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ABSTRACT 

The objective of the research reported here is to contribute to the development of methodology and practical 
tools for computing sampling errors and design effects for complex statistics based on complex sampling 
designs, specifically sampling error of measures of poverty and inequality. It is taken as given that for the 
‘typical’ social surveys, based on reasonably large samples but with complex designs, the applicability of at 
least two broad approaches is generally well-established in the literature, namely the approaches based on 
Taylor linearisation, and on resampling such as Jackknife Repeated Replication (JRR). This research has 
concentrated on elaborating the necessary details and developing software for their practical application by 
researchers who are not necessarily experts in the field of complex variance estimation.  

The linearisation approach to approximating variance of complex (non-linear) statistics is a long-established 
procedure. One of the important objectives of this working paper is to provide, in one place and derived in a 
uniform way, the linearised forms for a comprehensive set of income poverty and inequality measures. Where 
applicable, the JRR approach is by far the simpler technically. Apart from specifying the sample structure and 
defining appropriate ‘computational units’ for the purpose, the method merely involves repeated computation 
of the statistics (for which sampling errors are required) over sample replications. We develop and make 
available SAS routines for the efficient and accurate computation for complex measures of poverty and 
inequality based on survey data. Based on some empirical data, we compare the results from the linearisation 
and replication approaches, and explore the extent to which the results from the two procedures are similar. 

Many statistics of interest can be written in the form of a ratio, but involving parameters which are 
themselves sample estimates – for instance the proportion poor, defined in terms of a poverty line itself 
estimated from the sample. What is the implication for the sampling error estimate of assuming these 
parameters to be constants, rather than sample dependent, i.e. of treating the complex statistic as an ordinary 
ratio? We compare the effects estimated under the two approaches. 

Computing design effects (ratio of actual sampling error to that under equivalent simple random sampling, 
SRS) requires the additional step of estimating sampling errors under SRS. We propose and illustrate a 
practical procedure based on randomisation of units over structure of the sample and approximating the 
effect of sample weights on variance. 

Our limited results suggest that for many measures of poverty and inequality, the JRR and linearisation 
methods give similar results. We generally recommend the former because of their analytical simplicity, better 
suited to the need of substantive researchers. 

More importantly, we believe that the replication approach is readily extended to more complex designs and 
statistics (such as longitudinal measures in panel surveys), for which it is difficult to develop the linearised 
forms for variance estimation. 
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1. Introduction 
This paper describes and illustrates procedures for the estimation of variances of complex 
statistics based on large sample surveys. The objective of this research is rather modest in 
theoretical terms. It is to enhance the practice of routine computation of sampling errors for complex 
statistics arising from large-scale samples of households and persons with complex designs. 
Specifically, we are concerned with sampling errors and design effects for the diversity of 
measures encountered in the analysis of income poverty and inequality based on sample 
data. The motivation for this work arises from the fact that information on sampling errors 
and design effects is very often not obtained or at least not reported or utilised in the 
analysis of substantive results of surveys. Various factors contribute to this situation, but 
we believe that (despite the fact that some general purpose software for the purpose has 
become available - see for instance, Brick and Morganstein, 1997), the lack of easily accessible 
methods and tools for sampling error computations on a routine and large-scale basis still remains a 
major contributing factor.  

Given our specific and practical objectives, we will not review here the diversity of variance 
estimation approaches which have been developed for complex statistics from complex 
samples. Rather, we take it as given that for the ‘typical’ social surveys, based on reasonably 
large samples but with complex designs, the applicability of at least two broad approaches 
is generally well-established in the literature, namely the approaches based on (a) Taylor 
linearisation, and (b) on resampling such as Jackknife Repeated Replication (JRR). It is not 
our objective to explore the theoretical basis of these methods, but to concentrate on 
elaborating the necessary details and, to the extent possible, providing software for their 
practical application by researchers who are not necessarily experts in the field of complex 
variance estimation. We have developed these applications for most of the commonly used 
measures in the analysis of income poverty and inequality, at least in the conventional 
cross-sectional context. Work on extending the application to many other types of 
statistics, such as longitudinal indicators of poverty and deprivation, net changes and 
aggregation over time of such measures, indicators of economic activity and employment, 
etc, is in progress at the University of Siena. 

The paper explores the following aspects.  

(1) The linearisation approach to approximating variance of complex (non-linear) statistics 
is a long-established procedure. The basis of the approach is to use Taylor approximation 
to reduce non-linear statistics to a linear form, justified on the basis of asymptotic 
properties of large populations and samples. For each sample unit it seeks a linearised 
‘indicative variable’, such that variance of the total of that variable approximates the variance 
of the complex statistic of interest. However, the derivations of the required linearised 
variables can be complex and, in our view, are often not available in the literature in a form 
which a practical researcher or statistician can readily adapt and apply. One of the 
important objectives of this paper is to provide, in one place and derived in a uniform way, 
the linearised forms for a comprehensive set of income poverty and inequality measures. 

(2) In principle, the replication - in particular the JRR - method for variance estimation is 
straightforward. Where applicable, the approach is by far the simpler technically. Apart 
from specifying the sample structure and defining appropriate ‘computational units’ for the 
purpose, the method merely involves repeated computation of the estimate (for which 
sampling error is required) over different (often numerous) sample replications; variance of 
any statistic is estimated simply from variability in its estimates over the replications. The 
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form of the final variance estimation formula does not depend on the particular statistic 
involved. Apart from determining the appropriate procedure for constructing sample 
replications, details of the sampling design also do not complicate the picture. 

The main shortcoming of the replication approach is the magnitude of the computational 
task involved in the repeated estimation of the statistic over a large number of full-scale 
replications of the sample - including some or all of the data adjustment and estimation 
steps (imputation, weighting, calibration, smoothing etc.) if their effect on variance is to be 
incorporated. This task is subject-matter specific. To this end we have undertaken the 
development of efficient and accurate SAS routines and macros for repeated computation 
of poverty and inequality measures, so as to encourage and facilitate routine computation 
of sampling errors for these statistics – something which is too often neglected by 
substantive researchers. 

(3) Based on some empirical data, we compare the results from the linearisation and 
replication approaches. Are the results from the two procedures essentially the same for 
practical purposes, or are there significant or consistent differences in the sampling error 
estimates produced? There seems to be two schools among researchers, uniformly 
preferring the one or the other of the two approaches. We join this debate. 

(4) Proceeding from estimates of sampling error to estimates of design effects (ratio of 
actual sampling error to that under equivalent simple random sampling, SRS) is essential 
for understanding the patterns of variation of sampling errors and the determinants of their 
magnitude, for smoothing and extrapolating the sampling error results for diverse statistics 
and population subclasses, and for evaluating the performance of the sampling design. 
Computing design effects requires the additional step of estimating sampling errors under 
simple random sampling. In practice this can be a far-from-trivial step for complex 
statistics for which explicit expressions are not available for the purpose. We propose and 
illustrate a practical procedure based on variance computed after randomisation of units 
over structure of the sample. This procedure permits approximate decomposition of the 
total design effect into the effect of sample weights, and that of clustering, stratification 
and other complexities of the sampling design. 

(5) Many statistics of interest can be written in the form of a ratio, but involving parameters 
which are themselves sample estimates – for instance the proportion poor, defined in terms 
of a poverty line itself estimated from the sample. What is the implication for the sampling 
error estimate of assuming the estimates of these parameters to be constants, rather than 
sample dependent? We compare the effects estimated under the JRR and linearisation 
approaches. Necessary computational algorithms for the purpose are provided. 

The main shortcomings of the JRR method are noted to be (i) the large scale of the 
computations which may be involved; and (ii) some doubts about applicability of the 
method to certain types of statistics, such as quantiles of the income distribution. 

As to linearisation, the main limitations include (i) analytical complexity of the linearisation 
procedure; (ii) the impossibility, at least for the present, of obtaining the required 
linearisation forms for very complex statistics, such as coefficients in a logistic regression 
involving iterative estimation, or longitudinal measures of poverty; (iii) the methods may 
not be flexible enough to accommodate complexities in the design which may be involved 
in certain multiple, multiphase, or longitudinal samples; (iv) for certain poverty measures, 
an added complexity is that the linearised variance estimation formulas involve density 
functions at certain pints in the income distribution, which need to be estimated 
empirically. 
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2. Jackknife Repeated Replication (JRR) for variance estimation 
The Jackknife Repeated Replication (JRR) is one of a class of methods for estimating 
sampling errors from comparisons among sample replications which are generated through 
repeated resampling of the same parent sample. Each replication needs to be a 
representative sample in itself and to reflect the full complexity of the parent sample. 
However, in so far as the replications are not independent, special procedures are required 
in constructing them so as to avoid bias in the resulting variance estimates. We prefer the 
JRR to similar methods such as the Balanced Repeated Replication because the JRR is 
generally simpler and more flexible.  

Originally introduced as a technique of bias reduction, the Jackknife method has by now 
been widely tested and used for variance estimation (Durbin, 1959). Efron and Stein (1981) 
provide a discussion of the Jackknife methodology. As a landmark empirical study of such 
applications, see Kish and Frankel (1974). For a general description of JRR and other 
practical variance estimation methods in large-scale surveys, see Verma (1993). 

The JRR variance estimates take into account the effect on variance of aspects of the 
estimation process which are allowed to vary from one replication to another. In principle 
this can include complex effects such as those of imputation and weighting. But it has to be 
noted that often in practice it is not possible to repeat such operations entirely fresh at each 
replication. 

The basic model of the JRR for application in the context described above may be 
summarised as follows. Consider a design in which two or more primary units have been 
selected independently from each stratum in the population. Within each primary sampling 
unit (PSU), subsampling of any complexity may be involved, including weighting of the 
ultimate units.  

In the ‘standard’ version, each JRR replication can be formed by eliminating one sample 
PSU from a particular stratum at a time, and increasing the weight of the remaining sample 
PSU's in that stratum appropriately so as to obtain an alternative but equally valid estimate 
to that obtained from the full sample. 

The above procedure involves creating as many replications as the number of primary units 
in the sample. The computational work involved is sometimes reduced by reducing the 
number of replications required. For instance, the PSUs may be grouped within strata, and 
JRR replications formed by eliminating a whole group of PSUs at a time. This is possible 
only when the stratum contains several units. Alternatively, or in addition, the groupings of 
units may cut across strata. It is also possible to define the replications in the standard way 
(‘delete one-PSU at a time Jackknife’), but actually construct and use only a subsample of 
those. 

In the kind of multistage samples encountered in most national household surveys, it is 
possible to apply the standard JRR method without such grouping of units. However, one 
common situation in which grouping of units is unavoidable is when the sample or a part 
of it is a direct sample of ultimate units or of small clusters, so that the number of 
replications under ‘standard’ JRR is too large to be practical. Normally, the appropriate 
procedure to reduce this number would be to form new computational units by forming 
random groupings of the units within strata. The presence of small and variable-sized PSUs 
may also require some grouping in practical application of the procedure. 

Briefly, the standard JRR involves the following. 
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Let u be a full-sample estimate of any complexity, and u(hi) be the estimate produced using 
the same procedure after eliminating primary unit i in stratum h and increasing the weight 
of the remaining (ah-1) units in the stratum by an appropriate factor gh (see below). Let u(h) 
be the simple average of the u(hi) over the ah values of i in h. The variance of u is then 
estimated as: 

( ) ( ) ( ) ( )( 







−

−
−= 2

hhii
h

h
hh uu.

a
1a.f1uvar ΣΣ ) . (1) 

A major advantage of a procedure like the JRR is that, under quite general conditions for 
the application of the procedure, the same and relatively simple variance estimation 
formula (1) holds for u of any complexity.  

A possible variation which may be mentioned is to replace u(h), the simple average of the 
u(hi) over the ah replications created from h, by the full-sample estimate u: 

( ) ( ) ( )( 
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hii
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a
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This version tends to provide a ‘conservative’ estimate of variance, but normally the 
difference with (1) is small. We have used form (1) in all the illustrations. 

Concerning the re-weighting of units retained in a stratum after dropping one unit, 
normally the factor gh is taken as (2.a), but for reasons noted below, we propose the form 
in (2.w): 

( )1aag hhh −= ,  (2.a) 

( )hihhh wwwg −=  (2.w) 

where , the sum of sample weights of ultimate units j in primary 
selection i.  

hijjhihiih ww,ww Σ=Σ=

Note that (2.a) gives the variance of a simple aggregate, while (2.w) gives the corresponding 
(lower) variance of a mean, or of total as a ratio estimate. 

Form (2.w) is used throughout in our illustrations here. This form retains the total weight 
of the included sample cases unchanged across the replications created – the same total as 
that for the full sample. With the sample weights scaled such that their sum is equal (or 
proportional) to some external more reliable population total, population aggregates from 
the sample can be estimated more efficiently, often with the same precision as proportions 
or means. 

It is interesting to note that the corresponding treatment of simple aggregate versus mean 
in the Linearisation method is as follows. As noted, the Linearisation approach involves 
defining a linearised indicative variable such that its variance approximates the variance of 
the complex statistic concerned. (i) For estimating variance of the total of a quantity yi, the 
linearised indicative variable, of course, is yi itself. (ii) For estimating variance of its mean 
y , the linearised variable is ( . (See next section for details). )yyi −

It can be seen that the use of (2.a) in JRR corresponds to (i), and the use of (2.w) to (ii). 
Most survey statistics of interest are similar in form to ratios, possibly with the added 
complexity due to the involvement of additional parameters, themselves estimated from 
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the sample. Hence form (2.w) is the appropriate one. Similarly in the linearisation method, 
form (ii) – which expresses the linearised variable such that its expected value is zero – is 
the appropriate one. 

Empirical results comparing the performance of the JRR and Linearisation methods in 
variance estimation of poverty and inequality measures will be presented in Section 5. 
Firstly, Table 1 shows a few preliminary results of methodological interest, based on a 
living conditions survey in Toscana.  

Table 1. Some illustrations based on a survey in Toscana region 

1(a). Alternative JRR variance estimation formulae 

 Equivalised income Poverty rate 

 mean total below 50% of mean below 60% of median

Estimate 34,661 90,428 16.0 17.1 

Standard error     

 ‘JRR standard’ (1) 5,71 1,489 0.81 0.65 

Equation (1’)  5,77 1,503 0.83 0.67 

 

1(b). Sampling error of mean income versus that of total income 

 ‘JRR standard’ (2.w) JRR eq. (2.a) Linearisation 

Estimate se %se se %se se %se 

Mean equivalised income 

34,661 571 1.65 566 1.63 564 1.63 

Total income (‘000) 

90,428 1,489 1.65 2,777 3.07 2,777 3.07 

 

1(c). Effect of treating poverty rate as a simple ratio 

Poverty rate Estimate ‘JRR standard’ ‘JRR fixed’ 

below 50% of mean 16.0 0.81 0.74 

below 60% of median 17.1 0.65 0.79 

 

A few results are shown for mean and total equivalised income, and poverty rates defined 
in relation to the mean and median incomes. Mean equivalised income is the main variable 
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of interest in the analysis of poverty and inequality. The income of each household is 
‘equivalised’ using a scale taking into account household size and composition. This 
equivalised income is then ascribed to each member of the household, and thereafter 
treated as individual income. The individual forms unit of analysis in the study of income 
distribution. Conventionally, poverty line is taken as a certain percentage of the mean or 
the median equivalised income (commonly as 50% of the mean, or 60% of the median). 
Poverty rate is the proportion of the population with equivalised income below the poverty 
line. 

Table 1(a) shows the difference between forms (1) and (1’) of the JRR variance estimation 
equation. We refer to (1) as the ‘standard JRR’ version. As noted, (1’) provides a more 
conservative estimate. As seen in the table, the difference from the standard is very small 
for all the statistics shown. These results are quite typical.  

Two further important methodological points may be noted. The first point is of general 
relevance. With the proposed modification (2.w) to the JRR variance estimator, estimates 
of mean and total income have exactly the same (relative) precision, as seen in Table 1(b) 
for ‘JRR standard’. This is correct when aggregates are obtained in the form of ratio 
estimates using fixed external control totals for the base population. Such controls are 
normally applied in practice in estimating from survey results - hence we use form (2.w) as 
the norm. Form (2.a) corresponds to simple linear estimate of the aggregate, in which case 
the JRR variance estimate (3.07%) is found to be practically identical to the Taylor estimate 
for the same, but much higher than that of the mean (1.65%).  

The second point is particularly relevant in the context of analysis of poverty and income 
inequality. Statistics like the poverty rate are in fact more complex than ordinary ratios, 
since the threshold defining the attribute (poverty line) is itself subject to sampling 
variability. This can be taken into account in the JRR method by determining the poverty 
line separately for each replication. Table 1(c) shows the effect of the treating the poverty 
rate as a simple proportion as opposed to the more complex statistic defined in terms of an 
estimated poverty line itself subject to sampling variability. In this particular example, the 
effect is not large; it is also not found to be in the same direction for the two measures of 
the poverty rate. 

3. Variance estimation based on linearisation 
Variance estimation based on Taylor approximation has been widely used and tested, and 
provides a useful basis of validating other approaches for the type of statistics for which 
the Taylor approach can be used as an alternative. The basis of the method is the simple 
variance estimation formula (3) for aggregates in multistage stratified samples of large size. 

Let ( ) hiihhihihi uu;,...x,yuu Σ==  be a sample aggregate or a linear function of sample 
aggregates such as of ( )hijhijjhihiih y.wy;yyhh ;yy Σ=Σ=Σ= . Then its variance is 
estimated as: 

( ) ( )
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with the quantity uhi defined at the level of primary selection (h,i). Here j refers to ultimate 
sampling unit, i to PSU, and h to stratum; ah>1 is the number of sample PSU’s in stratum 
h; and (1-fh) the finite population correction, usually ~1. 
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3.1 Linearisation procedure 
This procedure is extended to non-linear statistics on the basis of Taylor linearisation. The 
linearisation approach to approximating variance of complex (non-linear) statistics is a 
long-established procedure; see for instance Deming (1943), Kendall and Stuart (1958), 
Keyfitz (1957). The basis of the approach is to use Taylor approximation to reduce non-
linear statistics to a linear form, justified on the basis of asymptotic properties of large 
populations and samples. A well-known example is that of a ratio xyr = , for which the 

linearised indicative variable to be used in equation (3) is 







−=

x
x

y
y.

x
yu hihi

hi . 

In more general terms, the basic linearisation procedure may be described as follows. Let 
y=(y1,y2,y3,…yk, … ) be a vector of statistics with E(y)=Y=(Y1,Y2,Y3,…Yk, … ), and λ(Y) a 
population parameter estimated by λ(y). To terms of first degree in (yk-Yk), we have 

( ) ( ) ( )
yk

kkk Y
.YyYy
∂

λ∂
−Σ=λ−λ , so that the required variance of λ(y) is estimated by variance 

of the linearised statistic
yk

k Y
.y
∂

λ∂
Σ , with the partial derivatives evaluated at Y=y. These 

quantities involve summation over sample units. Woodruff (1971) showed how the 
computations may be simplified by merely reversing the summation between sample units 
(i) and component variables (k). The result is to provide, for each sample unit i, a linearised 
‘indicative’ variable, say λi, such that variance of its aggregate or mean approximates the 
variance of λ, the complex statistic of interest. The linearisation approach has been further 
developed and applied extensively in recent years; see for instance the work of Binder and 
colleagues (Binder, 1983; Binder and Patek, 1994; Binder and Kovacevic 1995; Kovacevic 
and Yung, 1997), Preston (1995), Deville (1999), Zheng (2001), Demnati and Rao (2004).  

The following outlines the procedure we have used to derive the required linearised 
indicative variables for estimating variances of complex inequality and poverty measures. 

1. Estimation equation and substitution estimator 

Let yi denote the vector of values of variables y for individual units Ui ∈ in the population, 
the parameter of interest for which the estimation of sampling error is 

required, and  a vector of other parameters involved in the definition of λ. 
For instance, in estimating poverty rate p, defined as the proportion of the population with 
income y

( Λ∈λ=λ ,Uyi

Λ

)
)

)

( ,..., 21 λλ=

i below a certain poverty line yp, we have λ=p and a single parameter λ1=yp.  

It is convenient to write  in the form of the estimation function or equation: ( Λλ=λ ,yi

 ( ) ii T.
N
1,,yT0 ∪∪ Σ=λΛ∈= , say,   

with the corresponding substitution estimator (Rao, 1979): 

   ,.0 ii TwΣ=

with Σ over the sample, and: 

0w  ,0w  ,1w sisii =≠=Σ ∉∈ . 
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For example, for poverty rate p defined in relation to a poverty line yp, 

( )( ) ( ) ( ) otherwise 0 ,yy if 1.. ;pyyT ;0pyy.wT pipiipii =≤=δ−≤δ==−≤δΣ= . 

2. Influence function and the linearised indicative variable 
Under Taylor linearisation, the substitution estimator gives: 

....T.T.T where;.T.TT0 i2
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Λ
Λ
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Here ( λ∂∂T ) etc. are partial derivatives of T w.r.t λ, and λi etc. are the so-called influence 
functions of the parameters at i. Essentially, an influence function is the derivatives of the 
parameter concerned at discrete points in the sample space. The important point for the 
present purpose is that influence function λi is the required linearised indicative variable for λ in 
the sense that Var(Σλi) approximates Var(λ). (Deville, 1999). 

3. An indicative variable is specific to the parameter concerned, irrespective of the particular 
estimation equation in which that parameter appears. Hence once obtained, the indicative 
variable of a parameter is ‘portable’ across different estimation equations wherever that 
parameter is involved.  

4. By contrast, the partial derivatives are specific to the particular estimation equation T=0 
being considered. Ordinary rules of differentiation provide the required derivatives. A few 
of the most useful rules may be noted.  

� Generally, the functional forms of interest are such that the differentiation can be 
moved under the summation sign: 

    Æ  ,T.wT iiΣ=  T.wT i
i λ∂

∂
Σ=

λ∂
∂

. 

� A useful case is when the required parameters is a function only of other 
parameters ( )Λ= λλ , without reference to individual element values yi. In this case: 

  ...... i2
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i1
1

ii +λ
λ∂
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+λ
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� For a distribution function, evaluated at a particular point yα: 

  , we have as its indicative variable: ( ) αδ αα =≤⋅= ∑ yywF ii

  α
α

f
y
F

y
=








∂
∂ , the density function evaluated at that point. 

� The general functional forms of interest in the context of poverty and inequality 
measures is ( ) ( )ααα δλ yyykw ii ≤⋅⋅= ∑ , giving: 

  ( ) ααα
αα

δλ fkyy
y
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∂
∂

⋅=
∂
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Two forms of the above are of interest: 
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i) k is a constant or does not involve yα, so that only the second term above is 
present. This is the density function as noted above. 

ii) k is a function of yα, but such that kα, its value at α, is zero. In this case only 
the first term in the above equation applies. 

5. The linearised variables for poverty measures involve reference to the density function at 
various points in income distribution, such as at the median or the poverty line. Special 
procedures are required in density function estimation, as described in Section 3.2 below. 

Using these rules, we have derived the required linearised variables for a full range of 
poverty and inequality measures. These have been listed in Annex I for future reference.  

Note that, on the basis of equation (4) we have divided each linearised variable λi into two 
parts (each with zero sample mean): 
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=λ + ....T.T.
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1     
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( ) ( )v

i
0
i λ+λ= , say. (5) 

Using only the first term of (5) as the linearised variable gives the estimate of var(λ) with 
parameters Λ treated as constants, i.e, with λ treated as a simple aggregate or ratio. 
Including both parts incorporates the effect of sample dependence of parameters 
Λ involved in the definition of λ. Treating these parameters as constants will of course 
greatly simplify the estimation of sampling error of the measure concerned. It is therefore 
of practical interest to identify separately the extent to which such a simple but crude 
estimate is modified as a result of sampling variability of the parameters involved. Consider 
for instance a measure such as the proportion poor in a population. It is more complex 
than an ordinary proportion, in so far as it is defined in relation to some poverty line (such 
as a given fraction of mean or median income) which is itself subject to sampling 
variability. How large is the effect of this complexity on the magnitude of sampling error of 
the resulting statistic? Specifically, can it be acceptable to treat the poverty rate simply as an 
ordinary proportion in estimating its sampling error? This issue arises in relation to other 
measures as well. We will provide a number of numerical illustrations below. 

3.2 Density function estimation 
A brief note follows on the methodology of density function estimation required in the 
application of the linearisation variance estimation methodology. 

Even though the techniques of nonparametric density estimation have a long tradition, new 
theories and methodologies have been developed and expanded only in the last two 
decades. The growing interest is owed essentially to two factors: first of all, scholars of 
statistics have found that purely parametric estimation of curves is not always sufficiently 
flexible for data analysis. Moreover, the development of computing power has cleared the 
path for nonparametric estimates that were not feasible in the past. 

It will be useful to introduce here the basic idea of nonparametric density estimation. Let 
 be the values of the variable of interest, observed on a set of n units. The aim in the 

linearisation method is to estimate the derivative of the distribution function at a certain point 
y

{ }n
1iiy =

α: ( ) ( )  ydydFyf αα ==fα

)(yf̂ α

, which is the density function of y at yf(y) α, estimated as 

. The nonparametric density function estimator is defined as a local average of the 
observations found in a band around the point (y) at which the value is to be estimated: 
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∑
=

=
n

1i
i )(y,w

n
1(y)f̂ y  , (6) 

where {  denotes a sequence of values that depends on the vector y containing the 

values , and the value y at which the function is estimated. This estimator is defined as 
smoothing, while the estimate is called smoother. 

}n
1ii ),y(w =y

{ }n
1iiy =

Among the most important smoothing techniques (the manner in which succession of 
weights is calculated) one can list the kernel, the  closest point, the orthogonal series 
and the ‘spline smoothing’. The most utilised of these is the kernel technique, adopted also 
in the present illustrations. 

thk

In kernel smoothing the sequence of values is defined as: 







 −

=
h

yyK
h
1w i

i  .  (7) 

Here K(.) is the kernel, a symmetric, limited, continuous function whose integral is equal to 
one on the interval for which it is defined; h is the bandwidth or smoothing parameter. 
This parameter regulates the width of the interval around y. A local average for an interval 
too wide can lead to the consideration of observations that have little in common with y. 
On the other hand, consideration of a low number of observations can make the estimate 

too irregular and can inflate the variability greatly.  f(y)

The shape of the kernel function regulates the way in which values diminish as we move 
away from y. Substituting the formula (7) into the smoothing (6) one gets: 

∑
=







=

n

1i

i

h
y-yK

h
1

n
1(x)f̂ . (8) 

The choice of the kernel function and the band parameter is intended to minimise the 
distortion and variability of the estimate of the function f(y). For this purpose one 
precision measure of global accuracy is considered: the mean integrated squared error 
(MISE), which is defined as: 

( ) { }∫ −= dy)y(f)y(f̂Ef̂MISE
2

. 

Under the simple assumptions contained in Silverman (1986) and the additional 
assumption that the function has continuous derivatives of at least the second order, 
one can approximate the bias and the variance of and thus calculate the MISE: 

 f(y)
(y)f̂

( ) ∫∫
+∞

∞

+=
-

2

)x(D

22
2

4 dtK(t)
nh
1dy(y)f"kh

4
1(y)f̂MISE , (9) 

where , and is the second order derivative of f . The optimal 

value of h derived by minimisation of (9) is: 

∫
+∞

∞

=
-

2
2 K(t)dttk )y("f )y(
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= ∫∫ . (10) 

This value cannot be calculated for the unknown function f(y); the way to obtain it is 
shown below. 

Substituting the previous formula in the equation for MISE one gets: 
4/51/52 ndy}(y)f"C(K){)4/5(MISE −∫= , where the function C(K) is : 

4/522/5
2 dt}K(t){kC(K) ∫= . 

By analysing this formula, we observe that the kernel function minimising the MISE, 
holding other parameters constant, is the same as the one minimising the function C(K). 
On the basis of this kernel the efficiency of a generic kernel is defined as 

. The efficiency of the most common kernels is almost equal 
to one; the consequence is that the choice of kernel is not crucial for the convergence of 
the estimate to , while the bandwidth h parameter is. In the present illustrations, 
the kernel with a normal distribution has been utilised for its analytical properties. The 
study of the minimisation of the MISE is thus focused on the optimisation of the 
smoothing parameter, which however cannot be calculated directly from (5). In the choice 
of the smoothing parameter there is a trade-off between the mean and the variance of 

; a value for h too small makes the estimate jagged, with minimum distortion but high 
variance. By contrast, a high value of h makes the estimate homogenous, with low variance 
but strong distortion. 

eff K C K C Ke( ) { ( ) / ( )} /= 5 4

(y)f̂ )y(f

)y(f̂

Among the more common techniques for choosing the parameter h is the ‘plug-in 
method’. The functional form of  is hypothesised a priori, from which the second 
derivative is substituted in (10). When f represents an income density function and it is 
expected to come from a log-normal or heavily skewed distribution, an optimal value of the 
bandwidth parameter can be evaluated as h  (Silverman, 1986, p.47), where 
R is the interquantile range. 

)y(f

-1/5
opt 0.79Rn=

3.3 Sensitivity analysis of density function estimation 
With the linearisation approach, a potential source of uncertainty arises from the need to 
estimate density function of the income distribution from numerical data, which are 
generally subject – as in the data used for the present illustrations – to significant 
irregularities and ‘lumpiness’. The numerical estimates of variance depend on how the 
density function is evaluated, specifically the degree of smoothing applied to the numerical 
data. 

In the following examples of sensitivity analysis1 we have used a bandwidth parameter for 
the smoothing of the density function calculated with the plug-in method as 

, where R is the interquantile range, corresponding in this example to -1/5
opt 0.79Rnh =

                                                 

1 These examples are based on some data from the European Community Household Panel (ECHP). More 
detailed results using these data are presented in Section 5 below. 
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about 1,066 monetary units in the equivalised income. The density function shape and 
some values corresponding to various selected values of the income distribution are 
reported in Figure 1.  

In order to validate these results we have performed a sensitive analysis of the choice of the 
bandwidth parameter. 

When performing nonparametric density estimation a crucial issue is the choice of the 
bandwidth parameter h. A range of values is possible depending on which method and 
which formula we start with. In order to show how sensitive can the estimated density 
function be to the bandwidth parameter, in Figure 2 we report four distributions estimated 
with parameters ranging from 100 monetary units (small bandwidth) to more than 3,000 
monetary units (large bandwidth). The distribution with the smallest bandwidth is 
characterised by a spuriously fine structure and it is very sensitive to irregularities in the 
values of { }  from the sample. As we increase the value of the bandwidth, the density 
function becomes smoother and more homogenous. However, with values too large the 
central part of the distribution is clearly underestimated , while the tails are overestimated since 
the estimate is affected by points (those in the central part of the distribution) quite far away 
from y, the point of interest. 

n
1iiy =

Figure 1. Density function estimation 
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percentile equivalised income density function

 (y) f(y)*104

P10 4.866 0,5484
P20 6.287 0,7236
P50 (median) 10.178 0,7486
P80 15.564 0,3358
P90 19.556 0,1837
60%median 6.107 0,7095
50%mean 5.841 0,6838
Band width, h= 1.066  
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Figure 2. Sensitivity analysis over a wide range of h values 
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Going back to the methods and formulas for choosing the bandwidth parameter, it is 
important to underline that most of the common methods, i.e. least-squares cross-
validation, likelihood cross-validation, the test graph method, etc. are based on some 
assumptions which analysts involved in applications are rarely able to check. 

Even the simpler plug-in method proposed here is based on some assumptions about the 
functional form of the density function f. The optimal value of the bandwidth parameter 
depends on that form. 

For instance, when the function is symmetric with a kurtosis similar to the Gaussian 
distribution, the optimal value of the bandwidth parameter can be approximated by 

; when the distribution is unimodal, but asymmetric and with a kurtosis 
dissimilar from the Gaussian distribution (e.g. lognormal or t-family distributions) the 
optimal value of the bandwidth parameter can be approximated by ; 
finally in the case of bimodal distributions (for instance a mixture of income distributions 
in a very polarized society or in a country with very marked regional differences) the 
optimal value of the bandwidth parameter can be approximated by  where 

 (Silverman, 1986, p. 47). 

-1/5
opt n.061h σ=

R/1.34),min(A σ=

-1/5
opt 0.79Rnh =

-1/50.9An=opth

These three different formulas of the same method for calculating the bandwidth 
parameter lead to three quite different values (h=905, h=1066 and h=2329), any of which 
is clearly admissible when the original shape of the distribution is unknown. Figure 3 shows 
again four estimated density function based on four admissible parameters ranging from 
600 to 2100 monetary units. The distribution show some differences, particularly evident in 
the central part of the distribution where are located the mean and the median, two 
fundamental points at which density needs to be calculated for variance estimation of 
poverty measures. 
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Figure 3. Sensitivity analysis over a medium range of h values 
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Finally the last set of distributions reported in Figure 4 show that the distributions and the 
results are not particularly sensitive to the choice of the value h only when the range of the 
bandwidth parameter is limited. 

 

Figure 4. Sensitivity analysis over a limited range of h values 
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4. Structure of the variance computation algorithm 
In this section we describe the basic structure of the computational algorithms of the JRR 
and the Linearisation procedures, as we have implemented those. 

It is worth noting again that measures such as the proportion poor in a population are 
more complex than ordinary proportions, in so far as the former are defined in relation to 
some poverty line (such as a given fraction of mean or median income) itself subject to 
sampling variability. How large is the effect of this complexity on the magnitude of 
sampling error of the resulting statistic? This issue arises in relation to other measures as 
well. For instance, the mean income of an income quantile or the income share of the 
quantile (the Lorenz curve ordinate) may be treated as an ordinary mean or ratio, but it also 
depends on the quantile boundary which is subject to sampling variability. 

More generally, most measures of poverty and inequality can be written (and computed) in 
the form of ordinary ratios, but involving parameters determined from the sample. It is of 
practical interest to identify separately the extent to which such a simple but crude estimate 
is modified as a result of sampling variability of the parameters involved.  

4.1 Structure of the variance computation algorithm: JRR 
In view of the above, we have implemented JRR in two versions: 

(1) In the simplified version, we write the poverty or inequality measure of interest in the 
form of an ordinary aggregate or ratio, treating the parameters involved in the definition of 
the measures as constants. In other words, these parameters are computed only once based 
on micro data for the full sample and are used unchanged in each replication. 

(2) The actual results are produced by treating the parameters involved as variable from 
one replication to another. In other words, for each replication, the parameters are 
recomputed based on micro data for the weighted sample cases included in that replication. 

In either case, we begin by defining the parameters (Λ) and variable of interest at the 
micro-level (ui) for the full sample, and construct the replications (k) using the standard 
JRR approach. Note that ui is a function of the unit concerned (i), and the aggregate 
parameters Λ are estimated from the sample. 

In the ‘constant parameter’ version, the micro-level variables (ui), as defined using the 
parameters Λ  estimated from the full sample, are used unchanged, the only difference 
being the set of units and their adjusted weights included in the computation of the 
required statistic (say Uk) for each replication k. 

In the ‘variable parameter’ (i.e., real) version, the micro-level variables (ui) are redefined in 
each replication, using the parameters Λ estimated for that replication. 

Table below illustrates the difference between procedures (1) and (2) for JRR. 
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Full sample 

( ) ( ) iisiii u.wU,suu;s ∈=== ΣΛΛΛ  

Construction of jackknife replications 

 

(1) CONSTANT PARAS (2) VARIABLE PARAMETERS Replica-
tion 

Replication aggregate Parameters Unit values Replication aggregate 

1S  ( )iii uwU .1,11 ∈Σ=  ( )11 SΛ=Λ  ( )1i1,i ,suu Λ=  ( )1,1,11 . iii uwU ∈Σ=  

…. …. …. …. …. 

kS  ( )ikikik uwU .,∈Σ=  ( )kk SΛ=Λ  ( )kik,i ,suu Λ= ( )kikikik uwU ,, .∈Σ=  

…. …. …. …. …. 

KS  ( )iKiKiK uwU .,∈Σ=  ( )KK SΛ=Λ  ( )KiK,i ,suu Λ=
 

( )KiKiKiK uwU ,, .∈Σ=  

 

The following notation has been used. Sk refers to replication k; si are the values for a 
variable or set of variables for unit i in the sample; ui refers to the variable for unit i, the 
weighted sum of which gives the statistic of interest U. ui,k and Uk refers to the 
corresponding quantities for a particular replication k. Λ is the set of parameters, estimated 
form the sample, which are involved in the definition of U and ui. Λk is the corresponding 
estimate based on replication k. 

Sample weights 

Other aspects, such as ‘raking’ of sample weights to match external total of auxiliary 
variables may be incorporated by redetermining the weights in each replication using the 
same procedure.  

4.2 Structure of the variance estimation algorithm: Linearisation 
The following shows how exactly the same distinction is implemented in the linearisation 
approach.  

Full sample  

Linearisation method, of course, always refers only to the full sample. The basic quantities 
are computed as in the JRR case. 

( ) ( ) iisiii u.wu,suu;s ∈Σ=Λ=Λ=Λ  

The difference between the simplified ‘constant parameter’ and the actual ‘variable 
parameter’ version arise from how the linearised indicative variables ui are defined. 
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As noted in section 3.1, the linearised variable ui may be divided into two parts, say: 
( ) ( )v

iii uuu += 0    (11) 

where the first part corresponds to the required linearised variable when the statistic of 
interest is treated as if it were a simple ratio (i.e. the parameters involved in its definition 
taken as constants). 

Constant parameter version 

- take ui
(0) as the linearised variable for variance estimation 

Variable parameter version 

- take the full expression (11) as the linearised variable 

Sample weights 

Special procedures are required to accommodate ‘raking’ of sample weights to match 
external totals of auxiliary variables. The procedure would generally differ depending on 
whether or not the auxiliary variables are available at the micro-level. 

5. Illustrative results 

5.1 Main results 
Before discussing details, Table 2 shows some main results from a national survey based on 
a complex (stratified, two-stage, weighted) sample. The sample consisted of 250 clusters 
selected systematically with probability proportional to size sampling. Each selected cluster 
was subsampled with probability inversely proportional to cluster size to obtain a sample of 
4,800 households, containing nearly 12,000 persons in total. Complex procedures were 
used to impute missing data and compute unit weights. Throughout we take these 
imputations and sample weights as given constants. 

For the purpose of computing sampling errors, these 250 sample clusters were paired in 
the order of selection to obtain 125 computing strata. 

The table shows standard errors for the actual design, and also what they would be for a 
simple random sample (SRS) of the same size. Ratio of actual to SRS standard error, the 
design effect or ‘deft’, is the factor by which the width of the confidence interval is inflated 
due to departures of the design from SRS. 

The variables referred to in the table are well-known measures used in the analysis of 
poverty and income distribution. Please see Annex I for their definition in a weighted 
sample. 

A notable feature of the results in Table 2 is that, for the same design, design effects can 
differ greatly from one type of variable to another: there is no one value of the design effect 
for a given sample design. This feature has been amply confirmed in other large scale 
multi-country studies of design effects (e.g., Verma, Scott and O'Muircheartaigh, 1980; 
Verma and Lê, 1996). 
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Table 2
JRR estimates of sampling errors and design effects
 for measures of poverty and income distribution

Estimate standard deft
error actual SRS [3]/[4]

Measure [1] [2] [3] [4] [5]

1 Mean Equivalent Income 11,681 177 1.5 0.9 1.6

2 percentile P10 4,866 73 1.5 0.6 2.5
3 percentile P20 6,287 116 1.8 1.4 1.4
4 Income median (P50) 10,177 216 2.1 1.4 1.5
5 percentile P80 15,564 283 1.8 1.0 1.8
6 percentile P90 19,555 294 1.5 1.1 1.4

7 HCR based on 60% median 18.51 0.63 3.4 3.0 1.1
8 HCR based on 50% mean 16.31 0.72 4.4 4.0 1.1
9 FGT, e=1 (poverty gap) 5.22 0.34 6.5 4.7 1.4

10 FGT, e=2 2.38 0.23 9.5 6.2 1.5
11 SEN 7.46 0.44 5.9 4.2 1.4

12 RMD 21.85 0.38 1.7 1.4 1.3
13 Theil 17.21 0.65 3.8 4.0 1.0
14 Atkinson e=1 15.79 0.50 3.2 2.7 1.2
15 Gini 31.15 0.51 1.6 1.4 1.2

16 percentile ratio P80/P20 2.48 0.05 2.0 1.6 1.3
17 percentile ratio P90/P10 4.02 0.08 1.9 1.2 1.6
18 Mean Equivalent Income (S10) 3,427 136 4.0 2.5 1.6
19 Mean Equivalent Income (S20) 4,520 111 2.4 1.6 1.5
20 Mean Equivalent Income (S80) 22,671 469 2.1 1.6 1.3
21 Mean Equivalent Income (S90) 27,894 715 2.6 2.5 1.0
22 %share S10 2.91 0.11 3.6 3.5 1.0
23 %share S20 7.73 0.17 2.2 2.0 1.1
24 %share S80 39.06 0.45 1.1 1.1 1.0
25 %share S90 24.10 0.43 1.8 1.7 1.1
26 share ratio S80/S20 5.05 0.15 2.9 2.7 1.1
27 share ratio S90/S10 8.27 0.35 4.3 4.2 1.0

Of all variables 01-27 average 3.0 2.4 1.3
min 1.1 0.6 1.0
max 9.5 6.2 2.5

Of variables 01-15 average 3.4 2.5 1.4
min 1.5 0.6 1.0
max 9.5 6.2 2.5

Excluding 1 extreme value at each end
Of all variables 01-27 average 2.8 2.3 1.3

min 1.5 0.9 1.0
max 6.5 4.7 1.8

Of variables 01-15 average 2.9 2.4 1.4
min 1.5 0.9 1.1
max 6.5 4.7 1.8

relative error (%)

 
 

5.2 Comparison with the linearisation approach 
Table 3 compares the results using the linearisation approach with those from the previous 
table using JRR. The general closeness of the results from these two entirely different 
methodologies is, in our view, quite remarkable. There are some significant differences 

 20



however, particularly concerning the quantiles, especially the lowest decile (P10). The 
difference for the median and the highest decile is also of the order of 15-20%. Limitation 
of the JRR method for estimating variance of quantiles has been noted in the literature. 
With the linearisation approach, a potential source of uncertainty arises from the need to 
estimate density function of the income distribution from numerical data which are 
generally subject – as in the present case – to significant irregularities and ‘lumpiness’. The 
numerical estimates of variance depend on how the density function is evaluated, 
specifically the degree of smoothing applied to numerical data, as discussed in Section 3.3. 
Table 3
Estimates of relative standard error: JRR and Taylor linearisation comparison

estimate ratio
JRR Taylor Taylor/JRR

[1] [2] [3] [4]

1 Mean Equivalent Income (all) 11,681 1.51 1.57 1.04
2 percentile P10 4,866 1.50 2.49 1.66
3 percentile P20 6,287 1.84 1.97 1.07
4 Income median (P50) 10,177 2.12 1.77 0.83
5 percentile P80 15,564 1.82 1.88 1.03
6 percentile P90 19,555 1.51 1.80 1.19

7 HCR based on 60% median 18.51 3.43 3.56 1.04
8 HCR based on 50% mean 16.31 4.40 4.13 0.94
9 FGT, e=1 (poverty gap) 5.22 6.53 5.64 0.86

10 FGT, e=2 2.38 9.46 7.94 0.84
11 SEN 7.46 5.90 6.67 1.13

12 RMD 21.85 1.72 1.64 0.95
13 Theil 17.21 3.80 3.54 0.93
14 Atkinson e=1 15.79 3.19 2.80 0.88
15 Gini 31.15 1.63 1.67 1.02

average 3.36 3.31 1.03
min 1.50 1.57 0.83
max 9.46 7.94 1.66

%standard error

 
 

5.3 Effect of treating a complex statistic as a simple ratio 
In Table 4, the first four columns show variance estimates obtained by treating each 
complex statistic as a simple ratio. As explained earlier, for JRR this implies that any sample 
dependent parameters involved are determined only once, from the total sample, rather 
than repeatedly from each replication. For the linearisation method, this means using only 
the first of the two parts of the linearised variable for the parameter concerned as defined 
in Annex I. 

No estimates of this type can be produced for quantiles of the distribution, such as median 
income. For the other variables shown in Table 4, the agreement between the two methods 
is again generally very close (see the ratio in column [4]). 
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Table 4
Estimates of relative standard error: treating estimates as simple ratios*

estimate ratio Ratio to corresponding cols. of Table 3
JRR Taylor Tay/JRR JRR Taylor Tay/JRR

[1] [2] [3] [4] col[2] col[3] col[4]

1 Mean Equivalent Income (all) 11,681 1.51 1.57 1.04 1.00 1.00 1.00
2 percentile P10 4,866
3 percentile P20 6,287
4 Income median (P50) 10,177
5 percentile P80 15,564
6 percentile P90 19,555

7 HCR based on 60% median 18.51 4.47 4.71 1.05 1.30 1.32 1.01
8 HCR based on 50% mean 16.31 4.82 5.21 1.08 1.09 1.26 1.15
9 FGT, e=1 (poverty gap) 5.22 6.57 5.98 0.91 1.01 1.06 1.05

10 FGT, e=2 2.38 9.45 7.96 0.84 1.00 1.00 1.00
11 SEN 7.46 8.12 7.05 0.87 1.38 1.06 0.77

12 RMD 21.85 2.00 1.94 0.97 1.16 1.18 1.02
13 Theil 17.21 11.61 11.92 1.03 3.05 3.37 1.10
14 Atkinson e=1 15.79 8.25 8.30 1.01 2.59 2.96 1.15
15 Gini 31.15 6.89 7.07 1.03 4.23 3.18 0.75

average 6.37 6.17 0.98 1.78 1.74 1.00
min 1.51 1.57 0.84 1.00 1.00 0.75
max 11.61 11.92 1.08 4.23 3.37 1.15

%standard error

 
The last three columns of the table show the comparison of these results with ‘proper’ 
variance estimates for the actual complex statistics in Table 3. The remarkable feature of 
the results is that for a number of measures, treating them as simple aggregates or means grossly 
over-estimates the variance, at least for the survey data in our example. This effect is smaller for 
poverty measures, but tends to be much larger for the inequality measures considered. The 
pattern is quite consistent for the two methods, JRR and linearisation, though the actual 
magnitudes of the effects vary somewhat as seen from the last column of Table 4. 

5.4 Design effects 
Estimation of the design effect (deft) requires estimation of what the variance would be for 
the same statistic under simple random sampling (SRS) of the same size. Application of the 
JRR as defined above does not yield this information directly. We have proposed and used 
the following procedure for estimating design effect in this situation.  

The ratio (i)/(ii) of the quantities defined below estimates SRS error, which forms 
denominator of deft. 

(i) Standard error under random groupings of elements 

Replications are constructed as in the normal application of the JRR, but in place of the 
actual primary selections, random grouping of the sample elements are used for this purpose. 
This provides a variance estimate corresponding to a sample of elements (i.e., without 
stratification or clustering), but which still differs from the SRS estimate due to the effect 
of sample weights on variance.  

Numerically, the results can be affected by exactly how the replications are formed. On the 
basis of experience, we recommend that the groups formed should be of uniform weighted 
size, that is, as far as possible, constructed by including a constant sum of weights of 
elementary units in every grouping. (In practice, we divided the sample of households at 
random into the same number of groupings as the original number of PSU’s, i.e., 250, each 
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group consisting of a random subset of household with approximately the same total 
weight). 

(ii) Effect of sample weights on standard error 

When the sample weights are essentially random (unrelated to unit characteristics), the 
effect of the weights on increasing the variance is well approximated by the expression: 

( )j
22

W wcv1D +=   (12) 

where cv is the coefficient of variation of the unit weights. (For our data, this factor equals 
1.19.) We may estimate the effect of weighting more precisely, from the following. For 
statistics such as ratios the following expressions give SRS variance and the same including 
the inflation due to the effect of weighting: 
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with  estimating the effect of sample weights (specific to each 
statistics u). 

)u(var/)u(var)u(D SRSwt
2
W =

With the linearisation approach, the above expressions can be applied to obtain the SRS 
error and the effect of weights for more complex statistics for which the required linearised 
variables have been obtained. Here uj refers to the linearised indicative variable for the 
statistic concerned (see Annex 1). 

However, with the JRR approach, it cannot be assumed that the full expression for uj, 
which comes from the linearised approach, is available. (For one thing, we may be applying 
the JRR approach for statistics and sample designs for which the linearisation approach is 
not available). Nevertheless, the first part of the expression for uj – which corresponds to 
treating the complex statistics as a simple ratio – is always available (see Annex I). 

As an approximation, we may use only this first part for uj in equation (13) to estimate the 
effect of weighting. Generally, the approximation is expected to be an improvement over 
(12). 

Table 5 shows the results for the two methods, JRR and Linearisation, treating the sample 
as a random grouping of elements. These parallel the results in Table 3, except that here 
the randomised rather than the original clustered sample has been used. (In both cases, the 
computations are for the actual complex statistics.) The variances correspond to random 
sample of households (with no clustering or stratification), which differs from a SRS only 
due to unequal weights. 

Generally, the agreement between the two methods remains close - or appears to be even 
closer with the sample structure randomised in the above sense – for the poverty and in 
particular the inequality measures. Large differences remain for some of the quantiles, as 
before. Table 6 shows the results with the above computations repeated with the added 
assumption of treating the statistics as simple ratios in the sense explained earlier. The main 
point of these figures is to show how close the results with the two approaches become in 
most cases. 

Finally, Table 7 shows estimates of the effect of weights and hence of the final design 
effects. In most cases, the effect of weights is predicted reasonably by the simple 
expression for DW given in (12), thought form (13) is preferable, in general. 
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Table 5 ('randomised' sample of households*)
Estimates of relative standard error: JRR and linearisation comparison

estimate ratio
JRR Taylor Tay/JRR

[1] [2] [3] [4]
1 Mean Equivalent Income (all) 11,681 1.10 1.10 1.00
2 percentile P10 4,866 0.71 2.01 2.82
3 percentile P20 6,287 1.62 1.60 0.99
4 Income median (P50) 10,177 1.66 1.08 0.65
5 percentile P80 15,564 1.22 1.21 1.00
6 percentile P90 19,555 1.27 1.28 1.01

7 HCR based on 60% median 18.51 3.59 3.47 0.97
8 HCR based on 50% mean 16.31 4.75 4.12 0.87
9 FGT, e=1 (poverty gap) 5.22 5.61 4.89 0.87

10 FGT, e=2 2.38 7.36 6.88 0.93
11 SEN 7.46 4.98 5.90 1.18

12 RMD 21.85 1.64 1.64 1.00
13 Theil 17.21 4.74 4.73 1.00
14 Atkinson e=1 15.79 3.20 3.19 1.00
15 Gini 31.15 1.67 1.67 1.00

average 3.01 3.02 1.00
min 0.71 1.08 0.65
max 7.36 6.88 2.82

* Original sample of households 'randomised'; i.e., retaining original household weights,
the sample households assigned at random to 250 clusters of equal (weighted) size.

%standard error

 
 
Table 6 ('randomised' sample of households*)
Estimates of relative standard error: treating estimates as simple ratios*

estimate ratio
JRR Taylor Tay/JRR JRR Taylor Tay/JRR

[1] [2] [3] [4] col[2] col[3] col[4]
1 Mean Equivalent Income (all) 11,681 1.10 1.10 1.00 1.00 1.00 1.00
2 percentile P10 4,866
3 percentile P20 6,287
4 Income median (P50) 10,177
5 percentile P80 15,564
6 percentile P90 19,555
7 HCR based on 60% median 18.51 3.95 3.95 1.00 1.10 1.14 1.03
8 HCR based on 50% mean 16.31 4.41 4.41 1.00 0.93 1.07 1.15
9 FGT, e=1 (poverty gap) 5.22 5.07 5.07 1.00 0.90 1.04 1.15

10 FGT, e=2 2.38 7.03 7.03 1.00 0.95 1.02 1.07
11 SEN 7.46 6.11 6.11 1.00 1.23 1.04 0.84
12 RMD 21.85 1.94 1.94 1.00 1.19 1.18 1.00
13 Theil 17.21 10.78 10.78 1.00 2.27 2.28 1.00
14 Atkinson e=1 15.79 5.37 5.37 1.00 1.68 1.68 1.00
15 Gini 31.15 5.77 5.77 1.00 3.44 2.60 0.75

average 5.15 5.15 1.00 1.47 1.40 1.00
min 1.10 1.10 1.00 0.90 1.00 0.75
max 10.78 10.78 1.00 3.44 2.60 1.15

* All estimates expressed in the form of simple ratios, with any parameters involved treated as constants.
Original sample of households 'randomised'; i.e., retaining original household weights,

%standard error Ratio to corresponding cols. of Table 3
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Table 7
Effect of sample weights and the estimates of overall design effects 

Estimated effect of sample weights on deft Estimated design effect (deft)**

randomised 
sample

wtd sample of 
households

SRS of 
households

effect of 
weighting*

[1] [2] ratio [2]/[1] [3] ratio [2] / [3] JRR Taylor JRR Taylor

Estimate %standard error design effect (actual to SRS standard error)
1 Mean Equivalent Income (all) 11,681 1.10 1.11 1.01 0.97 1.15 1.64 1.70 1.64 1.70
2 percentile P10 4,866 2.51 1.48
3 percentile P20 6,287 1.36 1.47
4 Income median (P50) 10,177 1.52 1.95
5 percentile P80 15,564 1.79 1.85
6 percentile P90 19,555 1.42 1.67
7 HCR based on 60% median 18.51 3.95 3.73 0.95 2.98 1.25 1.14 1.22 1.35 1.42
8 HCR based on 50% mean 16.31 4.41 4.17 0.95 3.29 1.27 1.11 1.20 1.31 1.41
9 FGT, e=1 (poverty gap) 5.22 5.07 4.92 0.97 3.95 1.24 1.39 1.38 1.55 1.41

10 FGT, e=2 2.38 7.03 6.71 0.95 5.42 1.24 1.53 1.38 1.61 1.35
11 SEN 7.46 6.11 5.86 0.96 4.72 1.24 1.41 1.35 1.59 1.38
12 RMD 21.85 1.94 1.89 0.98 1.67 1.13 1.26 1.20 1.23 1.20
13 Theil 17.21 10.78 10.44 0.97 9.20 1.13 0.96 0.89 1.29 1.32
14 Atkinson e=1 15.79 5.37 5.49 1.02 4.60 1.19 1.19 1.05 1.84 1.85
15 Gini 31.15 5.77 5.70 0.99 5.06 1.13 1.16 1.20 1.43 1.46

average (vars 1-15) 1.43 1.40
average (vars 1, 7-15) 0.97 1.20 1.28 1.26 1.48 1.45
min 0.95 1.13 0.96 0.89 1.23 1.20
max 1.02 1.27 2.51 1.95 1.84 1.85

* The average value of this factor is taken as the overall (uniform) effect of sample weights and in inflating standard errors or deft.
This is very close to the 'Kish Factor'=1.19, approximating the effect of 'haphazard' weights (see text).
** Computed as the ratio of standard errors for the actual sample and the corresponding randomised sample of households, multiplied by the average effect of weighting on de

Actual estimates 
(Tables 3 and 5)

treating estimates as simple 
ratios (Tables 4 and 6)
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Annex I  
Linearised ‘indicative’ variables for variance estimation: 
Poverty, inequality and income distribution measures 
 

 

The following table lists the linearised variables required for the application of the 
Linearisation method of variance estimation. Expressions are provided for most of the 
commonly used indicators of poverty and inequality. 

For any complex statistic, a linearised ‘indicative variable’ zi is developed such that the 
simple expression for its variance approximates the variance of the complex statistic. In all 
cases, the linearised ‘indicative variable’ zi can be decomposed into two components, 
say: , where ziii zzz 21 += 1i is what this variable would have been if the statistic of interest 
were treated as a simple ratio, and z2i is the extra term coming from the fact that the 
statistic is actually more complex.  

For each poverty or inequality statistic (col 1), the table lists the two components separately 
(cols 2-3). The last column defines the symbols used (terms already defined in the 
preceding rows are generally not repeated). 
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Annex I: Linearised ‘indicative’ variables for variance estimation 
Poverty, inequality and income distribution measures 
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