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Abstract: By applying robust control the decision maker wants to make good decisions when 

his model is only a good approximation of the true one. Such decisions are said to be robust 

to model misspecification. In this paper it is shown that both a “probabilistically 

sophisticated” and a non-“probabilistically sophisticated” decision maker applying robust 

control in the time domain are indeed assuming a very special kind of “misspecification of 

the approximating model.” This is true when unstructured uncertainty à la Hansen and 

Sargent is used or when uncertainty is related to unknown structural parameters of the model. 
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1. Introduction 

 

A characteristic “feature of most robust control theory”, observes Bernhard (2002, p. 19),  “is 

that the a priori information on the unknown model errors (or signals) is nonprobabilistic in 

nature, but rather is in terms of sets of possible realizations. Typically, though not always, the 

errors are bounded in some way. ... As a consequence, robust control aims at synthesizing 

control mechanisms that control in a satisfactory fashion (e.g., stabilize, or bound, an output) 

a family of models.”1 Then “standard control theory tells a decision maker how to make 

optimal decisions when his model is correct (whereas) robust control theory tells him how to 

make good decisions when his model approximates a correct one” (Hansen and Sargent,  

                                                 
1 Robust control has been a very popular area of research in the last two decades and shows no sign of fatigue. 
See, e.g., Giannoni (2002, 2007), Hansen and Sargent (2001, 2003, 2007, 2008), Hansen et al. (1999, 2002), 
Onatski and Stock (2002), Rustem (1992, 1994, 1998), Rustem and Howe (2002) and Tetlow and von zur 
Muehlen (2001a,b). However the use of the minimax approach in control theory goes back to the 60’s as pointed 
out in Basar and Bernhard (1991, pp. 1−4). 
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2008, p. 25). In other words, by applying robust control the decision maker makes good 

decisions when it is statistically difficult to distinguish between his approximating model and 

the correct one using a time series of moderate size. “Such decisions are said to be robust to 

misspecification of the approximating model” (Hansen and Sargent, 2008, p. 27).  

 

The main focus of the present work is to investigate the assumptions implicit in the 

“nonprobabilistic” nature of the a priori information used to derive the linear-quadratic 

robust control in discrete-time. This is a relevant point emphasized in Sims (2001) where, on 

page 52, it reads “once one understands the appropriate role for this tool (i.e. robust control 

or maxmin expected utility), it should be apparent that, whenever possible, its results should 

be compared to more direct approaches to assessing prior beliefs.”  Then he continues, “the 

results may imply prior beliefs that obviously make no sense … (or) they may … focus the 

minimaxing on a narrow, convenient, uncontroversial range of deviations from a central 

model.” In the latter case “the danger is that one will be misled by the rhetoric of robustness 

to devoting less attention than one should to technically inconvenient, controversial 

deviations from the central model.”2 

 

Tucci (2006, p. 538) argues that “the true model in Hansen and Sargent (2008) … is 

observationally equivalent to a model with a time-varying intercept.” Then he goes on 

showing that, when the same “malevolent” shock is used in both procedures, the robust 

control for a linear system with an objective function having desired paths for the states and 

controls set to zero applied by a “probabilistically sophisticated” decision maker is identical 

to the optimal control for a linear system with an intercept following a “Return to Normality” 

model and the same objective function only when the transition matrix in the law of motion of 

the parameters is zero.3  He concludes that the decision maker applying robust control 

implicitly assumes “that today’s malevolent shock is linearly uncorrelated with tomorrow’s 

malevolent” shock” (p. 553). The goal of this paper is to see if this result holds in more 

general settings both for a “probabilistically sophisticated” and a non-“probabilistically 

sophisticated” decision maker.  

 

The remainder of the paper is organized as follows. Section 2 presents a robust 

control problem with unstructured uncertainty à la Hansen and Sargent, i.e. a nonparametric 

                                                 
2 See also Hansen and Sargent (2008, pp. 14−17). 
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set of additive mean-distorting model perturbations, where the decision maker is assumed to 

be “probabilistically sophisticated”. An example of a non-“probabilistically sophisticated” 

decision maker, namely the case sometimes labeled robust filtering without commitment, is 

discussed in Section 3. In Section 4 both problems are reformulated as linear quadratic 

tracking control problems where the system equations have a time-varying intercept 

following a ‘Return to Normality’ model and their solutions are compared with those of the 

previous sections. Sometimes  robust  control  is  applied  to situations where uncertainty is 

related to unknown structural parameters.4 Then the optimizing model for monetary policy 

used in Giannoni (2002, 2007) is presented (Sect. 5). Section 6 reports some numerical 

results obtained using the permanent income model, a popular model in the robust control 

literature (see, e.g., Hansen and Sargent, 2001, 2003, 2008; Hansen et al. 1999, 2002), and 

Giannoni’s structural model with uncertain parameters. The main conclusions are 

summarized in Section 7. 

 

 

2. Robust control à la Hansen and Sargent: The standard case 

 

Hansen and Sargent (2008, p. 140) consider a decision maker “who has a unique explicitly 

specified approximating model but concedes that the data might actually be generated by an 

unknown member of a set of models that surround the approximating model.”5 Then the 

linear system 

 

 1 1= + + t t t t+ +y Ay Bu Cε     for t = 0, ..., ∞,  (2.1) 
 

with ty  the n×1 vector of state variables at time t, tu  the m×1 vector of control variables and 

1t+ε  an l×1 identically and independently distributed (iid) Gaussian vector process with mean 

zero and an identity contemporaneous covariance matrix, is viewed as an approximation to 

the true unknown model 

  

 1 1 1= + + ( )t t t t t+ + ++y Ay Bu C ε ω    for t = 0, ..., ∞.  (2.2) 
 

                                                                                                                                                        
3 By probabilistic sophistication is meant that “in comparing utility processes, all that matters are the induced 
distortions under the approximating model” (Hansen and Sargent, 2008, p. 406). 
4 The reasons that may lead to prefer this formulation are discussed in Giannoni (2007, p. 182). 
5  See Hansen and Sargent (2008, Ch. 2 and 7) for the complete discussion of robust control in the time domain. 
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The matrices of coefficients A, B and C are assumed known and 0y  given. 6 

 

In Equation (2.2) the vector 1t+ω  denotes an “unknown” l×1 “process that can feed 

back in a possibly nonlinear way on the history of y, (i.e.) 1 1( , ,  ...)t t t t+ −= g y yω  where { }tg  is 

a sequence of measurable functions” (Hansen and Sargent, 2008, pp. 26-27). It is introduced 

because the “iid random process ... 1( )t+ε  can represent only a very limited class of 

approximation errors and in particular cannot depict such examples of misspecified dynamics 

as are represented in models with nonlinear and time-dependent feedback of 1t+y  on past 

states” (p. 26).7 To express the idea that (2.1) is a good approximation of (2.2) the ω’s are 

restrained by  

 

 1
0 1 1 0

0

t
t t

t
E β η

∞
+

+ +
=

⎡ ⎤′ ≤⎢ ⎥
⎣ ⎦
∑ ω ω     with 0 < β < 1  (2.3) 

 

where 0E  denotes mathematical expectation evaluated with respect to model (2.2) and 

conditioned on 0y  and 0η  measures the set of models surrounding the approximating model.8  

 

“The decision maker’s distrust of his model ... (2.1) makes him want good decisions 

over a set of models ... (2.2) satisfying ... (2.3)” write Hansen and Sargent (2008, p. 27). They 

consider two robust control problems: the constraint problem and the multiplier problem. 9 

The constraint robust control problem is defined as  

 

 0
0

max  min  ( , )t
t t

t
E rβ

∞

=

⎡ ⎤
− ⎢ ⎥

⎣ ⎦
∑u

y u
ω

,      (2.4) 

                                                 
6 It is assumed, see e.g. page 140 in Hansen and Sargent (2008), that the pair ( βA,B ) is stabilizable, i.e. the 
eigenvalues of A − BFt , where Ft  is the ‘feedback’ matrix (i.e. ut  = −Ft yt ), have absolute values strictly less 

than  1 β where β is a discount factor between 0 and 1. The matrix C is sometimes called the “volatility 
matrix” because, given the assumptions on the ε’s, it “determines the covariance matrix C′C of random shocks 
impinging on the system” (p. 29). 
7 When Equation (2.2) “generates the data it is as though the errors in ... (2.1) were conditionally distributed as 

    N (ω t +1,I l )  rather than as     N (0,I l )  ...  (so) we capture the idea that the approximating model is misspecified 
by allowing the conditional mean of the shock vector in the model that actually generates the data to feedback 
arbitrarily on the history of the state” (Hansen and Sargent, 2008, pp. 27). 
8 See Hansen and Sargent (2008, p. 11). 
9 See p. 32 and Chapters 6−8 in Hansen and Sargent (2008) for details.  
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with ( , )t tr y u  the one-period loss function, subject to (2.2)-(2.3) where *
0η η>  and *η  

“measures the largest set of perturbations against which it is possible to seek robustness” (p. 

32). The multiplier robust control problem  is formalized as  

 

 [ ]0 1 1
0

max  min  ( , )  t
t t t t

t
E rβ θβ

∞

+ +
=

⎧ ⎫′− −⎨ ⎬
⎩ ⎭
∑u

y u
ω

ω ω     (2.5) 

 

subject to (2.2) with θ, *0 θ θ< < ≤∞, a penalty parameter restraining the minimizing choice 

of the 1{ }t+ω  sequence The “breakdown point” *θ represents “a lower bound on θ that is 

required to keep the objective of the two-person zero-sum game convex in ... ( 1t+ω ) and 

concave in tu ” (p. 161).10 Both problems can be reinterpreted as two-player zero-sum games 

where one player is the decision maker maximizing the objective function by choosing the 

sequence for u and the other player is a malevolent nature choosing a feedback rule for a 

model-misspecification process ω  to minimize the same criterion function.11 For this reason, 

the constraint and the multiplier robust control problem are also referred to as the constraint 

and multiplier game, respectively.  

 

Hansen and Sargent (2008, p. 139) notice that “constraint and multiplier games differ 

in how they parameterize a set of alternative specifications that surround an approximating 

model ... (the former) require that the discounted entropy of each alternative model relative to 

the approximating model not exceed a nonnegative parameter ... ( 0η ) ... (whereas the latter) 

restrict the discounted entropy implicitly via a penalty parameter θ .”12 However if the 

                                                 
10 As noted in Hansen and Sargent (2008, p. 40) “this lower bound is associated with the largest set of 
alternative models, as measured by entropy, against which it is feasible to seek a robust rule ... This cutoff value 
of θ ... is affiliated with a rule that is robust to the biggest allowable set of misspecifications.” See also Ch. 7 in 
the same reference and Hansen and Sargent (2001) for a further discussion of the restrictions on the robustness 
parameter θ . 
11 See Hansen and Sargent (2008, p. 35). 
12 Hansen and Sargent (2008, pp. 12−14) argue that entropy is the most appropriate way to measure model 
misspecification. Let   f0  denote “the conditional distribution of next period’s state ... (and)  f ... an arbitrary 
alternative conditional distribution that puts positive probability on the same events as the approximating model 

  f0  (then) ... entropy    I ( f0 , f )(yt )  is ... the conditional expectation of the log-likelihood ratio evaluated with 
respect to the distorted model  f ” (Hansen and Sargent, 2008, pp. 41−42). An intertemporal measure of model 

misspecification is “
    
I ( fα , f ) = E f β t

t =0
∞∑ I ( fα , f )(yt )  where E f is the mathematical expectation evaluated 

with respect to the distribution f ... (and the) decision maker confronts model misspecification by seeking a 
decision rule that will work well across a set of models for which I ( fα , f ) ≤ η0 ” (p. 11). See also pages 30−31 
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parameters 0η  and θ are appropriately related the two “games have equivalent outcomes.” 

Equivalent in the sense that  if there exists a solution *u , *ω  to the multiplier robust control 

problem, that *u  also solves the constraint robust control problem with *
0 0= =η η  

1 * *
0 1 10
[ ]t

t tt
E β∞ +

+ +=
′∑ ω ω .13 Then, in Appendix C of Ch. 7, two sets of formulae to compute the 

robust decision rule are provided and it is pointed out that the Riccati equation for the robust 

control problem (2.5) “is the Riccati equation associated with an ordinary optimal linear 

regulator problem (also known as the linear quadratic control problem) with controls 

1(   )t t+′ ′ ′u ω  and penalty matrix on those controls appearing in the criterion function of 

diag( ,R  lβθ− I )” (p. 170).14  

 

Therefore the robust rules for tu  and the worst-case shock 1t+ω  can be directly 

computed from the associated ordinary linear regulator problem. In particular, when the one-

period loss function ( , )t tr y u  is specified as15 

 

( ) ( ) ( ) ( ) ( ) ( )d d d d d d
t tt t t t t t t t t t t

′ ′ ′− − + 2 − − + − −y y Q y y y y W u u u u R u u
�

� � � , (2.6) 

 

with Q a positive semi-definite matrix, R a positive definite matrix, W an n×m array, d
ty  and 

d
tu  the desired values of the states and controls, respectively, for period t, the robust control 

                                                                                                                                                        
and 61-62 in the same reference. Finally, it should be noticed that the Bellman equation for the multiplier robust 
control model can be written as in their Eqt. 2.6.1 on page 42, i.e. 
 

   
− ′ytPtyt − pt = max

u
 min

f
 − E0 r(yt ,ut ) + 2θβ I ( f0 , f )(yt ) − β ′yt +1Pt yt +1 − βpt⎡⎣ ⎤⎦ , 

 
when the desired paths for the states and controls are equal to 0 in the one-period utility function. 
13  See Hansen and Sargent (2008, pp. 159−160). 
14 This is due to the fact that the “Riccati equation for the optimal linear regulator emerges from first-order 
conditions alone, and that the first order conditions for (the max-min problem (2.5) subject to (2.2)) match those 
for an ordinary, i.e. non-robust, optimal linear regulator problem with joint control process {ut  , ωt+1 }” 
(Hansen and Sargent, 2008, p. 43). 
15  This is a minor generalization of the case discussed in Hansen and Sargent (2008, Ch. 2 and 7) where the 
desired values for the states and controls are 0 and there are no cross products between states and controls in the 
objective function. See their Ch. 4 and pages 167−168 for a transformation of the control problem that 
eliminates cross products between states and controls in the objective function. 
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rule is derived by extremizing, i.e. maximizing with respect to u t and minimizing with respect 

to ω 1t+ , the objective function16 

  

 0
0

( , )t
t t

t
E rβ

∞

=

⎡ ⎤
− ⎢ ⎥

⎣ ⎦
∑ y u�         (2.7) 

 

with 

( ) ( ) ( ) ( ) ( ) ( )
( , )

2

t t

d d d d d d
t t t t t t t t t t t t

r =

′ ′ ′− − + − − + − −

y u

y y Q y y y y W u u u u R u u

�

� �� � � � � �
 (2.8) 

 
subject to  

 

 1 1t t t t+ += + +y Ay Bu C� � ε     for t = 0, ..., ∞  (2.9) 
 

where17 

 

lβθ
⎡ ⎤

= ⎢ ⎥−⎣ ⎦

R O
R

O I
� , [ ]

1

 ,  ,  
d

t d t
t t

t+

⎡ ⎤⎡ ⎤
= = = ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

u u
u B B C u

0
�� �

ω
   (2.10) 

 

and [ ]=W W O� with O and 0 null arrays of appropriate dimension.  

 

 Setting ε 1t+ = 0 and writing the optimal value of (2.7) as 2 ,t t t t t′ ′− −y P y y p 18 the 

Bellman equation looks like19 

                                                 
16 Indeed, as pointed out in Intriligator (1971, p. 342, fn. 4) Eqt. (2.7) is a functional dependent on the control 
trajectory whereas the solution to the problem is a function dependent on the parameters given by the initial 
state y0  and the initial time t = 0. 
17 The penalty matrix   %R  implies that each component of the vector process ωt+1  is penalized in the same way.  
18 Using the deterministic counterpart to (2.7) and (2.9) allows to simplify some formulas by dropping constants 
from the value function without affecting the formulas for the decision rules. As noted in Hansen and Sargent 
(2008, p. 33) “the certainty equivalence principle that applies to the linear quadratic dynamic programming model 
without concern for model misspecification ... fails to hold when there is concern about model misspecification.” 
However, they continue, “it can be verified directly that precisely the same Riccati equations and the same 
decision rules for    ut  and ω t +1  emerge from solving the random version of the Bellman equation (for model (2.7)) 

... as would from a version that sets   ε t +1 ≡ 0 ” in Eqt. (2.9). The concern for model misspecification, as they 

underline in the following page, makes the decision rule for ut dependent upon the ‘volatility matrix’ C. 
Sometimes, the optimal value of (2.7) is called the optimal cost-to-go. See, e.g., Kendrick (1981) and Tucci 
(2004). 
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[
]

1 1

1 1 1 1 1

2 2 2

2 2

t t t t t t t t t t t t t t t t t t

t t t t t t t

ext βθ + +

+ + + + +

′ ′ ′ ′ ′ ′ ′− − = − + − + +

′ ′ ′+ + +
u

y P y y p y Q y u R u y W u y q

u r y P y y p
�

ω ω
 (2.11) 

 

with 1t tβ+ =P P , t
t β=Q Q ,  t

t β=W W ,  t
t β=R R ,  t =q −( d d

t t t t+Q y W u )  and  ( d
t t t= −r R u   

)d
t t′+W y .20 Then expressing the right-hand side of (2.11) only in terms of y t  and tu�  and 

extremizing it yields the optimal control for the decision maker 

 

( ) ( )1
1 1 1 1 1t t t t t t t t t t

−
+ + + + +

⎡ ⎤′= − + ′ ′ + + ′ + ′ +⎢ ⎥⎣ ⎦
u R B P B B P A W y B P C B p rω  (2.12) 

 

and the optimal control for the malevolent nature 

 

 1
1 1 1 1 1( ) ( ).t l t t t t t tβθ −

+ + + + += − ′ ′ + ′ + ′I C P C C P Ay C P Bu C pω    (2.13) 
 

It follows that the θ-constrained worst-case controls are21 

 

( ) ( )1* * *
1 1 1t t t t t t t t

−

+ + +
⎡ ⎤′= − + ′ ′ + + ′ +⎣ ⎦u R B P B B P A W y B p r    (2.14) 

 

and22 

( ) ( ) ( ){
( ) ( ) }

11 * *
1 1 1 1 1

1* * 1
1 1 1 1

t l t t t t t t t

t t t t t t

βθ
−−

+ + + + +

− −
+ + + +

⎡ ⎤′= − ′ ′ − + ′ ′ +⎢ ⎥⎣ ⎦

− + ′ ′ + +

I C P C C P A B R B P B B P A W y

B R B P B B p r P p

ω
(2.15) 

 

                                                                                                                                                        
19 The constant term appearing on the right-hand side and on the left-hand side of the equation have been dropped 
because they do not affect the solution of the optimization problem. See, e.g., Eqt. (2.5.3) in Hansen and Sargent 
(2008, Ch. 2). 
20 When the desired paths for the states and controls are set to 0, pt = qt = rt = 0 .  
21 See, e.g., Eqs. (7.C.18)−(7.C.19) in Hansen and Sargent (2008, p. 169). As suggested on page 35 of the same 
reference Eqt. (2.11) “can be represented as” 
 

 
   
− ′ytPtyt − 2 ′ytpt = max

u
− ′ytQtyt⎡⎣ + ′utR tut + 2 ′yt Wtut + 2 ′ytqt + 2 ′utrt + ′yt +1Pt +1

* yt +1+2 ′yt +1pt +1
* ⎤

⎦  

 
subject to the approximating model (2.1) instead of the distorted model (2.2). 
22 See, e.g., Eqt. (7.C.9) in Hansen and Sargent (2008, p. 168). As pointed out on page 139 of the same work, 
the “two-player zero-sum dynamic games  ... (i.e.) an effectively static Stackelberg multiplier game in which a 
... player at time 0 chooses a history-dependent sequence of controls … (and) a Markov perfect multiplier game 
in which both players choose sequentially … have identical outcomes” both when the ω-player chooses before 
the u-player, at time 0 or in each period   t ≥ 0 , and vice versa. 
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with23 

 

 * 1
1 1 1 1 1= + (  )t t t l t tβθ −

+ + + + +− ′ ′P P P C I C P C C P      (2.16) 

 * 1
1 1 1 1=  + (  )t n t l t tβθ −

+ + + +⎡ ⎤− ′ ′⎣ ⎦p I P C I C P C C p .     (2.17) 
 
The “robust” Riccati matrix *

1t+P  is always greater or equal to P 1t+ because it is assumed that, 

in the “admissible” region, the parameter θ is large enough to make 1(  )l tβθ +− ′I C P C  

positive definite.24 The two Riccati matrices are equal when θ =  ∞.25 The same 

considerations apply to *
1t+p .  

 

As noted in Hansen and Sargent (2008, p. 11), the first order conditions for problem 

(2.11) subject to (2.9) imply the matrix Riccati equation 

 

 ( )( ) ( )1

1 1 1 1t t t t t t t t t

−

+ + + +
′′ ′ ′ ′= + − + + +P Q A P A A P B W B P B R A P B W� � � � � � �  , (2.18) 

 

where t
t β=R R� �  and t

t β=W W� � , and the Riccati equation for the p vector26 

 

 ( )( ) ( )1

1 1 1 1t t t t t t t t t

−

+ + + +′ ′ ′ ′= + − + + +p q A p A P B W B P B R B p r� � � � � � �   (2.19) 
 

where t
t β=R R� � , t

t β=W W� �  and ( )t t l′ ′ ′=r r 0� . It is straightforward to show that the right-

hand side of Eqs. (2.18)-(2.19) can be rewritten as  

 

( )( ) ( )1* * *
1 1 1 1t t t t t t t t

−

+ + + +
′′ ′ ′+ − + + ′ +Q A P A A P B W R B P B A P B W  

 

and 

 ( )( ) ( )1* * * *
1 1 1 1t t t t t t t t

−

+ + + +′ ′ ′ ′+ − + + +q A p A P B W B P B R B p r , 

                                                 
23 See, e.g., Eqs. (2.5.6) on p. 35 and (7.C.10) on p. 168 in Hansen and Sargent (2008) where the quantity 

   β
−1Pt +1

*  is denoted by D(P).   
24 See, e.g., Theorem 7.6.1 (assumption v) in Hansen and Sargent (2008, p. 150). 
25 The parameter θ  is closely related to the risk-sensitivity parameter, say σ , appearing in intertemporal 
preferences obtained recursively. Namely, it can be interpreted as minus the inverse of σ . See, e.g., Hansen 
and Sargent (2008, pp. 40−41, 45 and 225), Hansen et al. (1999) and the references therein cited. 
26 This recursion is not necessary when the desired paths are set to 0 as in Hansen and Sargent (2008, Ch. 2 and 
7). 
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respectively. Equations (2.18) and (2.19) reduce to the usual Riccati equations of the linear 

quadratic tracking control problem when ω 1t+ = 0.27 

 

 

3. Robust filtering without commitment 

 

The previous section has considered the case where the decision maker is “probabilistically 

sophisticated.” Namely, a decision maker who cares only of the “induced distributions under 

the approximating model.” As explained in Hansen and Sargent (2008, pp. 405-406) “this is a 

property of expected utility preferences ... preferences that are defined by using a single 

constraint or penalty make the decision maker indifferent between utility processes with 

identical induced distributions.” However robust control can be applied also to situations 

where there are multiple penalty functions (i.e. more than one θ), in other words cases where 

the decision maker is not “probabilistically sophisticated.”  

 

For instance, Hansen and Sargent (2008, p. 383) “study a decision maker who does 

not observe parts of the state that help forecast variables he cares about.” They assume that 

his “approximating model includes a recursive representation of the estimator of the hidden 

state that is derived by applying the ordinary (i.e. non robust) Kalman filter to the 

approximating state space model for states and measurements.” Then “to obtain decision 

rules that are robust with respect to perturbations of the conditional distributions associated 

with the approximating model, the decision maker imagines a malevolent agent who perturbs 

the distribution of future states conditional on the entire state as well as the distribution of the 

hidden state conditional on the history of signals.” This is sometimes referred to as the 

“robust filtering without commitment” problem.  

 

The law of  motion for the states in the approximating model is  

 

 1 1t t t t+ += + +y Ay Bu Cε        (3.1) 
 

with  

                                                 
27 See, e.g., Kendrick (1981, Ch. 2).  
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1 11 12
1

2 21 221

,  = ,  t
t

+
+

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

y A A
y A

y A A
 1

2

,
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

B
B

B
 1

2

,
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

C
C

C
 1

1
2 1

=t
t

+
+

⎡ ⎤
⎢ ⎥
⎣ ⎦

ε
ε

ε
 

 

where now the state vector is partitioned into two parts with 1y  containing the 1n  observed 

variables and 2y  the 2n  hidden state variables, with 1 2n n n+ = , and tu  and 1t+ε  are as in the 

previous section.28 The decision maker ranks sequences of states and controls according to  

 

( )0 1, 2,
0

, ,t
t t t

t
E Uβ

∞

=

⎡ ⎤
− ⎢ ⎥

⎣ ⎦
∑ y y u        (3.2) 

 

with the one-period utility function U defined as  

 

( )

[ ]

1, 2,

11 12 1 1,

1, 2, 12 22 2 2,

1 2

, ,t t t

t
t

t t t t t t
t

t

U =

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥′ ′ ′ ′ ′ ′⎡ ⎤ ≡ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ′⎣ ⎦ ⎣ ⎦′ ′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

y y u

Q Q W y
yQ W

y y u Q Q W y y u
uW R

W W R u

  (3.3) 

 

with the matrices Q, R and W as in the previous section and 1,0y , the observed portion of the 

state vector at time 0, given.  

 

Assuming that the decision maker believes that the distribution of the initial value of 

the unobserved part of the state is 2,0 2,0 0N( , )y y�∼ Δ  and taking into account that 1y  is 

observed, the ordinary Kalman filter gives the projected value of 1, 1t+y  conditional on all the 

available information at time t, i.e. E ( 1, 1 |t tI+y ), and the updated value of 2, 1t+y  conditional 

                                                 
28 In Ch. 18, Hansen and Sargent (2008) consider the general case where at time t+1 the decision maker  
observes a vector s that includes y1 and possibly other signals about the hidden subset of the state. The law of 
motion relating these signals with the states and controls is written as st +1 = D1y1,t + D2y2,t + Hut + Gε t +1  and 

the relationship between y1  and s is  
   
y1,t +1 = Πsst +1 + Πy1

y1,t + Πuut . Then the arrays in (3.1) are defined as 

  
A11 = ΠsD1 + Πy1

,   A12 = ΠsD2 ,   B1 = ΠsH + Πu and C1 = ΠsG . When the vector s is simply   y1 , the matrices 

  
Πy1

 and Πu  are null,  Πs = I and   A11 ≡ D1,  A12 ≡ D2 ,  B1 ≡ H and C1 ≡ G.   
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on all the available information at time t+1, namely 2, 1t E+ ≡y� ( 2, 1 1|t tI+ +y ).29 Under the 

approximating model, 2,ty  is distributed as 2,N( , )t ty� Δ , with 2, 2, 2, 2,[( )( ) ]t t t t tE ′= − −y y y y� �Δ , 

and the mean and variance of the state represent sufficient statistics for the distribution of the 

unobserved part of the state at time t.30 Equation (3.1) is then rewritten with the system 

equations for 2y  replaced by the associated ordinary Kalman filter updating equation and the 

law of motion for the observed subvector expressed in terms of the updated estimate of the 

hidden state and the discrepancy between this value and the true one, i.e.31  

 

 ( )1 1 1 2 2, 2,( ) ( )t t t t t t t t+ += + + + −y Ay Bu C C y y
� �� � �Δ ε Δ     (3.4) 

 

with32 

 

1
1

2 1

,  t
t

+
+

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

y
y

y
�

� 1 12
1 2

1 12

( ) ,  ( )
( ) ( )t t

t t

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

C A
C C

C A
� �

Δ Δ
Ξ Δ Ξ Δ

,  

 

where 1
22 12 2 1 12 12 1 1( ) ( )( )t t t

−′ ′ ′ ′= + +A A C C A A C CΞ Δ Δ Δ , 1 N( , )t l+ 0 I∼ε  and 2, 2,N( ,t ty y�∼  )tΔ .  

 

In this approximating model appear two random vectors: 1t+ε  and 2, 2,t t−y y� .  Hansen 

and Sargent (2008, p. 386) “seek a decision rule that is robust to statistical perturbations of ... 

                                                 
29 See Hansen and Sargent (2008, p. 386). As well known, see e.g. Hamilton, Eqt. 13.2.13, the updating value 
for y2,t+1 can be written as 
 

   

E(y2,t +1 | It +1) = E(y2,t +1 | It ) +{E[(y2,t +1 − E(y2,t +1 | It ))(st +1 − E(st +1 | It ) ′) ]}

×{E[(st +1 − E(st +1 | It ))(st +1 − E(st +1 | It ) ′) ]}−1(st +1 − E(st +1 | It ))
  

 
when s is the vector of observed signals. 
30 In this case, the equation for updating the covariance estimate is Δ t +1 = A22Δ t ′A22 + C2 ′C2  

   −(A22Δ t ′A12 + C2 ′C1)(A12Δ t ′A12 + C1 ′C1)−1(A22Δ t ′A12 + C2 ′C1 ′) . As pointed out in Hansen and Sargent (2008, 

p. 387) “ Δ t  evolves exogenously with respect to ...  (y1, (y2 )  so that given an initial condition  Δ0  a path 

  {Δ t }t =0
∞  can be computed before observing anything else.” 

31 This equation corresponds to the first two rows of Eqt. (18.2.7) in Hansen and Sargent (2008, p. 387). As 
pointed out in footnote 5 on page 386 of the same reference, in the case of robust filtering with commitment the 
“approximate model ... (does) not include the law of motion for an estimate of the hidden state induced by 
applying the ordinary Kalman Filter.” 
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(3.4). (Namely, they) ... want to perturb at date t: ... the conditional distribution of the shock 

... ( 1t+ε ) which according to the approximating model is N( , )l0 I ; and ... the distribution of 

the hidden state ... ( 2,ty ) which according to the approximating model is 2,N( , )t ty� Δ .” Let 

1,tω  and 2,tω  represent the perturbation to the distribution of 1t+ε  and of the hidden state 

conditional on ( 1, 2,,t ty y� ), respectively.33 Then the misspecified model is written as34 

 

 ( ) ( )1 1 1 1, 2 2, 2, 2,( ) ( )t t t t t t t t t t+ += + + + + + −y Ay Bu C C y y
� �� � �Δ ε ω Δ ω   (3.5) 

 

and the associated return function is 

 

( ) 2 1
1, 2, 1 1, 2 2, 2,, ,t t t t t t tU θ θ −′− − Δy y u ω ω ω      (3.6) 

 

where  1θ  and 2θ  penalize distortions 1,tω  and 2,tω , respectively.35  

 

When d
ty  and d

tu  denote the vectors of desired values of the states and controls, 

respectively, for period t, Equation (3.6) can be rewritten as36  

                                                                                                                                                        
32 In the general case discussed in footnote 28 the second block in  

(
C1(Δ t )  and  

(
C2 (Δ t )  is    Ξ(Δ t )G  and 

   Ξ(Δ t )D2 , respectively, with    Ξ(Δ t ) = (A22Δ t ′D2 + C2 ′G )(D2Δ t ′D2 + G ′G )−1  and    Δ t +1 = A22Δ t
′A22  

   +C2
′C2 − Ξ(Δ t )(A22Δ t ′D2 + C2 ′G ) . 

33 This is as though   ε t +1  and     y2,t − (y2,t , conditionally on  ( y1,t , (y2,t ), are distributed as  
    
N (ω1,t ,I l )  and 

   
N (ω 2,t , Δ t ) , respectively, rather than as N (0,I l )  and N (0, Δ t ) , respectively, as in the approximating 

model. See footnote 7 above. 
34 See Hansen and Sargent  (2008, p. 390). In the formal analysis of Ch. 18, they assume that “the decision maker 
distorts a model conditioned on the hidden state by applying an operator T1 and distorts a prior over models by 
applying an operator T2” (p. 384). In other words  the “operator T1 systematically perturbs the distribution of ... 
(εt+1) conditional on ... (    y1,t ,

(y2,t , y2,t ) and another operator T2 perturbs the distribution of ... (
   
y2,t ) conditional 

on ... (    y1,t , (y2,t )” (p. 387). 
35 As underlined in Hansen and Sargent (2008, p. 387) in the case of robust filtering with commitment the 
“benchmark model ... (is repeatedly modified because) past distortions alter the current period reference 
model.” On the other hand when applying robust filtering without commitment “each period the decision maker 
retains the same original benchmark model. By itself this diminishes the impact of robust filtering.” They 
suggest to let “ θ2  to be smaller than  θ1  thereby giving the current period minimizing agent more flexibility to 
distort the distribution of the current hidden state.” 
36 The penalty matrix Q corresponds to Π22 in Hansen and Sargent’s (2008, Ch. 18) notation,   %R to Π11 with the 
blocks in the second row and column appearing in the third row and column and vice versa and   %W to Π21 with 
the second and third column inverted. 
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( )

( ) ( ) ( ) ( ) ( ) ( )
,

( ) 2

t t

d d d d d d
t t t t t t t t t t t t t

r =

′ ′ ′− − + − − + − −

y u

y y Q y y u u R u u y y W u u

� �

� � �� �� � � � � �Δ
(3.7) 

 

where37 

 
*

*
( )

( )
t

t

⎡ ⎤
= ⎢ ⎥

′⎢ ⎥⎣ ⎦

R E
R

E
�

ω

Δ
Δ Δ

 with 
2 2

*
2( )m l n m l m n× + × ×

⎡ ⎤′= ⎢ ⎥
⎣ ⎦

E O W , 1
-1

22 2

( ) l
t

t

θ
θ

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

I O
O RωΔ Δ

Δ
, 

 

W� = (W  M*) with  M* = [O  2Q ], O being a null matrix of dimension n×l and 2Q  the matrix 

of dimension n×n2 obtained deleting the first n1 columns of matrix Q in (3.3), d
t =u�  (  d

t
′ ′u 0 )′ 

and 0 a null (l + n2)-dimensional vector. As stressed in Hansen and Sargent (2008, p. 389) 

“assigning different values to θ  ...  lets the decision maker to focus more or less on 

misspecifications of one or the other of the two distributions being perturbed.” 

 

For the linear quadratic problem at hand, 1 2( , )y y� -contingent distortions 1,tω  and 2,tω  

and the associated robust rule for u can be computed by solving the deterministic, certainty 

equivalent, problem38 

 

( )
1 2, 0

max  min  ,
t

t
t t

t
rβ

∞

=

⎡ ⎤
−⎢ ⎥

⎣ ⎦
∑u

y u� �
ω ω

       (3.8) 

 

subject to 

 

1 ( )t t t t+ = +y Ay B u� � � �Δ         (3.9) 
 

where 

 

                                                 
37 “In the special case that the decision maker conditions on an infinite history of signals and in which Δt  has 

converged we can set   Δ t +1 = Δ t ” (Hansen and Sargent, 2008, p. 301). Then the matrices     
%R(Δ t )  and   Δω (Δ t )  

can be simply denoted by  %R  and Δω , respectively, and are constant over time. 
38  Equations (3.8)-(3.9) in the text correspond to Eqs. (18.2.16) and (18.2.17) in Hansen and Sargent (2008, 
Ch. 18). 
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1
1

2 1
t

t
+

+

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

y
y

y
�

� , 1

2

, =t t
t t

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

u
u�

ω
ω

ωω
, 1 2( ) ( ) ( ) ( )t t t t⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦B B C C B C

� � �� Δ Δ Δ Δ  

 

and the Gaussian random vectors with mean zero have been dropped as in the previous 

section.39 

 

 Writing the optimal value of (3.8) as 2 ,t t t t′ ′− −y P y y p� � � 40 the Bellman equation looks 

like41 

 

[

]

*
,,

*
1 1 1 1 1

2 2 ( )

2 2 2 2 2

t t t t t t t t t t t t t t t t t t

t t t t t t t t t t t t t t t

ext

+ + + + +

′ ′ ′ ′ ′ ′− − = − + + −

′ ′ ′ ′ ′ ′+ + + + + +
u

y P y y p y Q y u R u u E

y W u y M y q u r y P y y p

� � � � �

� � � � � �
ωω

ω ω Δ Δ ω

ω
  (3.10) 

 

with  1t tβ+ =P P ,  t
t β=Q Q ,  t

t β=R R ,  * *t
t β=E E , , ( ) ( )t

t t tβ=ω ωΔ Δ Δ Δ , t
t β=W W ,  

* *t
t β=M M ,  t =q  −( d

t tQ y� d
t t+W u ) and ( ).d d

t t t t t= − + ′r R u W y�  Then expressing the right-

hand side of (3.10) only in terms of ty�  and tu�  and extremizing it yields the optimal control 

for the decision maker, i.e. 

 

 
( )

( ) ( )

1
1

*
1 1 1( ) ,

t t t

t t t t t t t t t

−
+

+ + +

= − + ′

⎡ ⎤′× ′ + + + ′ + ′ +⎣ ⎦

u R B P B

B P A W y E B P C B p r
�� Δ ω

   (3.11) 

 

and the optimal control for the malevolent nature  

 

 ( ) ( )1 * *
1 1 1( ) ( ) ( )t t t t t t t t t t t t

−
+ + +

⎡ ⎤′ ′′ ′ ′= + + + +⎢ ⎥⎣ ⎦
M C P A y E C P B u C p

� � ��ω Θ Δ Δ Δ  (3.12) 

 

                                                 
39 The modified certainty equivalence principle discussed in Hansen and Sargent (2008, Ch. 2) guarantees that 
omitting these terms does not affect the computations of ω1,t  and ω2,t . See also footnote 8 in Ch. 18 of the 

same reference. Finally it should be stressed that problem (3.8)−(3.9) allows to compute the decision rule u and 
the distortion 

  
ω2,t  that solves the general ‘misspecification problem’ stated in Eqt. (18.2.12) of the same 

chapter but  it does not provide the distortion ω1,t conditional on   (y1, y2 , (y2 )  that the T1 operator introduced 

in footnote 34 computes. This computation requires additional steps that go beyond the  scope of the present 
discussion (Hansen and Sargent, 2008, Sect. 18.2.9). 
40 See footnote 18 above. 
41 As in the previous instances, the constant term appearing on the right-hand side and on the left-hand side of the 
equation have been dropped. See footnote 19 above. 
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with , 1[ ( ) ( ) ( )]t t t t t t+′= − + C P C
� �

ωΘ Δ Δ Δ Δ . It follows that the (θ1,θ2)-constrained worst-case 

control vector is 

 

( ) ( )

( ) ( ){
( ) }

1
* 1 *

1 1 1

* 1 *
1 1 1

* 1
1 1 1

( ) ( )

( ) ( )

( ) ( ) .

t t t t t t t t t t

t t t t t t t t t t

t t t t t t t t

−
−

+ + +

−
+ + +

−
+ + +

⎧ ⎫′= − + ′ + + ′ + ′⎨ ⎬
⎩ ⎭

⎡ ⎤′′ ′× ′ + + + ′ +⎢ ⎥⎣ ⎦

′+ + ′ + ′ +

u R B P B E B P C E B P C

B P A W E B P C M C P A y

E B P C C p B p r

� �

� �

� �

Δ Θ Δ

Δ Θ Δ

Δ Θ Δ

 (3.13) 

 

In this general case, where the arrays *
tE  and *

tM  are not necessarily null matrices, 

the expressions in the numerator and denominator of Eq. (3.13) cannot be written as in (2.14) 

with 

 
* 1

1 1 1 1( ) ( )t t t t t t t
−

+ + + +′= +P P P C C P
� �

Δ Θ Δ . 
 

In any case the relations  

 

( ) ( )* 1 *
1 1 1 1( ) ( )t t t t t t t t t

−
+ + + +

′′ + + ′ + ′ ≥ ′B P B E B P C E B P C B P B
� �

Δ Θ Δ ,   (3.14a) 

 

( ) ( )* 1 *
1 1 1 1( ) ( )t t t t t t t t t

−
+ + + +

′ ′′ + + ′ + ≥ ′B P A E B P C M C P A B P A
� �

Δ Θ Δ    (3.14b) 

 

( )* 1
1 1 1 1( ) ( )t t t t t t t t

−
+ + + +′+ ′ + ′ ≥ ′E B P C C p B p B p

� �
Δ Θ Δ      (3.14c) 

 

always hold because it is assumed that θ1  and θ2  are large enough to make tΘ  positive 

definite.42 The equality signs prevail when θ1  = θ2  = ∞.  

 

As in the previous section, the first order conditions for problem (3.8) subject to (3.9) 

imply the matrix Riccati equation 

 

                                                 
42 See Eqt. 18.2.19 in Hansen and Sargent (2008, p. 391).  
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1

1

1 1 1( ) ( ) ( ) ( ) ( )

t t t

t t t t t t t t t t t

+

−

+ + +

′= +

′⎡ ⎤′⎡ ⎤ ⎡ ⎤′ ′− + + +⎣ ⎦ ⎣ ⎦⎣ ⎦

P Q A P A

A P B W B P B R A P B W� � � � � � �Δ Δ Δ Δ Δ
 (3.15) 

 

where ( ) ( )t
t t tβ=R R� �Δ Δ  and t

t β=W W� � . The Riccati equation for the p vector looks like43 

 

 
1

1

1 1 1( ) ( ) ( ) ( ) ( ) .

t t t

t t t t t t t t t t t

+

−

+ + +

′= +

⎡ ⎤ ⎡ ⎤′ ′⎡ ⎤′− + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

p q A p

A P B W B P B R B p r� � � � � �Δ Δ Δ Δ Δ
 (3.16) 

 

Both Equation (3.15) and (3.16) reduce to the usual Riccati equations of the linear quadratic 

tracking control problem when t = 0ω . 

 

 

4. Optimal control of a linear system with time-varying parameters 

 

Tucci (2006) argues that the model used by a “probabilistically sophisticated’ decision maker 

to represent dynamic misspecification, i.e. Eqt. (2.2), is observationally equivalent to a model 

with a time-varying intercept. When this intercept is restricted to follow a ‘Return to 

Normality’ model,44 and the symbols are as in Section 2, the latter takes the form 

  

 ( )1 1 1 1t t t t t+ + += + + +y A y Bu C α ε    for t = 0, ..., ∞,  (4.1) 
 

with 

 

 1 1t t+ += +aα ν       for t = 0, ..., ∞,   (4.2a) 

 1 1t t t+ += +ν Φν ζ      for t = 0, ..., ∞,   (4.2b) 

 

where a is the unconditional mean vector of 1,  t+α  Φ  the l×l transition matrix with 

eigenvalues strictly less than one in absolute value to guarantee stationarity and 1t+ζ  is a 

Gaussian iid vector process with mean zero and an identity covariance matrix. The matrix 1A  

                                                 
43  Again, this recursion is not necessary when the desired paths are set to 0. 
44  See, e.g., Harvey (1981). 
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is such that 1 t +A y Ca  in (4.1) is equal to Ay t in (2.2).45 Obviously, the robust control 

formulation is more general than model (4.1)-(4.2) because in (2.2) the vector 

1t+ω  can represent a very general, and possibly complicated, process. 

 

 Then the approach discussed in Kendrick (1981) and Tucci (2004) can be used to find 

the set of controls u t which maximizes46  

 

J = ( )0
0

,  t t t
t

E L
∞

=

⎡ ⎤
−⎢ ⎥

⎣ ⎦
∑ y u ,       (4.3) 

 

where 

 

 ( ),t t tL =y u          (4.4) 

( ) ( ) ( ) ( ) ( ) ( )2t d d d d d d
t t t t t t t t t t t tβ ⎡ ⎤′ ′ ′− − + − − + − −⎢ ⎥⎣ ⎦

y y Q y y y y W u u u u R u u , 

 

subject to (4.1)-(4.2). This control problem can be solved treating the stochastic parameters as 

additional state variables. If the same objective function used in the robust control problem is 

optimized, the expression in square bracket is identical to the one-period loss function 

defined in (2.6).  

 

 When the hyper-structural parameters a and Φ are known, the original problem is 

restated in terms of an augmented state vector z t as: find the controls u t maximizing47  

 

( )0
0

,  t t t
t

J E L
∞

=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ z u        (4.5) 

   

subject to48 

 

                                                 
45  When a is a null vector,   A1 ≡ A. If a is not zero, A1  is identical to A except for a column of 0’s associated 
with the intercept and Ca is identical to the column of A associated with the intercept. 
46 Kendrick (1981, Ch. 10) analyzes the case where a = 0 and the hyperstructural parameter Φ is known. Tucci 
(2004) deals with the case where a and Φ are estimated. 
47 See Kendrick (1981, Ch. 10) or Tucci (2004, Ch. 2). 
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 *
1 1( , )t t t t+ += +z f z u ε      for t = 0, ..., ∞,   (4.6) 

 

with49     

 

( ) ( )
1 1 *

11 1

, ,   and  .t t tt t
t t t t

t lt t

+

++ +

+ +⎡ ⎤⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦⎣ ⎦

A y Bu Cy
z f z u

I a
α ε

ε
Φα Φα ζ

   (4.7) 

 

and the arrays z t and ( , )t tf z u having dimension n+l, i.e. the number of original states plus the 

number of stochastic parameters. For this ‘augmented’ control problem the L’s in Eqt. (4.5) 

are defined as 
 

 
( )

( ) ( ) ( ) ( ) ( ) ( )* *

,

2

t t t

d d d d d d
t t t t t t t t t t t t t t t

L =

′ ′ ′− − + − − + − −

z u

z z Q z z z z W u u u u R u u
 (4.8)  

 

with * *t
t β=Q Q , * diag=Q ( ,  lβθ−Q I ), * [ ]t

t β ′ ′ ′=W W O  and t
t β=R R .  

 

 By replacing 
1 1 1t t t twithα ν+ ++ +A y C Ay C in (4.7), treating the vector of stochastic components 

ν 1t+ as additional state variables, setting ε *
1t+ = 0  and using the deterministic counterpart to 

(4.5)-(4.8),50 namely 

 

 * *
1t t t+ = +z A z B u      for t = 0, ..., ∞,   (4.9) 

 

with 

 

1

,  t
t

t+

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

y
z

ν
* *  and   ,⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A C B
A B

O OΦ
    (4.10) 

 

                                                                                                                                                        
48 When the error term is assumed iid it is equivalent to write the system equations as in (4.6) or as in Tucci 
(2004, Ch. 2). 
49 Equations (4.2) are rewritten as αt – a = Φ(αt-1 –a) + εt in (4.7). In Tucci (2006, p. 540), the symbol  α t  should 

be replaced by   α t +1 and  ω t  by   ω t +1 . 
50 These preparatory steps are needed to keep the following discussion as close as possible to that carried out in 
section 2 and 3. 
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the optimal value of (4.5) can be written as 2t t t t t′ ′− −z K z z k  and it satisfies the Bellman  

equation51 

 

 
( ) ( ) ( ) ( )

( ) ( )

* * * * *

* * *
1 1 1 1 1

2 max

2 2

t
t t t t t t t t t t t t t t t

t t t t t t t t t t+ + + + +

⎡ ′ ′′ ′− − = − − − + − −⎢⎣
⎤′ ′ ′+ − − + + ⎥⎦

u
z K z z k z z Q z z u u R u u

z z W u u z K z z k
 (4.11) 

 

with 1t tβ+ =K K . Again, expressing the right-hand side of (4.11) only in terms of tz  and tu  

and maximizing it yields the optimal control in the presence of time-varying parameters (or 

tvp-control) , i.e.52  
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1
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u R B K B

B K A W y B K C K B k r

−

Φ ν
 (4.12) 

 

 The matrices K 11 and K 12 in (4.12) denote the n×n North-West block and the n×l 

North-East block, respectively, of the Riccati matrix  
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   (4.13) 

 

Consequently they are defined as53 

 

 11, 11, 1

1
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+

−
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= + ′
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   (4.14a) 

 

and 

 

 12, 11, 1 12, 1

1
11, 1 11, 1 11, 1 12, 1

( )

( ) ( ) ( ).
t t t

t t t t t t

+ +

−
+ + + +

= ′ + ′

′− ′ + ′ + ′ ′ +

K A K C A K

B K A W R B K B B K C K

Φ

Φ
  (4.14b) 

                                                 
51 As in the previous sections, the constant term appearing on the right-hand side and on the left-hand side of the 
Bellman equation have been dropped because they do not affect the solution of the optimization problem. 
52 See also, e.g., Kendrick (1981, Ch. 2 and 10) and Tucci (2004, Ch. 2).  
53 See Tucci (2004, pp. 26−27). 
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It is apparent from (4.14b) that even when 12, 1t+K  is zero, it is sufficient that the same is not 

true for 11, 1t+K , a condition typically met, to have a non zero 12,tK  matrix. This means that 

even when the terminal condition for 12K  is a null matrix, this array will not vanish in all the 

time periods in the planning horizon except for the last one. Consequently, only the last 

control, namely the control applied at the ‘final period minus 1’ of the planning horizon, will 

be independent of the transition matrix characterizing the time-varying parameters.  

 

The optimal control (4.12) is independent of the parameter θ which enters the l×l 

South-East block of K, namely   

 

 22, 11, 1 21, 1 22, 1

1
11, 1 21, 1 11, 1 11, 1 12, 1

( ) 2

( ) ( ) ( ).
t l t t t

t t t t t t

βθ + + +

−
+ + + + +

= − − ′ + ′ + ′

− ′ + ′ + ′ ′ +

K I C K C K C K

C K K B R B K B B K C K

Φ Φ Φ

Φ Φ
  (4.14c) 

 

However it depends upon the vector tk  which can be partitioned as tk =[ 1, 2,t t′ ′k k ]′ with 

 

 1
1, 1, 1 11, 1 11, 1 1, 1( ) ( ) ( )t t t t t t t t t

−
+ + + +′= + ′ − ′ + ′ + ′ ′ +k q A k B K A W R B K B B k r   (4.15a) 
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1
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−
+ + + +
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Φ
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 When 1 1t t+ +≡ν ω , i.e. the same shock is used to determine both robust control and 

tvp-control, the latter is 

 

 1 1
11, 1 11, 1 11, 1 11,t+1 1, 1( ) [( ) ]

t

t t t t t t t t
+ − + + −

+ + + +

=

− + ′ ′ + ′ + ′ +

u

R B K B B K A W y B K K k r
 (4.16) 

 

with  

 

 1
11, 1 11, 1 12, 1 1 11, 1[ ( )( ) ] .t n t t l t tβθ+ −

+ + + + += + + − ′ ′K I K C K I C P C C KΦ   (4.17) 
 

The quantity 11, 1t
+

+K  collapses to the ‘robust’ Riccati matrix *
1t+P  when 1 11, 1t t+ +=P K  and 

12, 1t+K  is a null matrix. This means that robust is control is insensitive to the true value of Φ 



 

 

22

appearing in the law of motion for the stochastic parameters. This is due to the fact that when 

the same objective function is optimized both in the robust and tvp-control problems, the only 

difference between the Bellman Eqs. (2.11) and (4.11) is that the former, implicitly, sets 

11,t t=P K , 1,t t=p k  and 12,tK , 21,tK , 22,tK  and 2,tk  equal to null arrays. Therefore, by 

construction, the control applied by the decision maker who wants to be “robust to 

misspecifications of the approximating model” implicitly assumes that the ω’s in (2.2) are 

serially uncorrelated. This means that the vector process 1t+ω included in the true model (2.2) 

can indeed describe only a very special kind of model misspecification. Alternatively put, 

given arbitrary desired paths for the states and controls, robust control is “robust” only when 

today’s malevolent shock is linearly uncorrelated with tomorrow’s malevolent shock.  

 

The framework laid out in this section can be used also to study the case of robust 

control without commitment discussed in Sect. 3. Then, Equation (4.7) holds when  
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and the arrays z t and ( , )t tf z u have dimension 2( )n l n+ + . The objective function (3.8) is 

obtained defining the L’s as in Eqt. (4.8) with * *t
t β=Q Q ,  t

t β=R R  and * *t
t β=W W  where 
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For this problem the tvp-control looks like 
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−
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(4.18) 

 

Then, when the same shock is used to determine both robust control and tvp-control, i.e. 

1 1, 2,[ ]t t t+ ′ ′ ′≡ν ω ω  with  1,tω  and 2,tω  as in Sect. 3, Equation (4.18) takes the form 
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 t =u           (4.19) 
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The quantities 
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( )* 1
11, 1 12, 1 1 1, 1( ) ( )t t t t t t t t

−
+ + + +′ ′ ′ ′+ + +B K C B K E C p B k

� �
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in the denominator and numerator of (4.19) are identical to those on the left-hand side of 

(3.14a), (3.14b) and (3.14c), respectively, when 11, 1 1t t+ +≡K P   and 11, 1 1t t+ +≡k p  and 12, 1t+K  is a 

null matrix.54 Therefore even this non “probabilistically sophisticated” decision maker 

implicitly assumes that 1,tω  and 2,tω , i.e. the perturbation to the distribution of 1t+ε  and of the 

hidden state conditional on ( 1, 2,,t ty y� ), respectively, in (3.5) are both independent and serially 

uncorrelated. Again, given arbitrary desired paths for the states and controls, this robust 

control is “robust” only when today’s malevolent shocks are linearly uncorrelated with 

tomorrow’s malevolent shocks.  

 

Before leaving this section it is worth it to emphasize two things. First of all the 

results (4.16)-(4.17) and (4.19)-(4.20) do not imply that robust control is implicitly based on 

a very specialized type of time-varying parameter model or that one of the two approaches is 

better than the other. Robust control and tvp-control represent two alternative ways of dealing 

with the problem of not knowing the true model ‘we’ want to control and are generally 

characterized by different solutions. In general, when the same objective function and 

terminal conditions are used, the main difference is due the fact that the former is determined 
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assuming for 1t+ω  the worst-case value, whereas the latter is computed using the expected 

conditional mean of 1t+ν  and taking into account its relationship with next period conditional 

mean. As a side effect even the Riccati matrices common to the two procedures, named P and 

p in the robust control case and 11K  and 11k  in the tvp-case, are different. This is due to the 

fact that (2.18) and (2.19) are different from (4.14) and (4.15a), respectively.55 The use of 

identical Riccati matrices and of an identical shock in the two alternative approaches, i.e. 

setting 11, 1 1t t+ +≡K P , 11, 1 1t t+ +≡k p  and 1 1t t+ +≡ν ω  or 1 1, 2,[ ]t t t+ ′ ′ ′≡ν ω ω , has the sole purpose 

of investigating some of the implicit assumptions of these procedures.  

 

Secondly the results of this section do not claim that the ‘malevolent shocks’ are 

serially uncorrelated or that  the perturbation to the distribution of 1t+ε  and of the hidden state 

conditional on ( 1, 2,,t ty y� ) in (3.5) are both independent and serially uncorrelated. It simply 

shows that in all models where the agent is assumed to behave both in a “probabilistically 

sophisticated” and in a probabilistically ‘unsophisticated’ manner robust control implicitly 

assumes that these shocks are serially uncorrelated. This follows from the Bellman Equation 

associated with this type of problem. 

 

 

5. Robust control in the presence of uncertain parameters in the structural model 

 

The robust control problems discussed in the previous sections deal with unstructured 

uncertainty à la Hansen and Sargent.56 However, sometimes robust control is applied to 

situations where uncertainty is related to unknown structural parameters. Giannoni (2002, 

2007) considers an optimizing model for monetary policy. This is a structural forward-

looking model where the constant structural parameters are unknown to the policymaker but 

are known to agents in the private sector. It “is composed of a monetary policy rules and two 

structural equations – an intertemporal IS equation and an aggregate supply equation - that 

are based on explicit microeconomic foundations ... (namely, they) can be derived as log-

                                                                                                                                                        
54 By comparing the Bellman Eqs. (3.10) and (4.11), with the new definitions, it is apparent that the two are 
identical when  

   
Pt = K11,t , 

   
pt = k1,t  and K12,t , K 21,t , K 22,t  and k 2,t  are null arrays as for the 

“probabilistically sophisticated” case discussed above. 
55 The same consideration holds when (2.18) and (2.19) are replaced by (3.15) and (3.16), respectively. 
56 See Giannoni (2007, pp. 181−183) for a brief and updated overview of robust control literature. 
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linear approximations to equilibrium conditions of an underlying general equilibrium model 

with sticky prices” (Giannoni, 2002, pp. 112-114).57  

 

In Giannoni (2007), the demand side of the economy is written as58 

 

 
( ) ( )

1 1
1 1

1ˆt t t t t t t tx E x E ϖσ π σ ι δ η
ϖ σ σ ϖ σ

− −
+ += + − + +

+ +
   (5.1) 

 

where tE  denotes the expectation formed at time t, tx  the output gap, tπ  the rate of inflation, 

t̂ι  the percentage deviation of the nominal interest rate from its constant steady state value, 

tδ  a demand shock and tη  an “adverse efficient supply shock”. By output gap is meant the 

percentage deviation of actual output from its constant steady state value minus the 

percentage deviation of the efficient rate of output.59 The aggregate supply curve takes the 

form60 

 

 1t t t t tE x κπ β π κ μ
ϖ σ+= + +

+
      (5.2) 

 

with tμ  the percent deviation of the desired markup from steady state,61 κ a parameter greater 

than zero and β  the discount factor.62 As pointed out in Giannoni  (2007, p. 187), the 

parameters σ and ϖ represent “the inverse of the intertemporal elasticity of substitution in 

private expenditure (and) … the elasticity of each firm’s real marginal cost with respect to its 

own supply”, respectively.63 Finally, it is assumed that the exogenous shocks tδ , tη  and 

                                                 
57 The model used to characterize the behavior of the private sector is a variant of the ‘new keynesian’ or ‘new 
synthesis’ model presented, e.g., in Clarida et al. (1999) and Woodford (2003). See also Giannoni (2007, pp. 
186−188) for details. 
58  See Giannoni (2002, pp. 113−115) for an intuitive description of a simplified version of this model. 
59 Giannoni (2007, p. 187) defines the efficient rate of output as “the equilibrium rate of output that would obtain 
in the absence of price rigidities and market power”. 
60  Equations (5.1)−(5.2) correspond to (14)−(15) in Giannoni (2007, p. 188). The reader should be aware of the 
fact that the μ in this section bears no relationship with those appearing in the previous sections. 
61 Giannoni (2007, p. 188) calls  μt  “the inefficient supply shock … since it represents a perturbation to the 
natural rate of output that is not efficient.” 
62 As noticed in Giannoni (2002, p. 114) “κ, which is the slope of the short run aggregate supply curve, can be 
interpreted as a measure of the speed of price adjustment. Finally β … (is) the discount factor of the price setters 
… (and) is supposed to be the same as the discount factor of the representative household.” 
63  In this model the opposite of σ is the slope of the intertemporal IS curve. 



 

 

26

tμ  have zero (unconditional) mean, are independent of the parameters σ, κ and ϖ  and follow 

an AR(1) process,64  i.e.  

 

 

1

0 0
0 0 .
0 0

t t

δ δ

η η

μ μ

δ ρ δ ξ
η ρ η ξ
μ ρ μ ξ

+
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      (5.3) 

 

 In this model “monetary policy has real effects … because prices do not respond 

immediately to perturbations … only a fraction … of suppliers may change their prices at the 

end of each period” (Giannoni, 2007, p. 187). The controller determines the optimal 

monetary policy optimizing the following penalty function65  

 

 ( ) ( )22 * 2
0 0

0

ˆ1 t
t x t i t

t
L E x xβ β π λ λι

∞

=

⎧ ⎫⎡ ⎤= − + − +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑     (5.4) 

 

where  and x ιλ λ , both positive, “are weights placed on the stabilization of the output gap and 

the nominal interest rate and where x* ≥ 0 represents some optimal level of output gap” 

(Giannoni, 2007, p. 189). 

 

 Assuming rational expectations, the system (5.1)-(5.3) can be rewritten as (2.1) when 

t =y (         t t t t tx π δ η μ )′ and ˆt tι=u . Then matrix A looks like 
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A D
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�
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where  

 ( ) ( ) ( ) ( )
( )

11 1
,  ,

           0                 0       1
ϖ ϖ σ σ ϖ σ κ ϖ σ βσκ βσ βσ

κ ϖ σ βκ β β
− + − + +⎡ ⎤⎡ + − ⎤

= = ⎢ ⎥⎢ ⎥ − +−⎣ ⎦ ⎣ ⎦
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64 See also footnote 10 in Giannoni (2007, p. 187). 
65  This corresponds to Eqt. (18) in Giannoni (2007, p. 189). As explained on page 199 of the same reference, it is 
assumed “that the preference parameters of the policymaker … (in Eqt. (5.4)) are known to the policymaker and 
are kept fixed regardless of the values of the structural parameters”. For a discussion of the relationship between 
the parameters in the objective function and those in the underlying structural model see also footnote 27 on that 
page. 
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T is the 3×3 diagonal matrix on the right hand side of Eqt. (5.3) and O is a null 3×2 array, 

and B is defined as =B ( 1  0  0  0  0σ − )′. The vector of disturbances 

t =ε (         x π δ η με ε ε ε ε )′  has mean zero and identity covariance matrix and C is 

appropriately defined. Namely, it is such that CC′ = ( )t tE ′ξ ξ  where t′ξ = (         x π δ η μξ ξ ξ ξ ξ ), 

with ξx and ξπ the errors associated with the output gap and inflation, respectively, and 

( )tE 0ξ = , ( )t tE ′ξ ξ = Σ. Similarly, the one-period loss function implicit in (5.4) can be put in 

the format (2.6)  when W is a null matrix, Q = (1 β− ) diag ( 1 0 0 0xλ ) and R = 

(1 β− ) ιλ . 

 

In the presence of uncertain parameters, the worst-case parameter vector results in 

worst-case matrices which can be viewed as the algebraic sum of the ‘baseline case matrices’, 

A and B,  and the ‘worst-case discrepancies’, Aω and Bω.66 It follows that the model in the 

worst case scenario can be written as67 

 

 ( ) ( ) ( )1 1 1t t t t t t tτ τ+ + += + + + + = + + + +y A A y B B u C Ay Bu C A y B uω ω ω ωε ε (5.7) 
 

where the term in parenthesis on the right-hand side of the second equality sign plays the role 

of Cωt+1 in Eqt. (2.2). More precisely, the quantity t t+A y B uω ω  replaces the malevolent 

vector defined in Eqt. (2.13) premultiplied by the volatility matrix C in a robust control 

model where uncertainty is à la Hansen and Sargent. Then, robust control is obtained by 

replacing this quantity into (2.12) to yield 

 

 1
1 1 1( ) [( ) ]t t t t t t t t

−
+ + += − + ′ ′ + ′ + ′ +W Wu R B P B B P A W y B p r    (5.8) 

 

where   and  = + = +w wA A A B B Bω ω . The same ‘malevolent shock’ can be used in (4.12) 

to compute the associated tvp-control. 

                                                 
66 As observed in Giannoni (2007, p. 205) when uncertainty is unstructured à la Hansen and Sargent the worst 
case scenario is always on the boundary of the set of relevant models. This is not necessarily true when 
uncertainty is associated to uncertain parameters. See also Giannoni (2002).  
67 From (3.7) follows that the worst case in Giannoni’s case corresponds to the worst case in Hansen and 
Sargent’s approach when nature ignores the desired paths and Aω = C(βθI l − C′Pt +1C)−1C′Pt +1A , Bω =  

   C(βθI l − C′Pt +1C)−1C′Pt +1B . It is then clear the relationship between the robustness parameter θ and the size of 

the confidence interval underlying   Aω  and Bω .  
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6. Some numerical results 

 

The permanent income model is a popular model in the robust control literature (see, e.g., 

Hansen and Sargent, 2001, 2003, 2008; Hansen et al. 1999, 2002). It is a linear quadratic 

stochastic growth model with a habit where a “probabilistically sophisticated” planner values 

a scalar process s of consumption services according to68  

 

( )2
0

0

t
t b

t

E sβ μ
∞

=

⎡ ⎤
− −⎢ ⎥

⎣ ⎦
∑        

 (6.1) 
 

with 
bμ a preference parameter governing the curvature of the utility function.69 The service s 

is produced by the scalar consumption process 
tc via the household technology 

 

 1(1 )t t ts c hλ λ −= + −         (6.2a) 

 1 (1 )t h t h th h cδ δ−= + −               (6.2b) 
 

where 0,λ ≥  0 1hδ< <  and th  is a stock of households habits given by a geometric weighted 

average of present and past consumption. Then a linear technology converts an exogenous 

(scalar) stochastic endowment td into consumption or capital, i.e. 

 

 1t k t tk k iδ += +          (6.3a) 

 1t t t tc i k dγ ++ = +         (6.3b) 
 

where tk  and ti  represent the capital stock and gross investment, respectively, at time t, γ  the 

constant marginal product of capital and kδ the depreciation factor for capital. The 

endowment is specified as the sum of two orthogonal AR(2) components, namely 

                                                 
68 This discussion draws heavily on Hansen et al. (2002, Sect. 4). The notation used in the presentation of this 
model is kept as close as possible to that used in the cited reference. 
69 See also pp. 47−53, 320−321 and Ch. 10 in Hansen and Sargent (2008) for a clear discussion of the main 
features of this model. Hall (1978), Campbell (1987), Heaton (1993) and Hansen et al. (1991) have applied 
versions of this model to aggregate U.S. time series data on consumption and investment. Aiyagari et al. (2002) 
discuss the connection between the permanent income consumer and Barro’s (1979) model of tax smoothing. 
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 1 1, 1 2, 1t d t td d dμ+ + += + +        (6.4) 
 

where 1, 1td +  and 2, 1td +  are the permanent and transitory component, respectively, and 

 

1, 1 1 1, 2 1, 1 1 1, 1t t t td g d g d c ε+ − += + +  

2, 1 1 2, 2 2, 1 2 2, 1t t t td a d a d c ε+ − += + +  
 

with 1, 1tε +  and  2, 1tε +  as in Sect. 2.70 

 

 Rewriting (6.3b) in terms of 
tc and substituting it into (6.2a) yields  

 

 1 1(1 )[ ] .t t t t ts k i d hλ γ λ+ += + − + −       (6.5) 
 

Then the one-period loss function 2( )t bs μ− in (6.1) can be expressed as in (2.6) when t ti=u , 

0d
t =u , -1 -1 -1 1, 1, -1 ( 1 )t t t t t t th k d d d d ′=y ,  ( 0 0 0 0 0)d

t b bμ μ ′=y ,71 Q = 

diag(Q†,O2) where 

 

( ) ( )

( ) ( ) ( )

2

2 2

†

2 2

1 1
0 0 0
0 0 0 0

1 1 0 0 1

λ

λ λγ λ γ

λ λ λ γ λ

⎡ ⎤• • • •
⎢ ⎥
− + + • • •⎢ ⎥

⎢ ⎥= • •⎢ ⎥
⎢ ⎥•
⎢ ⎥

− + + +⎢ ⎥⎣ ⎦

Q     (6.6) 

 

and only the lower portion is reported because the matrix is symmetric, 
2O is a square null 

matrix of dimension 2, =R (1 λ+ )2 and W = ( 1 2 50 0 0 0w w w )′ with 

1 (1 )w λ λ= + , 2
2 (1 )w λ γ= − +  and 2

5 (1 )w λ= − + .  

 

                                                 
70 Solving (6.3a) for it and substituting it into (6.3b) yields ct + kt = Rkt −1 + dt  with R  ≡ δ k + γ  the “physical 
gross return on capital, taking into account that capital depreciates over time” (Hansen and Sargent, 2008, p. 226). 
This quantity coincides with the gross return on a one-period risk-free asset in the Hansen et al. (1999) model as 
noticed in fn. 9 of the cited reference. 
71 See also Hansen et al. (2002) and Hansen and Sargent (2008, Ch. 10). 
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 When model misspecification is not ruled out, the equations for the permanent and 

transitory components of the endowment process are rewritten adding the quantities 1 1, 1tc ω +  

and 2 2, 1tc ω + , respectively. Then problem (2.5) is solved subject to Eqt. (2.2) with the initial 

condition 0y  given and the matrices of coefficients defined as 

 

( ) ( )

2 1 1 1 2 2

1 2

1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0
0 0 0 0 0
0 0 0 0 0 1 0

h h h

k

da a g a g a
g g

δ δ γ δ
δ

μ∗

⎡ − − ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A , 

1 2

1

0 0
0 0
0 0
0 0

0
0 0

c c
c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C   (6.7) 

 

and [ ] ( )1  As pointed out in Hansen et al. 2002,  Sect. 4 ,  although  

 

Using the parameter estimates in Hansen et al. (2002), robust control for the 

permanent income model is computed for μ b = 32 and different values of θ’s.72 The initial 

condition is set at y 0 = (100  100  13.7099  1.0  13.7099  0  0)′, and it is assumed a time 

horizon of 2 periods.73 As observed in Hansen and Sargent (2008, p. 47), a preference for 

robustness “leads the consumer to engage in a form of precautionary savings that … tilts his 

consumption profile toward the future relative to what it would be without a concern about 

misspecification of (the endowment) process.” This is confirmed by the results reported in 

Tab. 6.1 where gross investment, the control variable, increases as θ gets smaller.74 
 

 

Tab. 6.1 - Linear quadratic control (QLP) vs. robust control at time 0.*  

                                                 
72 As reported in Hansen et al. (2002, Table 1) β = 9971, λ = 2.4433, δh= .6817, μd = 13.7099, α1 = .8131, α2 = 
.1888, φ1 = .9978, φ2  = .7044, c1 = .1084 and c2 = .1551. In addition the condition β = ( δ k + γ )−1  is imposed for 

stability reasons, with  δk   equal to .975, as in Hansen and Sargent (2008, p. 247). It should be emphasized that 
the derivations reported in Tucci (2006) are not general enough to handle this case. For this reason in the 
numerical example carried out in Section 7 of that work is set μb = 0 . 
73 The goal is to compare the first period control in the various cases. Given the recursive nature of this ‘control 
game’ considering a 3, 4 or 100 periods time horizon does not change the qualitative results.  
74 In this example, the admissible region for θ is approximately between .7 and infinity. When θ = .7, robust 
control is above 81 and nature controls are around -1935 and -1648. Robust control is −51.269, with nature 
controls equal to −.006 and −.01, for θ = 10000.  
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QLP Control      θ    Robust control           Nature controls 

−51.269756 100.0      −51.189376  −1.170727 −0.997060 

   95.0      −51.185117  −1.232762 −1.049892 

   85.0      −51.175084  −1.378892 −1.174346 

   75.0      −51.162353  −1.564327 −1.332273 

   65.0      −51.145665  −1.807385 −1.539276 

   55.0      −51.122837  −2.139869 −1.822438 

   45.0      −51.089718  −2.622255 −2.233267 

   35.0      −51.037320  −3.385424 −2.883226 

   25.0      −50.941904  −4.775164 −4.066811 

   15.0      −50.713597  −8.100463 −6.898831 

     5.0      −49.438034             −26.679050   −22.721448 
* The QLP control is independent of θ and is reported only for the case θ = 100. 

 

 When the observationally equivalent model of Sect. 4 is used, the endowment process 

and its permanent component have time-varying intercepts following a  ‘Return to Normality’ 

model, namely 

 

 *
1 , 1 1 2 1 1 1 1, 2 2 1, 1( ) ( )t d t t t t td a d a d g a d g a dμ+ + − −= + + + − + −    (6.8a) 

 *
1, 1 1, 1 1 1, 2 1, 1t d t t td g d g dμ+ + −= + +                  (6.8b) 

 

with *
, 1d tμ + = *

1 1, 1 2 2, 1d t tc cμ ν ν+ ++ +  and *
1, 1 1 1, 1d t tcμ ν+ += with , 1i tν + ≡ , 1 , 1i t i tε ω+ ++ for i = 1, 2. Then 

the time-invariant portion of the intercepts can be interpreted as75  

 
*

1 2 1

1 2

 
00

d c c a
c a

μ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
       (6.9a) 

 

and the stochastic component takes the form 

 

 11 12 1 11

21 22 2 22 11

 
t tt

φ φ ν εν
φ φ ν εν ++

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
.      (6.9b) 

                                                 
75 The implicit values of a1 and a2 are 0 and (μd

*/c2), respectively. 
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In this case, setting , 1 0i tε + =  and , 1 , 1i t i tν ω+ +≡  for i = 1, 2,  the results reported in  Section  4 

hold. 

 

 The relationship between the value of Φ and the optimal control at various θ’s is 

shown in Fig. 1 where Φ = φI and several values of φ are used. As shown in Sect. 4, the tvp-

control derived assuming that the intercept follows a ‘Return to Normality’ model and φ = 0 

is identical to robust control when the same malevolent shocks are used. On the other hand 

knowing that tomorrow’s shocks are negatively correlated with today’s ones would make the 

household, facing a  negative  ‘malevolent nature’  shock,  to  save  less  for  a  given  β.  For 
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FIG. 1. First period robust control and tvp-control, for various values of Φ, at different 

levels of θ for the permanent income model. 

instance, when θ = 100, savings decrease from −51.1894 at φ = 0 to −57.7563 at φ = −.1. 

Then the controls at the various θ’s associated with negative φ’s are always below the 

corresponding robust controls  and they go farther and farther from them as the absolute 

value of φ increases. The opposite occurs for positive values of φ. Again, the line farther from 

the ‘robust control line’ is that associated with a higher absolute value of φ. 
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 A meaningful example of robust control applied to situations where uncertainty is 

related to unknown structural parameters of the model has been discussed in Sect. 5. When 

the parameter values are as in Giannoni (2007, pp. 189-191 and 200) both for the baseline 

case and for the worst case, the matrices in (5.7) look like76 

 

 

1.1530 6.4297 4.7781 1.5873 .2429 6.3654
.0240 1.0101 0 0 .0382 0

,   =0 0 .35 0 0 0
0 0 0 .35 0 0
0 0 0 0 .35 0

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A B  

 

and 

 

 

.1870 4.6097 3.4856 1.0779 .6633 4.5636
.0071 0 0 0 .0448 0

,   =0 0 .45 0 0 0
0 0 0 .45 0 0
0 0 0 0 .45 0

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A Bω ω . 

 

with77 

 

 

2.1886 0 0 0 0
0.0060 1.51 0 0 0

= 0 0 1.7364 0 0
0 0 0 0 0
0 0 16.2558 0 15.0793

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C . 

 

                                                 
76 The vector of uncertain parameters p = [σ  κ  ϖ  ρδ  ρη  ρμ  ν]′ is p = [.1571, .0238, .4729, .35, .35, .35, .5]′ in 
the baseline case and pw   = [.0915, .0308, .2837, .8, -, .8, 1]′ in the worst case, when it is assumed that 
“uncertainty about the critical structural parameters is given by the approximate 95% intervals” (Giannoni, 2007, 
p. 190). As explained on page 200 of the same reference, in the worst-case ρη    “may take any value in the 
allowed interval [0, 1] since the loss is maximized when … there are no efficient supply shocks.”  
77 It is assumed that the Σ matrix is block diagonal. The 2×2 North-East block has been constructed using the 
variances of output and inflation reported in Tab. 2 of Rotemberg and Woodford (1998) on the main diagonal and 
their covariance, reflecting a correlation of .004 as in Fig. 2 of the cited work, as the off-diagonal element. The 
3×3 South-West block is identical to that in Giannoni (2007, Tab. 1 on p. 192) for the case ν=1. The relationship 
between the models presented in Giannoni and Rotemberg and Woodford is discussed in footnote 13 on pages 
189-190 of the same reference. 
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Setting the initial condition y 0 = (.03  .05  1.0  0  .01)′, 78 the desired path for the output gap 

equal to .01 and the parameters in the penalty matrices equal to .0483xλ = , .2364ιλ =  and 

.99β =  yields the results in Tab. 6.2, for a time horizon of 2 periods.79 In this example, 

robust control is more active than that associated with the familiar linear regulator problem 

(or quadratic linear problem) and it is identical to the tvp-control when the transition matrix 

Φ is equal to zero. For this problem specification, the tvp-control is higher than robust control 

when Φ is positive.  The opposite is true for negative values of Φ. As already noticed the 

difference between the two controls gets larger and larger as Φ gets farther from the null 

matrix.   

 

Tab. 6.2 - Linear quadratic control (QLP), robust control and tvp-control at time 0.*  

QLP Control         Robust control  Φ TVP-control 

   .75411   .79657  .0     .79657 

     .1     .79667 

     .2     .79677 

     .5     .79707 

     −.1     .79647 

     −.2     .79637 

     −.5     .79607 
* The QLP control and robust control are independent of Φ. 
 

 

                                                 
78 The initial values for the unexpected demand shock and inefficient supply shock are similar to those used in 
Giannoni (2007, pp. 194−195). 
79  When the demand and supply shocks are set to 0, i.e. at their unconditional mean level, robust control is 
.04975 and tvp-control is lower for positive values of Φ. It is equal to .04972 when Φ=diag(.5, .5) and .04977 for 
Φ=diag(−.5, −.5). 
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7. Conclusion  

 

Tucci (2006) argues that, unless some prior information is available, the true model in a 

robust control setting à la Hansen and Sargent is observationally equivalent to a model with a 

time-varying intercept. Then he shows that, when the same “malevolent shock” is used in 

both procedures, the robust control for a linear system with an objective function having 

desired paths for the states and controls set to zero applied by a “probabilistically 

sophisticated” decision maker is identical to the optimal control for a linear system with an 

intercept following a ‘Return to Normality’ model and the same objective function only when 

the transition matrix in the law of motion of the parameters is zero. The goal of this paper has 

been to generalize this result 

 

First, a robust control problem with unstructured uncertainty à la Hansen and Sargent 

and a “probabilistically sophisticated” decision maker has been introduced (Sect. 2). Then, in 

Sect. 3, an example of a non-“probabilistically sophisticated” decision maker has been 

discussed. At this point both problems have been reformulated as linear quadratic tracking 

control problems where the system equations have a time-varying intercept following a 

‘Return to Normality’ model (Sect. 4). By comparing the solutions for the tvp models with 

those of the previous sections it has been confirmed that the latter imply strong assumptions. 

Both a “probabilistically sophisticated” and a non-“probabilistically sophisticated” decision 

maker who want to be robust against “misspecification of the approximating model” 

implicitly assume that the ω’s are linearly uncorrelated. Alternatively put, given arbitrary 

desired paths for the states and controls, robust control is correct only when today’s 

“malevolent shock” is linearly uncorrelated with tomorrow’s “malevolent shock”. This means 

that the vector process ω can describe only a very special kind of “misspecification” in robust 

control applications in the time domain. Section 5 shows that the same conclusion holds 

when uncertainty is associated with unknown structural parameters of the model.  
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