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Abstract - In this paper we compare different multifactor HJM models with humped volatility structures, to each 
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then we study the pricing performance on caps. We find the humped volatility specification to greatly improve 
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the three factor models in pricing caps. 
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1 Introduction

Interest rate option markets are the most liquid and important in the financial community, both

from the point of view of trading volume (caps/floors and swaptions are the most traded) and

variety of securities, and these derivatives are used both for speculative purpose as well as to

hedge against term structure curve movements. This huge quantity of derivatives prompted a

push to academic research, developing a large number of theoretical papers, even if the popo-

larity among practitioners has been hampered due to model complexity.

The most important empirical result is that humped volatility improves the model specifi-

cation, both in terms of likelihood score, analysis of the yield errors and caps pricing perfor-

mance. Moreover, the two factor model outperforms the three factor models in terms of pricing

accuracy and this result is due to the combination of different types of volatility functions: the

humped shape volatility mixed with the strictly decreasing one.

The literature on interest rate modelling can be coarsely divided into two different ap-

proaches: spot rate models, like Vasicek (1977) and Cox, Ingersoll and Ross (1985), based on

model formulation that assumes the spot rate process as the single state variable which de-

termines the yield curve movements, and the Heath, Jarrow and Morton (1992) methodology

which describes the term structure dynamics in terms of infinite set of forward rate processes.

The HJM framework has allowed to extend the class of models used to study the yield curve,

including most of the more popular short rate models, but the higher flexibility of this approach

came along with the higher complexity of the procedures applied to the parameter estimation

and derivative securities pricing (hedging).

Most of the empirical papers about HJM models study the deterministic volatility specifica-

tion because it is simpler to implement, and Brace and Musiela (1994) provide closed formulas

for pricing interest rate sensitive contingent claims. When estimating stochastic volatility HJM
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model, ad hoc volatility specifications have been used (such as strictly decreasing volatility

with respect to the maturity) with the purpose of simplifying the model even if they do not

fit well market data. Morever the strictly decreasing volatility leads to a single factor model

misspecification (Amin and Morton, 1994, Driessen et al., 2003, Mercurio and Moraleda, 2000).

Empirical studies have pointed out two very important issues: the first one is that interest

rates volatility can depend on the level of the interest rates themselves (Chan et al., 1992 and

Amin and Morton, 1994), moreover the volatility function is increasing in the short end of the

curve, and decreasing in the long end, with an humped type movement (Amin and Morton,

1994, Moraleda and Vorst, 1997 and Mercurio and Moraleda, 2000).

This paper deals with the estimation of multifactor HJM models with stochastic humped

volatility, and under specific conditions on the volatility structure, we express the forward rate

process as an affine function of a finite set of state variables which are jointly Markovian. In fact,

if the term structure of interest rates satisfies the Markov property, the numerical procedures

for estimation and simulation are faster.

Our sample data consists in Euribor rates and swap rates with maturity which ranges from

three months to ten years, and ATM cap volatilities with maturities 1, 2, 3, 4, 5, 7, 10 years. For

estimation we use Kalman filter which is a natural way to approach panel data estimation of

term structure models. In this context the state variables are treated as unobservable variables

to be filtered from the observed interest rate data using the Kalman filter. Moreover, the pa-

rameters of the model can be estimated using the quasi-likelihood function obtained from the

filter.

Our in-sample analysis compares the goodness of the model estimation by means of the

Likelihood Ratio Test for nested models, and by means of information criteria for non-nested

ones. In the second part of this paper the estimated models are compared analysing their

ability in pricing interest rate derivative products. It is remarkable to note that our pricing
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results have been obtained without calibrating the model to observed option prices, which is

instead the usual approach in the literature (Driessen et al., 2003). Option-based estimation has

much appeal on practitioners which, for example, calibrate the Hull and White (1990) model

on Bermudan swaptions, Libor Market Model on caps and Swap Market Model on swaptions;

unfortunately it is known that these models are incompatible among them, making impossible

to manage the interest rate risk of non homogeneous interest rate derivative portfolios.

This paper is organized as follows: section 2 reviews the existing literature on humped

volatility; section 3 briefly discusses the HJM framework and the volatility specifications of

the estimated models; in section 4 we explain the estimation method; section 5 contains the

in-sample results and section 6 shows the caps pricing performance; section 7 concludes.

2 Literature review

Amin and Morton (1994) study six different forward volatility specifications, estimating the

parameters on the Eurodollar future options; one of these specifications is � (t; T ) = e�k(T�t)

that leads to the Gaussian model. They find an estimated value of the parameter k that is

negative on average making strictly rising the volatility function, and they conclude that the

volatility is humped.

Moraleda and Vorst (1997) and Mercurio and Moraleda (2000) analyse the single factor

Gaussian model using cap and floor prices, and they also find a negative estimate of the ex-

ponential parameter of the volatility function, deducing that the volatility can be humped.

This phenomenon has always been difficult to handle mathematically, especially with stochas-

tic volatility, Moraleda and Vorst (1997), Ritchken and Chuang (2000) and Fan, Gupta and

Ritchken (2001).

Among the first attempts to implement an HJM model with humped volatility is Mercurio

and Moraleda (2000), where the humped volatility function is given by
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� (t; T ) = (� +  (T � t)) e��(T�t) (1)

This specification is stationary and leads to analytical formula for pricing European options

on discount bonds, but it is a non-stochastic single factor model. In alternative, Moraleda and

Vorst (1997) specify the volatility structure within the Ritchken and Sankarasubramanian (1995)

class of models

� (t; T ) = �
1 + T

1 + t
e��(T�t) (2)

so that recombining trees can be used for pricing derivative securities; unfortunately this

model is not stationary, deterministic and single factor only. Successively Ritchken and Chuang

(2000) use the Nelson and Siegel (1987) family function

� (t; T ) = (� +  (T � t)) e��(T�t) + � (3)

Also in this case, they derive closed formula for pricing European options on discount

bonds and the model is described in terms of three Markovian state variables, but it is a single

factor model with deterministic volatility.

Recently, Fan, Gupta e Ritchken (2001) have estimated a two-factor model with stochastic

volatility where the humped volatility function is defined by

� (t; T ) =
h
(� +  (T � t)) e��(T�t) + �

i
f (t; T )� (4)

When � is positive the forward volatility depends on the level of rates, so computational

problems arise. Moreover, they do not provide the term structure dynamics.

In this paper we analyse multifactor HJM models combining special cases of the following
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forward volatility function

� (t; T ) =
p
f (t; T1) [(c1 + c2 (T � t)) exp f�c3 (T � t)g+ c4] (5)

3 The model

In this section we present the HJM methodology (Heath et al., 1992) and the conditions which

allow to get a Markovian model. We consider a time interval [0; � ] ; for a fixed � > 0; and

suppose (
; F; fFt : t 2 [0; � ]g ; P ) is a filter probability space satisfying the usual conditions

where the flow of information evolves according the filtration Ft generated by n � 1 indepen-

dent Brownian motions. The HJM framework is based on the specification of the entire forward

rate curve dynamics under the natural measure P

f (t; T ) = f (0; T ) +

Z t

0
e� (u; T ) du+ nX

i=1

Z t

0
�i (u; T ) dfWi (u) (6)

where � (u; T ) e �i (u; T ) are Ft�adapted processes and f (0; T ) is the initial forward rate

curve. Under the risk-neutral measureQ; non arbitrage condition implies that the drift process

must be related with the volatility structure by

� (t; T ) =

nX
i=1

�i (t; T )

Z T

t
�i (t; u) du =

nX
i=1

��i (t; T ) (7)

so we can always specify the model under the equivalent martingale measure Q

f (t; T ) = f (0; T ) +
nX
i=1

Z t

0
��i (u; T ) du+

nX
i=1

Z t

0
�i (u; T ) dWi (u) (8)

In general the forward rate is not a Markov process and consequently also the spot rate is

not Markovian; the main input of an HJM model is the forward volatility structure �i (t; T ), so

the analysis is focused on the conditions on the forward volatility that allow to get an affine and

Markovian model. Carverhill (1994) shows which conditions on the volatility structure allow

to get the spot rate a Markov process, only in the determistic case; successively Jeffrey (1995)
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analyses the stochastic volatility case, within the single factor models. This paper deals with

multifactor HJM models that satisfy the Markov property, not as regards the spot rate, but in

general with respect to non observable state variables.

An HJM model is representable in terms of a d�dimensional Markovian system if there

exists a d�dimensional Markovian process Z (t) and a deterministic function � such that

f (t; T ) = � (t; T; Z (t)) (9)

dZ (t) = �z (t; Z) dt+ �z (t; Z) dW (t) (10)

Moreover, the model is affine if the function � is affine in Z (t)

f (t; T ) = h0 (t; T ) + h1 (t; T )Z (t) (11)

The vector Z (t) is the state variable vector. Inui and Kijima (1998), Chiarella and Kwon

(2001,2003), deal with the conditions on the volatility structure which lead to the representation

(9)-(10) and (11). Suppose that for each 1 � i � n, there existsmi such that the forward volatility

�i (t; T ) can be expressed in the following form

�i (t; T ) =

miX
j=1

cij (t)�ij (T ) (12)

where cij (t) are stochastic processes and �ij (T ) are deterministic functions. This property

with the following theorem leads to the Markov system representation.

Theorem 1 (Chiarella and Kwon, 2003) Let �i (t; T ), for 1 � i � n; satisfy (12), then the corre-

sponding HJM model admits a finite dimensional affine realisation

f (t; T ) = f (0; T ) +

nX
i=1

miX
j=1

�ij (T ) 
i
j (t)

+

nX
i=1

X
j;k=1
j�k

[�ij (T )�ik (T ) + �jk�ik (T )�ij (T )] �
i
jk (t) (13)
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where

�ij (T ) =

Z T

0
�ij (s) ds

 ij (t) =

Z t

0
cij (s) dWi (s)�

miX
k=1

Z t

0
cij (s) cik (s)�ik (s) ds

�ijk (t) =

Z t

0
cij (s) cik (s) ds

�jk =

(
1 if j 6= k

0 if j = k

In this formulation the variables describing the model are: the deterministic functions

�ij (t) =

Z t

0
�ij (u) du (14)

and the stochastic processes

�ijk (t) =

Z t

0
cij (u) cik (u) du (15)

 ij (t) =

Z t

0
cij (u) dWi (u)�

miX
k=1

Z t

0
cij (u) cik (u)�ik (u) du (16)

Let X (t) =
n
�ijk (t) ;  

i
j (t) : i � j � n; 1 � j; k � mi

o
the state variable vector and denot-

ing with d its dimension, then (13) can be rewritten as

f (t; T ) = f (0; T ) +

dX
i=1

ai (T )Xi (t) (17)

Consequently the bond price can be represented by the exponentially affine form

P (t; T ) =
P (0; T )

P (0; t)
exp

(
dX
i=1

ai (T )Xi (t)

)
(18)

We can proof that the state variables form d�dimensional Markovian system which dy-

namics can be set in following affine form

dX (t) = [a (t) +A (t)X (t)] dt+ U (t) dW (t) (19)

U (t) = C (t)
p
b (t) +B (t)X (t) (20)
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Most of empirical papers implementing multifactor HJM models, use a strictly decreasing

volatility specification given by

�i (t; T ) =
q
�2i r (t) + a

2
i e
�ci(T�t) i = 1; :::; n (21)

This volatilty structure is an affine function of the spot rate process, and it includes as a spe-

cial case, �i = 0, the Gaussian model (or Vasicek type). In this case, it is possible to perform a

statistical test to value the parameter �i using the Likelihood Ratio Test for nested models. The

volatility (21) satisfies the condition (12), so the term structure can be expressed by a Markov-

ian system with 2n state variables. The affine specification (21) has been studied by De Jong

and Santa-Clara (1999): they set the initial forward rate curve constant, an assumption which

implies a stationary model. This assumption is useful to write the conditional moments of the

state variables in closed form when it is necessary to discretise the dynamics of the state vari-

ables in order to implement the Kalman filter; moreover, it is a two factor model. In this paper

the initial forward curve is a function of the maturity, and a three-factor model is implemented.

Humped shape volatility is more sticking to market data and it has already been studied

in several papers, Moraleda and Vorst (1997), Mercurio and Moraleda (2000), Fan, Gupta and

Ritchken (2001) and Angelini and Herzel (2005) but none of them studies models being at same

time multifactor, stochastic, affine and Markovian. Different types of volatility specifications

will be implemented, combining special cases of (5). Table 1 summarizes the estimated models.

4 Estimation

Since the relationship that links yield to maturity with the state variables is linear, as shown

by (18), and the dynamics of the state variables is affine and Markovian (that is, the drift and

variance of the process are linear functions with respect to the variables), we use the Kalman
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Table 1 presents the volatility specifications of the estimated models.

Volatility Function Label

Three factor (mixed) model:

8><>:
�1 (t; T )= a1

p
r (t)

�2 (t; T )=
p
r (t)

�
a2e

�a3(T�t) + a4
�

�3 (t; T )=
p
r (t)

�
(a5 + a6 (T � t)) e�a7(T�t) + a8

�
All parameters 3-MIXED1

a8= 0 3-MIXED2

a8= a4= 0 3-MIXED3

Two factor (mixed) model:

(
�1 (t; T )=

p
f (t; T1)

�
a2e

�a3(T�t) + a4
�

�2 (t; T )=
p
f (t; T2)

�
(a5 + a6 (T � t)) e�a7(T�t) + a8

�
a8= a4= 0; T1 = T2 = t 2-MIXED4

a8= a4= 0 2-MIXED5

a8= 0; T1 = T2 = t 2-MIXED6

Models with same volatility function for all factors:

�i (t; T )= aie
�ci(T�t) i = 1; 2; 3 i-GAUSSIAN

�i (t; T )=
q
�2i r (t) + a

2
i e
�ci(T�t) i = 1; 2; 3 i-SQRT

�i (t; T )= (ai + bi (T � t)) e�ci(T�t) i = 1; 2; 3 i-HUMP

�i (t; T )=
p
r (t) (ai + bi (T � t)) e�ci(T�t) i = 1; 2; 3 i-HUMP-STOC

filter to estimate the proposed models. The Kalman filter is a tractable and reasonably accu-

rate estimation method even though the exact likelihood function is not known (Duffee and

Stanton, 2001).

In the literature, some empirical works deal with the calibration of HJM models with the

Kalman Filter (De Jong and Santa Clara, 2001 and Chiarella, Hung and To, 2009), while some

authors estimate affine spot rate models (Jegadeesh and Pennacchi, 1996, Duan and Simonato,

1999, Geyer and Pichler, 1999, Babbs and Nowman,1999 and Chen and Scott, 2003).

Suppose that in the bond marketM zero-coupon bonds with different maturities are traded,

and denote yk (� i) = � ln (P (tk; tk + � i)) =� i the yield observed at time tk k = 1::T with time

to maturity � i, then using (18) the measurement equation can be written in the following form

yk = dk (�) +Ak (�)Xk + �k (22)

whereXk 2 Rd is the vector of the state variables, yk = (yk (�1) ; :::; yk (�M )) is the yield vec-

tor observed at time tk and � is the parameter vector. It is necessary to introduce a measurement
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error, Normally distribuited, with zero mean and covariance matrix H (�).

The differential equation (19)-(20) is defined in continuous time, while the yields are ob-

served at fixed time intervals, so if we discretise following the Euler scheme, we obtain the

"transition equation" which represents the evolution of the process between tk and tk+1

Xk+1 = ak�t+ (Id +Ak�t)Xk + Uk
p
�t�k

Xk+1 = ck (�) +Mk (�)Xk +Qk (�) �k

�k � N (0; 1) (23)

In the Gaussian case the innovations �k are Normally distribuited and then the assumptions

of the Kalman filter are satisfied, allowing to obtain the parameter estimation by maximum

likelihood. In general case we are not able to compute the innovation probability distribu-

tions, so we cannot exploit the maximum likelihood estimation. However we suppose that, for

high-frequency data, the innovations are Normally distribuited obtaining the quasi-likelihood

estimation.

Under the hypothesis of Normality, in order to derive the discrete time exact representation

of (19)-(20) we would be having to compute the conditional moments at time tk of X (tk +�t) ;

that is Ek [X (tk +�t)] and Vk [X (tk +�t)] (Fackler, 2000). In this paper, �t is fixed equal

one day and this short time interval allows Euler scheme to get the same results, in terms of

likelihood function, as the exact representation (Lund, 1997).

The Kalman filter is a set of recursive equations; let zk the optimal estimator of Xk and Pk

the associated MSE matrix of zk; the algorithm consists in two set of equations, the prediction

equations

zk;k�1 =Mk�1zk�1 + ck�1

Pk;k�1 =Mk�1Pk�1M
0
k�1 +Qk�1Q

0
k�1 (24)
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and the updating equations

zk = zk;k�1 + Pk;k�1A
0
kR

�1
k vk

Pk = Pk;k�1 � Pk;k�1A0kR�1k AkPk;k�1

vk = yk � dk �Akzk;k�1

Rk = AkPk;k�1A
0
k +H (25)

where vk and Rk are the prediction error and its MSE matrix.

The value zk is the optimal estimate of Xk given the available information at time tk, and

it is referred as the filtered estimate of Xk; since the predictor error vk is Gaussian, in order to

estimate the parameter vector � we can maximize the log-likelihood function

logL (yj �) = �dT
2
log (2�)� 1

2

TX
k=1

log (jRk (�)j)�
1

2

TX
k=1

v0k (�)R
�1
k (�) vk (�) (26)

4.1 Monte Carlo study

In this section we analyse the finite sample properties of the Kalman filter using Monte Carlo

simulations: we simulate a time-series of 700 daily observations, and for each realization a set

of 13 zero-coupon yields for maturities of 3, 6, 9 months and from 1 to 10 years. We repeat the

procedure 400 times. To perform Monte Carlo experiments, the unobserved state variables of

the model must first be simulated; we discretise the dynamics of the state variables using the

Euler scheme. Monte Carlo analysis is applied to three models: three-factor Gaussian model

(3-GAUSSIAN), three-factor square root model (3-SQRT) and two-factor humped volatility

model (2-MIXED4). In order to simulate the paths of the state variables, the true parame-

ter values are taken from the estimates reported in next section, setting to zero the market

price of risk. The covariance matrix H is fixed to h2I13, and the initial yield curve y (0; t) =

b0 + (b1 + b2t) exp (�b3t). In tables 2 and 3 the results are shown.
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Table 2 shows the Monte Carlo results for the maximum likelihood estimation. We simulate 30000 sample paths

at daily frequency, for maturities of 3, 6 and 9 months, and from 1 to 10 years. Standard deviation is computed

both in-sample and with the average of the Hessian matrix. To simulate the state variable dynamics we use the

Euler scheme.

three-factor Gaussian model three-factor square root model

generated mean std std(Hessian) generated mean std std(Hessian)

k1 0.109 0.0109 0.00307 0.00427 0.109 0.0109 0.00307 0.00407

k2 0.486 0.486 0.00899 0.0211 0.486 0.486 0.00899 0.0196

k3 1.74 1.75 0.0316 0.0541 1.74 1.75 0.0316 0.0544

�1 0 0 0 0 1.81e-7 1.83e-7 6.71e-6 2.42e-8

�2 0 0 0 0 1.89e-7 1.91e-7 9.91e-6 2.52e-8

�3 0 0 0 0 5.46e-7 5.58e-7 4.23e-6 1.25e-7

1 0.0111 0.0111 3.91e-4 4.18e-4 0.0111 0.0111 3.91e-4 4.36e-4

2 0.0111 0.0111 4.83e-4 6.38e-4 0.0111 0.0111 4.83e-4 6.19e-4

3 0.0121 0.0121 5.15e-4 6.11e-4 0.0121 0.0121 5.15e-4 5.7e-4

h 2.7e-4 2.7e-4 2.28e-6 2.27e-6 2.7e-4 2.7e-4 2.28e-6 2.26e-6

b0 0.0519 0.0519 1.97e-4 1.8e-4 0.0519 0.0519 1.97e-4 1.87e-4

b1 -0.02 -0.02 2.86e-4 2.21e-4 -0.02 -0.02 2.86e-4 2.24e-4

b2 -0.0044 -0.0044 8.67e-5 7.31e-5 -0.0044 -0.0044 8.67e-5 6.83e-5

b3 0.185 0.185 0.00235 0.00233 0.185 0.185 0.00235 0.00239

Table 2 shows the Monte Carlo results for the maximum likelihood estimation. We simulate 30000 sample paths

at daily frequency, for maturities of 3, 6 and 9 months, and from 1 to 10 years. Standard deviation is computed

both in-sample and with the average of the Hessian matrix. To simulate the state variable dynamics we use the

Euler scheme.

two-factor humped volatility model

generated mean std std(Hessian)

a2 0.0204 0.0204 8.77e-4 0.00124

a3 0.387 0.415 0.00939 0.08560

a5 -0.00939 -0.00951 0.00164 0.00185

a6 0.055 0.0551 0.00267 0.00216

a7 0.387 0.0387 0.00203 0.00301

h 5.27e-4 5.27e-4 4.13e-6 4.07e-6

b0 0.0553 0.0553 1.93e-4 1.71e-4

b1 -0.0223 -0.0223 3.69e-4 2.87e-4

b2 -0.0067 -0.00666 1.46e-4 8.77e-5

b3 0.198 0.198 0.00198 0.00168

12



Table 4. Summary statistics for yield to maturity.

3m 6m 9m 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

mean 3.86 3.88 3.91 3.99 4.2 4.39 4.56 4.71 4.86 4.99 5.11 5.21 5.28

std 0.81 0.78 0.77 0.78 0.74 0.7 0.67 0.63 0.6 0.57 0.54 0.51 0.49

min 2.56 2.57 2.63 2.63 2.77 2.95 3.16 3.37 3.53 3.66 3.80 3.92 4.02

max 5.11 5.14 5.15 5.29 5.43 5.51 5.56 5.61 5.69 5.75 5.82 5.89 5.96

5 Empirical Results

The sample data consists in 13 time-series of Euribor rates (3, 6, 9 months) and swap rates

(from 1 to 10 years) and it ranges from January 1999 to December 2001 for a total of 777 daily

observations. We obtain the yield curve bootstrapping the swap rates.

The estimation procedure requires, besides the volatility function, the initial yield curve as

a function of the maturity given by

y (0; t) = b0 + (b1 + b2t)e
�b3t (27)

and it is estimated simultaneously with the other parameters of the model, differently from

Driessen et al. (2003) where the initial curve is estimated separately and then used to determine

the other parameters. Figure 1 shows the estimated curves for one and two factor models.

We compare nested models with the usual Likelihood Ratio test, otherwise we use the in-

formation criteria BIC, AIC and HQC defined as

AIC = �2 log (L) + 2p

BIC = �2 log (L) + p log (N)

HQC = �2 log (L) + 2 log (log (N)) (28)

where p is the number of parameters, N is the sample dimension and L is maximum value

of the likelihood function; in order to value the fitting on market data, we analyse the yield

errors expressed in basis points. Table 10 reports the yield errors of the estimated models.
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When we build the Kalman filter algorithm, in the measurement equation we add a distur-

bance �k whose covariance matrix is H (�); for all models, the matrix H (�) will be H = h20IM .

This choice has been made after several unsuccessful attempts to specify a suitable functional

form of the error covariance matrixH (�). Even if some papers, Geyer e Pichkler (1999) e Brandt

e He (2002), have shown the opportunity of defining the error covariance matrix as a function

of the maturity, this choice is due to computational requirements to avoid adding a parameter

for each maturity.

It is important to remark that the Kalman filter requires an initial state vectorX0 from which

the algorithm starts, and this can be a random variable. From equations (??)-(16) and (18) we

note that for t = 0 the model must provide the initial term structure of interest rates, this

implies that X (0) = 0 and this is the value to inizialise the filter, so the initial state vector is not

a random variable.

To estimate the models using market data, we need to specify in (19)-(20) the market price

of risk since data are observed under the objective probability measure; the market price of risk

is fixed proportional to the diffusion coefficient in order to maintain the affine property of state

variable dinamics

dX (t) = [a (t) +A (t)X (t)] dt+ C (t)
p
b (t) +B (t)X (t)dW (t) (29)

dW (t) = dfW (t)� � (t) dt (30)

� (t) = �C (t)
p
b (t) +B (t)X (t) (31)

In our estimations we set � = 0 because it does not provide any improvement in terms of

likelihood score. This is in line with Jegadeeshand Pennacchi (1996), De Jong and Santa Clara

(1999), Babbs and Nowman (1999), Duan and Simonato (1999) and Chen and Scott (2003).
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5.1 One factor models

Table 5 shows the estimated parameters for one factor models. For the strictly decreasing

volatility models (1-GAUSSIAN/1-SQRT), the parameter c is estimated to be negative and the

initial yield curve does not fit the observed data; if we instead introduce the humped specifica-

tion (1-HUMP/1-HUMP-STOC) the parameter c is positive and the initial yield curve fits well

the market data. The Likelihood Ratio test between the models 1-HUMP and 1-GAUSSIAN,

is equal to 4220. Comparing the humped stochastic volatility model 1-HUMP-STOC to the

corresponding nested model 1-SQRT with a = 0 (setting b = 0 and a = �), the test rejects

the null hypothesis . Analysing the yield errors, we clearly note the improvement yielded by

the humped volatility specification: the errors have gone down of 30-40% with respect to the

strictly decreasing volatility model. This is in line with the misspecification of strictly decreas-

ing volatility evidenced by Driessen et al. (2003), Amin and Morton (1994) and Mercurio and

Moraleda (2000).

If we further include the parameter � in the model estimation, the volatility function is

stochastic and the model 1-SQRT includes the determistic model 1-GAUSSIAN; even if the

Likelihood Ratio test with respect to the Gaussian model is equal to 45.38, the parameter c is

still estimated to be negative.

Overall, the fitting of the single factor model is satisfactory compared to other papers that

use the Kalman filter on panel data (Babbs and Nowman, 1999, Geyer and Pichkler, 1999 and

Brandt and He, 2002): the yield errors are less than 30 basis point (1-GAUSSIAN/1-SQRT),

while in Brandt and He (2002) the single factor model provides yield errors from 10 to 65 bps.

De Jong and Santa Clara (1999) estimate a one factor model with the volatility function (21) but

under the constant initial yield curve assumption.

15



Table 5 presents the parameter estimation for one factor models where L is the log-likelihood score and p is the

number of parameters. In the last row we report the BIC criterion for non-nested models. Estimated standard

errors are reported in parentheses.

DETERMINISTIC STOCHASTIC

1-GAUSSIAN 1-HUMP 1-SQRT 1-SQRT 1-HUMP-STOC

(a = 0)
c -0.0902 (0.00138) 0.622 (0.0034) -0.0901 (0.00135) -0.0901 (0.00135) 0.621 (0.0034)

b 0 0.0159 (7.62e-4) 0 0 0.0847 (0.00402)

a 0.00627 (2.86e-4) -0.00324 (1.7e-4) 5.64e-9 (2.96e-5) 0 -0.0173 (9.02e-4)

� 0 0.032 (0.0015) 0.032 (0.0015)

h 0.00177 (1.34e-5) 0.00117 (8.82e-6) 0.00177 (1.34e-5) 0.00177 (1.34e-5) 0.00117 (8.83e-6)

b0 0.0268 (2.76e-4) 0.0531 (2.26e-4) 0.0267 (2.75e-4) 0.0267 (2.75e-4) 0.053 (2.22e-4)

b1 0.0192 (5.50e-4) -0.0214 (3.86e-4) 0.0197 (5.50e-4) 0.0197 (5.50e-4) -0.0214 (3.81e-4)

b2 -0.0397 (4.92e-4) -0.00879 (3.76e-4) -0.0401 (4.87e-4) -0.0401 (4.87e-4) -0.00885 (3.7e-4)

b3 1.172 (0.00817) 0.279 (0.00396) 1.18 (0.00817) 1.18 (0.00818) 0.279 (0.00388)

L 52779 56599.26 52801.69 52801.69 56584.69

p 7 8 8 7 8

BIC -105512 -113146 -105551 -105558 -113117

5.2 Two factor models

Many papers show that increasing the number of the factors produces a tangible improvement

of the model estimation (Babbs and Nowman, 1999, Geyer and Pichkler, 1999, Brandt and He,

2002 and De Jong and Santa Clara, 1999), and this also occurs in our analysis: if we add a

risk factor, the model is more flexible and it is able to represent the term structure movements.

Indeed, the estimate of parameters ci in the models 2-GAUSSIAN/2-SQRT is now positive for

both factors. Yield errors are considerably lower, being smaller than 10 bps for all maturities;

the measurement error standard deviation also reduces considerably, from 1.77e-3 of the model

1-GAUSSIAN to 5.64e-4 of the model 2-GAUSSIAN. Babbs and Nowman (1999) specify the

covariance error matrix using a parameter for each maturity, they obtain yield errors that vary

from 1.4e-4 to 2.8e-3 using eight time series of interest rates.

Here as well, the humped volatility specification provides better estimation results, both

with deterministic and stochastic volatilities. The model 2-HUMP includes as a special case
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Table 6 presents the parameter estimation for two factor models where L is the log-likelihood score and p is the

number of parameters. In the last row we report the BIC criterion for non-nested models. Estimated standard

errors are reported in parentheses.

DETERMINISTIC STOCHASTIC

2-GAUSSIAN 2-HUMP 2-SQRT 2-SQRT 2-HUMP-STOC

(ai = 0)
c1 0.218 (0.00325) 0.834 (0.00898) 0.218 (0.00324) 0.217 (0.00323) 0.259 (0.00306)

b1 0 0.0132 (4.66e-4) 0 0 0.0319 (0.00157)

a1 0.0119 (4.77e-4) 0.00105 (5.87e-5) 0.0119 (4.77e-4) 0 -0.0191 (8.83e-4)

�1 0 0 8.52e-7 (2.74e-4) 0.0654 (0.00263) 0

c2 0.678 (0.00967) 0.257 (0.00311) 0.678 (0.00967) 0.681 (0.00964) 0.839 (0.009)

b2 0 0.00551 (2.64e-4) 0 0 0.0679 (0.00242)

a2 0.0121 (5.02e-4) -0.00341 (1.54e-4) 0.0121 (5.02e-4) 0 0.00547 (3.05e-4)

�2 0 0 2.06e-6 (2.84e-4) 0.0661 (0.0027) 0

h 5.65e-4 (4.56e-6) 3.76e-4 (2.98e-6) 5.65e-4 (4.56e-6) 5.66e-4 (4.58e-6) 3.76e-4 (2.98e-6)

b0 0.0538 (1.85e-4) 0.0548 (2.7e-4) 0.0539 (1.85e-4) 0.0538 (1.85e-4) 0.0548 (2.67e-4)

b1 -0.0209 (4.00e-4) -0.0229 (3.14e-4) -0.0209 (4.00e-4) -0.0209 (4.0e-4) -0.0229 (3.11e-4)

b2 -0.00676 (1.32e-4) -0.00443 (8.81e-5) -0.00676 (1.32e-4) -0.00675 (1.32e-4) -0.00443 (8.84e-5)

b3 0.211 (0.00213) 0.165 (0.00233) 0.211 (0.00213) 0.211 (0.00214) 0.165 (0.0023)

L 62276.22 65974.19 62276.22 62214.92 65945.51

p 9 11 11 9 11

BIC -124493 -131876 -124480 -124371 -131819

the model 2-GAUSSIAN, and comparing them with the Likelihood Ratio test we reject the null

hypothesis of bi = 0. As shown in Figure 1, the initial yield curve of the humped volatility

model fits the market data better than the strictly decreasing volatility model. Considering

stochastic volatility, the model 2-HUMP-STOC includes as a special case the model 2-SQRT

with ai = 0 (by setting bi = 0 and ai = �i): also in this case, we reject the null hypothesis.

Contrary to the single factor model, the parameters �i are not significant.

Generally, most of empirical papers which deal with multifactor model, use the same volatil-

ity specification for all factors, and the functional form commonly used is the strictly decreasing

volatility with respect to the maturity. From the principal component analysis (Litterman and

Scheinkman, 1991 and Rebonato, 1998), we argue that is necessary to use different types of
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functions. We implement the following volatility structure

�1 (t; T ) =
p
f (t; T1)

h
a2e

�a3(T�t) + a4
i

(32)

�2 (t; T ) =
p
f (t; T2)

h
(a5 + a6 (T � t)) e�a7(T�t) + a8

i
(33)

The model (32)-(33) improves the model estimation in comparison with the strictly decreas-

ing volatility (2-GAUSSIAN/SQRT), but it results worse than humped volatility (2-HUMP/HUMP-

STOC). However, this ranking will be reverted on the pricing performance. Table 7 shows the

results: the model 2-MIXED4 includes the model 2-SQRT with ai = 0, and applying the Likeli-

hood Ratio test we reject the null hypothesis of fixing a6 = 0 and we can assess that combining

different functional forms of the forward volatility improves the model estimation. Regarding

the initial yield curve, the estimated parameters of model 2-MIXED4 are similar to the values

reported for the model 2-SQRT with ai = 0; valuing the yield errors, the model 2-MIXED4 is

slightly better than the model 2-SQRT with ai = 0.

Moreover, the model (32)-(33) allows us to estimate which maturity to choose in the volatil-

ity function. The model 2-MIXED5 shows that it is significant estimating the forward rate

maturity of the volatility functions, the Likelihood Ratio test is equal to 24.64 and we reject the

null hypothesis of T1 = T2 = t. We remark that the humped volatility depends on a long-term

forward rate, about 22 years, while the other volatility is fitted on a shorter maturity (about 4

months): this is not a surprise, because the principal component analysis asserts that the first

component represents the average level ad the second one accounts for the slope of the yield

curve. The forward rate with 22-years maturity is a long bond yield, i.e. the average level,

while the short maturity determines the slope of the yield curve by the spread with the long

maturity. Comparing the mixed model with the humped one, the Likelihood Ratio test clearly

rejects the null hypothesis, b1 = 0.

Many papers use forward volatilities which approach to zero as the maturity approaches to
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Table 7 presents the parameter estimation for two factor (mixed) models where L is the log-likelihood score

and p is the number of parameters. In the last row we report the BIC criterion for non-nested models. Esti-

mated standard errors are reported in parentheses.

2-MIXED4 2-MIXED5 2-MIXED6

a4 0 0 -0.0314 (0.00145)

a3 0.387 (0.00939) 0.388 (0.00944) 0.767 (0.0194)

a2 0.0204 (8.77e-4) 0.0199 (0.00102) 0.052 (0.00233)

T1 t 0.346 (0.407) t

a8 0 0 0

a7 0.387 (0.00203) 0.388 (0.00203) 0.717 (0.00628)

a6 0.055 (0.00267) 0.0384 (0.00318) 0.0655 (0.00226)

a5 -0.00957 (0.00164) -0.00633 (0.00124) 0.00464 (2.76e-4)

T2 t 22.2 (18.4) t

h 5.27e-4 (4.13e-6) 5.28e-4 (4.12e-6) 3.84e-4 (3.04e-6)

b0 0.0553 (1.93e-4) 0.0553 (1.93e-4) 0.0476 (1.99e-4)

b1 -0.0223 (3.69e-4) -0.0223 (3.65e-4) -0.0151 (3.25e-4)

b2 -0.0067 (1.46e-4) -0.00673 (1.45e-4) -0.0047 (1.04e-4)

b3 0.198 (0.00198) 0.198 (0.00198) 0.233 (0.00246)

L 63210.36 63222.68 65790.33

p 10 12 11

BIC -126355 -126367 -131509

infinity; the specification (32)-(33) allows us to check this hypothesis, estimating the parameters

a4 and a8: In our in-sample analysis, the best choice is to estimate a4 and fixing a8 = 0: the

model 2-MIXED6 reports the results. The improvement in the likelihood score clearly rejects

the null hypothesis; also the yield errors improves.

Summarizing, using humped functions to specify the forward volatility leads to better esti-

mation: the initial yield curve fit well observed data, the yield errors are smaller and applying

the Likelihood Ratio test, we reject the hypothesis of strictly decreasing volatility.
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5.3 Three factor models

Also for the three factor models, the humped volatility performs better than the strictly de-

creasing one. Comparing the model 3-HUMP1 with the model 3-GAUSSIAN, it is significant

to estimate the parameters bi which allow us to model the humped shape. Valuing the BIC in-

dex and the yield errors, the model 3-HUMP outperforms the model 3-HUMP-STOC. We can’t

use the Likelihood Ratio test because they are not nested models. Considering the stochastic

volatility, we value the benefit of the humped specification comparing the model 3-HUMP-

STOC with the model 3-SQRT with ai = 0: the Likelihood Ratio test rejects the null hypothesis,

so the humped volatility specification improves the model estimation.

Adding a risk factor is clearly significant and it improves the fitting of the model: the yield

errors are halved in comparison to the two factor models, less than 5 basis point for all ma-

turities. The parameters �i is not significant, the test applied to the models 3-SQRT and 3-

GAUSSIAN gives a value less than 1e-2, so we do not reject the null hypothesis.

This section ends with the mixed models: we use the following forward volatility specifica-

tions

�1 (t; T ) = a1
p
r (t) (34)

�2 (t; T ) =
p
r (t) [a2 exp f�a3 (T � t)g+ a4] (35)

�3 (t; T ) =
p
r (t) [(a5 + a6 (T � t)) exp f�a7 (T � t)g+ a8] (36)

The estimates shown in table 9 must be compared to the those in table 8, using the BIC index

and the yield errors. Setting a4 = a8 = 0 (3-MIXED3), the volatility functions approach to zero

as the maturity approaches to infinity; we relax this hypothesis in the other models. These

models can be compare with the Likelihood Ratio test because they are nested. The results

1We experienced difficulties in fitting three humped volatilities. For this reasons, one factor has been replaced

with a strictly decreasing volatility.
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Table 8 presents the parameter estimation for two factor models where L is the log-likelihood score and p is the

number of parameters. In the last row we report the BIC criterion for non-nested models. Estimated standard

errors are reported in parentheses.

DETERMINISTIC STOCHASTIC

3-GAUSSIAN 3-HUMP 3-SQRT 3-SQRT 3-HUMP-STOC

(ai = 0)
c1 0.109 (0.00307) -0.0042 (1.71e-4) 0.109 (0.00307) 0.106 (0.00307) 0.252 (0.00253)

b1 0 0.00457 (1.95e-4) 0 0 0.028 (9.35e-4)

a1 0.0111 (3.91e-4) 0.214 (0.00342) 0.0111 (3.91e-4) 0 -0.00557 (0.00103)

�1 0 0 1.81e-7 (6.71e-6) 0.0598 (0.0021) 0

c2 0.486 (0.00899) 0.00193 (9.24e-5) 0.486 (0.00899) 0.491 (0.00914) 1.01 (0.0126)

b2 0 0.0112 (3.8e-4) 0 0 0.0781 (0.00439)

a2 0.0111 (4.83e-4) 0.716 (0.0109) 0.0111 (4.83e-4) 0 -0.0179 (0.00161)

�2 0 0 1.89e-7 (9.91e-6) 0.0583 (0.00257) 0

c3 1.74 (0.0316) -0.00781 (2.97e-4) 1.74 (0.0316) 1.73 (0.0319) 0.252 (0.0133)

b3 0 0.0335 (0.0013) 0 0 0

a3 0.0121 (5.15e-4) 3.73 (0.0358) 0.0121 (5.15e-4) 0 0.0197 (7.09e-4)

�3 0 0 5.46e-7 (4.23e-6) 0.0641 (0.00274) 0

h 2.7e-4 (2.28e-6) 2.36e-4 (1.92e-6) 2.7e-4 (2.28e-6) 2.71e-4 (2.29e-6) 2.66e-4 (2.15e-6)

b0 0.0519 (1.97e-4) 0.0522 (2.13e-4) 0.0519 (1.97e-4) 0.0518 (1.97e-4) 0.0536 (2.03e-4)

b1 -0.02 (2.86e-4) -0.0202 (2.62e-4) -0.02 (2.86e-4) -0.0199 (2.86e-4) -0.0217 (2.72e-4)

b2 -0.0044 (8.67e-5) -0.00447 (5.94e-5) -0.0044 (8.67e-5) -0.00441 (8.68e-5) -0.00433 (7.85e-5)

b3 0.185 (0.00235) 0.183 (0.00208) 0.185 (0.00235) 0.186 (0.00237) 0.17 (0.0021)

L 67819.84 69420.05 67819.84 67759.29 68542.24

p 11 14 14 11 13

BIC -135568 -138748 -135548 -135447 136999

assert that it is significant to estimate both parameters, but a4 implies a larger improvement in

the likelihood score; valuing the yield errors, we do not see any difference among the models.

Comparing the mixed models with the models of the table 8, they fit well the market data,

and using the BIC criterion, we can assert that the mixed models are better than the strictly

decreasing volatility models and they are worse than the humped volatility ones.
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Table 9 presents the parameter estimation for two factor (mixed) models where L is the log-likelihood score

and p is the number of parameters. In the last row we report the BIC criterion for non-nested models. Esti-

mated standard errors are reported in parentheses.

3-MIXED1 3-MIXED2 3-MIXED3

a1 0.0158 (6.31e-4) 0.0159 (6.4e-4) 0.0261 (9.75e-4)

a4 -0.0319 (0.00133) -0.0327 (0.00139) 0

a3 0.839 (0.0293) 0.818 (0.0284) 0.779 (0.0261)

a2 0.0465 (0.00165) 0.047 (0.00171) 0.0322 (0.00125)

a8 -2.22e-8 (3.32e-9) 0 0

a7 0.806 (0.00642) 0.789 (0.0591) 0.779 (0.00601)

a6 0.0729 (0.00386) 0.0719 (0.00377) 0.0883 (0.00441)

a5 -0.00866 (0.00161) -0.00863 (0.00159) -0.0263 (0.0021)

h 2.81e-4 (2.27e-6) 2.82e-4 (2.28e-6) 2.87e-4 (2.36e-6)

b0 0.0466 (1.43e-4) 0.0468 (1.45e-4) 0.0471 (1.38e-4)

b1 -0.0139 (2.51e-4) -0.0144 (2.49e-4) -0.0148 (2.49e-4)

b2 -0.00565 (1.39e-4) -0.00519 (1.23e-4) -0.00506 (1.28e-4)

b3 0.264 (0.00277) 0.252 (0.00247) 0.247 (0.00257)

L 68098.8 68076.72 67742.09

p 13 12 11

BIC -136112 -136075 -135412
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Figure 1. Comparison of the estimated initial yield curve for one and two factor models.
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Table 10 reports the mean absolute errors (yield errors in basis points) of the estimated models.

3m 6m 9m 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y avg

1-GAUSSIAN 19.0 15.1 16.8 17.8 16.2 13.8 10.3 8.46 8.32 10.1 13.4 16.1 18.8 14.2

1-HUMP 14.4 13.1 13.2 12.1 9.32 7.5 5.66 4.46 5.08 6.76 8.54 9.81 10.9 9.29

1-SQRT 19.1 15.0 16.7 17.8 16.1 13.8 10.2 8.44 8.31 10.0 13.3 16.0 18.7 14.1

1-SQRT(a = 0) 19.1 15.0 16.7 17.8 16.1 13.8 10.2 8.44 8.31 10.0 13.3 16.0 18.7 14.1

1-HUMP-STOC 14.4 13.1 13.2 12.1 9.31 7.5 5.67 4.48 5.09 6.76 8.53 9.8 10.9 9.3

2-GAUSSIAN 7.45 3.17 4.21 5.82 6.08 4.98 4.32 3.92 3.71 4.02 4.86 5.59 6.34 4.96

2-HUMP 6.79 3.53 3.52 3.89 4.51 4.12 3.71 3.48 3.34 3.27 3.47 3.52 3.88 3.93

2-SQRT 7.45 3.17 4.21 5.82 6.08 4.98 4.32 3.92 3.71 4.02 4.86 5.59 6.34 4.96

2-SQRT(ai = 0) 7.46 3.17 4.24 5.83 6.08 4.99 4.32 3.92 3.71 4.03 4.87 5.6 6.34 4.97

2-HUMP-STOC 6.81 3.52 3.52 3.89 4.51 4.11 3.7 3.49 3.34 3.26 3.46 3.52 3.87 3.92

2-MIXED4 7.5 3.36 4.26 5.94 5.83 4.58 4.08 3.91 3.63 3.67 4.33 4.93 5.83 4.76

2-MIXED5 7.51 3.36 4.27 5.95 5.86 4.6 4.09 3.91 3.63 3.68 4.34 4.94 5.86 4.77

2-MIXED6 6.56 3.69 3.6 3.98 4.46 4.32 3.88 3.51 3.29 3.25 3.48 3.62 3.98 3.97

3-GAUSSIAN 3.18 2.77 3.43 3.18 3.42 3.54 3.54 3.54 3.38 3.19 3.36 3.5 3.64 3.36

3-HUMP 2.1 2.68 2.69 3.37 3.46 3.73 3.68 3.48 3.3 3.17 3.3 3.37 3.57 3.22

3-SQRT 3.18 2.77 3.43 3.18 3.42 3.54 3.54 3.54 3.38 3.19 3.36 3.5 3.64 3.36

3-SQRT(ai = 0) 3.18 2.77 3.44 3.19 3.42 3.55 3.55 3.54 3.38 3.19 3.36 3.5 3.64 3.36

3-HUMP-STOC 3.41 2.91 3.48 3.21 3.39 3.52 3.5 3.57 3.44 3.19 3.32 3.45 3.61 3.38

3-MIXED1 4.01 2.99 3.66 3.49 3.34 3.57 3.51 3.51 3.43 3.2 3.24 3.4 3.6 3.46

3-MIXED2 3.89 2.89 3.74 3.59 3.47 3.65 3.66 3.58 3.44 3.25 3.31 3.47 3.67 3.51

3-MIXED3 4.04 2.98 3.65 3.53 3.34 3.58 3.51 3.5 3.42 3.23 3.26 3.4 3.58 3.46

6 Pricing

In this section the estimated models will be compared in terms of pricing errors. The data set

consists in ATM cap quoted volatilities with maturities 1,2,3,4,5,7,10 years and we use the Black

(1976) formula to convert volatilities in prices. Our procedure consists in the following steps:

we estimate the parameters of the model using a rolling window of 550 daily observations for

a total of 100 trading days; successively, we price the caps quoted in the last trading day of the

sample. Closed formula are used for Gaussian models, while for stochastic models cap prices

are computed using Monte Carlo simulations. Specifically, we simulate 30000 sample paths

and we divide the time to maturity in trading intervals of length �t = 9=252 years. Table 11
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reports the results2; to compare the pricing performance we use the MAPE index given by

MAPEK =
100

N

NX
i=1

��CapMK (i)� CapBK (i)��
CapBK (i)

(37)

whereN = 100 is the number of daily estimates, CapMK (i) is the model price of the cap with

maturity K and CapBK (i) is the market price given by the Black formula.

Comparing the pricing errors, the humped volatility models outperform the other models.

The in-sample analysis reveals that the mixed models do not improve the estimation with re-

spect the humped volatility models; valuing the pricing accuracy the mixed models 2-MIXED4

and 2-MIXED6, one factor with humped volatility and the other with strictly decreasing volatil-

ity, improve the MAPE error and we can assert that the combination of two different volatil-

ity functions is the optimal choice. Moreover, is not clear the benefit of adding a risk factor.

Among the strictly decreasing volatility models, the one factor model outperforms the multi-

factor models. But, in the case of humped volatility, the two factor model provides better pric-

ing performance than the three factor model. Interest rate volatility can depend on the level of

the interest rates themselves (Chan et al., 1992 and Amin and Morton, 1994), and the stochastic

volatility specification leads to accurate pricing performance: the models i-HUMP-STOC has a

lower pricing errors than the models i-HUMP.

As reported in the previous section, the estimate of parameters a4 (model 2-MIXED6) im-

proves the estimation, valuing both the likelihood score and the yield errors. In terms of pricing

performance, we have the same improvement, the pricing errors have gone down of 30%, from

8.2% to 5.8%.

We want to underline that the MAPE error of the model 2-MIXED6 it is relevant because

our model is calibrated using only the interest rate time series. Two separete reasons influence

this performance: the first one concerns the volatility specification, the humped volatility fits

better the observed data and it allows to price accurately interest rate derivatives. The second
2We could not get reliable results for the mixed model 3-MIXED1.
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Table 11 shows the pricing errors (MAPE) for caps with maturities 1,2,3,4,5,7 and 10 years. Results are based

on 100 trading days using a rolling window of 550 daily observations.

CAP MATURITY

model 1Y 2Y 3Y 4Y 5Y 7Y 10Y Avg

1-GAUSSIAN 87.3 35.5 8.9 23.0 32.3 36.4 20.2 34.8

2-GAUSSIAN 166.7 118.0 87.5 72.3 59.3 40.1 26.0 81.4

3-GAUSSIAN 128.9 89.4 72.9 65.9 57.8 43.4 31.9 70.0

1-SQRT1 91.0 41.2 7.3 14.4 23.1 26.5 13.4 31.0

2-SQRT1 168 119.3 89.0 74.0 61.1 42.1 27.1 82.9

3-SQRT1 129 90.6 74.8 68.4 60.6 46.5 35.4 72.2

1-HUMP 45.1 43.1 32 20.9 15.0 13.3 17.2 26.7

2-HUMP 25.6 20.8 18.1 12.5 10.1 9.2 8.5 15.0

3-HUMP 34.8 24.5 21.0 14.4 10.6 8.4 7.2 17.3

1HUMP-STOC 39.2 32.2 21.3 10.6 5.6 4.4 6.4 17.1

2-HUMP-STOC 18.7 12.0 8.5 6.7 6.1 4.9 6.4 9.0

3-HUMP-STOC 29.5 19.4 10.7 3.7 4.0 6.3 8.5 11.7

2-MIXED4 12.9 11.0 11.9 8.0 5.8 4.6 3.3 8.2

2-MIXED6 11.8 8.1 6.0 4.5 4.2 3.2 3.0 5.8

3-MIXED2 21.1 11.1 11.3 15.0 15.4 11.8 8.5 13.4

3-MIXED3 24.6 15.2 7.3 4.6 6.6 8.8 11.3 11.2

one is the estimation methods, the Kalman filter, which exploits both cross section and time

series data. A huge quantity of interest rate models have been implemented using option-

based estimation with the purpose of pricing and hedging a specific interest rate derivative,

unfortunately, these models are often incompatible, such as the Libor Market Model for caps

and the Swap Market Model for swaptions. As a consequence, it is very complicated to manage

the interest rate risk when the portfolio includes different types of interest rate derivatives.

Finally, we analise the three factor models based on three different forward volatility func-

tions, see (34)-(36). Also in this case, adding the third factor does not provide improvement in

terms of pricing performance, therefore we can assert that, in our sample, in order to pricing

interest rate derivatives, two factor models are sufficient.
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7 Conclusions

In this work we show the benefits of humped volatility specification in multifactor HJM mod-

els; in literature, the empirical applications of multifactor models has been limited by the com-

plexity of the procedures applied to the parameter estimation and derivative pricing (hedging).

This work analyses the humped volatility specification within the stochastic multifactor HJM

models which satisfy the Markov property. We develop the empirical application in two steps:

in-sample analisys and pricing performance.

We show that the humped volatility improves the parameter estimation and it allows us

to avoid unrealistic (implying diverging volatility) parameter estimates induced by misspec-

ification; moreover, the humped shape allows us to correctly estimate the initial yield curve.

The improvement is clear both in terms of likelihood score and yield errors. Mixed models, i.e.

with different specifications of volatility functions, outperform the strictly decreasing volatility

models, but they do not perform better than the humped volatility ones; the assumption of

level dependent volatility does not improve the model estimation.

With respect to cap pricing, the humped volatility specification allows us to reduce heavily

the pricing errors, obtaining good results despite the interest rate-based estimation. We show

that the two factor model with different types of forward volatility functions, one with humped

shape and the other strictly decreasing, outperforms the other models. About the level depen-

dent volatility assumption, the results show that it improves the pricing performance.

An important direction for future research is the analisys of the benefits of the humped

volatility in hedging interest rate derivatives; moreover, the analysis should be extended to

more complex derivative products, for instance swaptions or Bermudan swaptions.
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