the spectral representation of the estimated

Markov Switching model and the constant coe¢ cients version. Given quarterly data,
business cycle frequencies range from 0.2 to 1.05, approximately.

[Picture 1 about here]

The distributions of the volatility of the in�ation processes are quite similar. How-
ever, the case of regime-switching presents slightly higher volatility components at all
the frequencies. Further, it is better able to capture the high frequency component
(corresponding to a period cycle of one-two years) usually detected in the postwar US
in�ation time series (see Balakrishman and Ouliaris (2006) for instance). The output
gap spectral dynamics shows important di¤erences on the frequency decomposition
of the volatility. This is plausibly due to the fact that, being the regimes quite dif-
ferent in their natures, in particular regarding �3, the coe¢ cient which determines
the e¤ect of the policy on the real activity, the policy intervention is quite moderate
compared to the optimal response in the case of a linear model. Further, the volatility
component of the business cycle is quite exacerbated. This is the range at which the
switching occurs9 suggesting that the switching characteristics can play an important

8The coe¢ cients are chosen to minimize the loss function using a grid search algorithm over the
space 
� 2 [0:00; 10:00] and 
y 2 [�0:50; 5:00] : The two policies are 
� = 1:27 and 
y = �0:07 for
the regime switching model and 
� = 3:89 and 
y = 2:93 for the linear version.

9The mean duration (md) of regime i can be computed knowing the transition probabilities:
mdi = 1= (1� pii) :
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Figure 1: The spectral representations of the in�ation (above panel) and the output
gap processes (below panel) of the regime switching (solid line) and the linear version
(dashed line) of model (10).

role in the determination of the frequency distribution of the volatility. We should
notice, however, that the comparison must be discussed with caution since di¤erent
policies are considered in the two models.
Further, Francq and Zakoïan(2002) claim that a VAR(p) switching model of di-

mension K with d number of states has an ARMA
�
d (Kp)2 ; d (Kp)2 � 1

�
represen-

tation. In our example, it would imply that appropriate comparison between the
spectral densities should be made comparing the estimated MSVAR(4) with a linear
ARMA(192,192), which seems hardly correctly speci�ed. In general, if important
di¤erences between the spectral densities exist, this can be considered as an indicator
of misspeci�cation of the MSVAR or inaccurate estimation10.
Nonetheless, spectral analyses are recently receiving a renew interest in macro-

economic studies where they are used to investigate policy evaluations based on
frequency-speci�c e¤ects (Brock et al. (2007)). We regard these contributions as
a promising area for future research and we consider our work as a �rst step of the
extension of such analyses in non linear contexts.

10We thank the referee for suggesting this observation.
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4 Conclusion

In this paper we propose a simple procedure to compute the spectral representation of
covariance-stationary Markov Switching ARMA models. We complete the character-
ization of the autocovariance function of such models, showing their correspondence
with the second order moments of linear stationary ARMA models. The spectral
representation is then obtained as the Fourier Transform of the autocovariance func-
tion using the Riesz-Fisher Theorem as in linear frameworks. The example provided
suggests that the switching recurrence plays an important role in the frequency de-
composition of regime-switching models.

5 Appendix A

If matrix P � does not have dK (p+ q) linearly independent eigenvectors, it is not a
diagonalizable matrix. However, there still exists an invertible matrix T such that
P � = TJT�1. This is called the Jordan Decomposition where J is a block diagonal
matrix:

J =

26664
J1 0 � � � 0

0 J2
. . .

...
...

. . . . . . 0
0 � � � 0 Jn

37775
where each Ji is a square matrix

Ji =

26666664
�i 1 0 � � � 0

0 �i
. . . . . .

...
...

. . . . . . 1 0
...

. . . �i 1
0 � � � � � � 0 �i

37777775
of dimension mi : it can be indicated as J�i;mi

: Using the notation introduced in Sec-
tion 2, matrix J can therefore also be compactly de�ned as J�1;m1�J�2;m2�:::�J�n;mn

or diag (J�1;m1 ; J�2;m2 ; :::; J�n;mn) : The Jordan Decomposition is very useful because
it still allows the computation of in�nite series. Indeed, the following properties hold:

f (P �) = T (�nk=1f (J�k;mk
))T�1

and
P �k = TJkT�1

Therefore, we can compute the series directly via power series of every Jordan
blocks. Further,
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f (J�i;mi
) =

266666664

f (�i) f 0 (�i)
f 00(�i)
2!

� � � f(mi�1)(�i)
(mi�1)!

0 f (�i) f 0 (�i)
. . .

...
...

. . . . . . . . . f 00(�i)
2!

...
. . . . . . f 0 (�i)

0 � � � � � � 0 f (�i)

377777775
: (13)

Back to our computation, when P � is not diagonalizable, we can rewrite (??) as

Fx (!) =

1X
�=�1

(g0 
 f 0)TJ�T�1W (0) fe�i!�

= (g0 
 f 0)T
1X

�=�1
J�e�i�!T�1W (0) f

= (g0 
 f 0)T

26666664

P1
�=�1 J

�
1 e
�i�! 0 � � � � � � 0

0
P1

�=�1 J
�
2 e
�i�! 0

...
...

. . . . . . . . .
...

...
. . . . . . 0

0 � � � � � � 0
P1

�=�1 J
�
ne
�i�!

37777775T
�1W (0) f

Considering (13) and f (�i) =
1P

�=�1
��i e

�i�! =
(1��2i )

(1+�2i�2�i cos!)
; we can write:

Fx (!) = (g
0 
 f 0)T �nk=1

266666664

f (�k) f 0 (�k)
f 00(�k)
2!

� � � f(mk�1)(�)
(mk�1)!

0 f (�k) f 0 (�k)
. . .

...
...

. . . . . . . . . f 00(�k)
2!

...
. . . . . . f 0 (�k)

0 � � � � � � 0 f (�k)

377777775
T�1W (0) f

which is easily computable.
This paper has been conceived during my visit at the Department of Economics,

University of Wisconsin-Madison, whose hospitality I acknowledge with gratefulness.
I would like to thank Massimiliano Marcellino, Bertrand Melenberg, Marco Della
Seta, Giacomo Rondina, the participants of the 5th Eurostat Colloquium on Modern
Tools for Business Cycle in Luxembourg, 2008, the Finance Workshop, University
of Siena, 2009 and the participants at the Econometric Seminar at the Tinbergen
Institute, Amsterdam, 2010 for useful suggestions and especially Steven Durlauf for
his invaluable advice and support. All errors, nonsense and omissions are my own
responsibility.
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