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Abstract - Strategic market interaction is here modelled as a two-stage game in which potential entrants 
choose capacities and active firms compete in prices. Due to capital indivisibility, the capacity choice is 
made from a finite grid and there are substantial economies of scale. In the simplest version of the model 
assuming a single production technique, the equilibrium of the game is shown to depend on the market size - 
namely, on total demand at a price equal to the minimum average cost - relative to the firm minimum 
efficient scale: if the market is sufficiently large, then the competitive price (the minimum of average cost) 
emerges at a subgame-perfect equilibrium of the game; if the market is not that large, then the firms 
randomize in prices on the equilibrium path of the game. The role of the market size for the competitive 
outcome is even more important for the case of two production techniques. 
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1 Introduction

Research on Bertrand-Edgeworth competition with endogenous capacity has
achieved important results on the relationship between price and Cournot
competition. Under the e¢ cient rationing rule, the subgame-perfect equilib-
rium of a duopolistic two-stage capacity and price game (henceforth, CPG)
yields the Cournot outcome (Kreps and Scheinkman, 1983). This may not
hold, though, under alternative rationing rules, where the equilibrium of
the price subgame (henceforth, PS) may be in mixed strategies on the equi-
librium path (Davidson and Deneckere, 1986). Madden (1998) has shown
that a uniformly elastic demand curve is su¢ cient for the Cournot outcome
under oligopoly, regardless of the rationing rule. According to Boccard and
Wauthy (2000), while the Cournot result extends to oligopoly under KS�s
assumptions on cost and rationing rule, this need not be so if the �rms can
produce above �capacity�at a �nite extra-cost.

Throughout this literature the cost of capacity has been viewed as a
continuous convex function. Thus, at an equilibrium of the two-stage CPG
identical potential entrants choose positive capacities and prices are above
the competitive level.1 Quite di¤erently, in Yano (2008) average cost is
U-shaped and potential entrants play a one-stage game: each �rm chooses
a "price/set of quantities" pair, the set including any quantity which it
is indi¤erent to produce (on demand) at the chosen price. A competitive
outcome obtains, i. e., prices equal to the minimum average cost.2

In the present paper, we assume that strategic interaction at the price-
setting stage takes place among �rms that have previously installed a pos-
itive capacity. However, we depart from the standard setup by assuming
economies of scale due to capital indivisibility.3 We model a two-stage CPG
under e¢ cient rationing and constant average variable cost below capacity.
Then the equilibrium may yield the long-run competitive outcome.

The paper is organized as follows. Section 2 presents a model with a
single production technique. At any equilibrium of the CPG, total capacity
turns out to be equal to the quantity demanded at a price equal to the
minimum average cost, while pricing on the equilibrium path depends on the
market size relative to the �rm minimum e¢ cient scale: with a su¢ ciently

1See Section 4 below.
2At this price, each �rm is willing to produce 0 as well as the average-cost minimizing

output (q�). Any �rm producing q� would sell nothing if raising its price: buyers would
turn elsewhere and have their demand met by some �rm that is otherwise producing 0.

3The role of indivisibility of productive factors (especially of capital equipment) for
economies of scale has long been recognized (see Kaldor, 1934, and Koopmans, 1957).
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large market, the competitive price (the minimum average cost) is charged,
otherwise the PS has a mixed strategy equilibrium on the equilibrium path.
Section 3 provides a simple generalization by showing how the competitive
outcome can arise when two production techniques are available. Section 4
clari�es the key role of capacity indivisibility in our model.

2 A single production technique

In a homogeneous-product industry, let D(p) and P (Q) be the demand and
the inverse demand function, respectively, p the market price, and Q the
total quantity; D0(p) < 0 and D00(p) � 0 for p 2 (0; p); where D(p) = 0
at p � p and D(p) > 0 at p < p.4 At stage 1, set Z = f1; :::; i; :::; zg of
potential entrants choose capacity: the capacity choice set is assumed to be
F+ (the set of non-negative integers), due to indivisibility of capital. At
stage 2, active �rms (each i with capacity qi > 0) set prices. Assuming a
constant cost per unit of capacity, active �rm i�s short-run cost is c(qi) = cqi
for output qi � qi (we let 0 be the (constant) unit variable cost), and qi
cannot exceed qi. For each i 2 Z, long-run cost is thus C(qi) = cqi; where
qi = [qi; qi + 1) \ F+ for qi 2 R+ (R+ being the set of non-negative reals):
C(qi) is constant for qi 2 (f; f + 1] and jumps up by c as qi marginally
increases above f , hence C(qi) is not everywhere convex. Clearly, capacity
indivisibility results in scale economies over any output interval (f; f + 1],
where average cost decreases from c(1 + 1=f) to c.

A deterministic capacity choice is assumed to be made by each i 2 Z to
maximize the expectation of pro�ts �i = piqi � cqi. We denote by Q = fqg
the set of feasible capacity vectors, where q = (q1; :::; qz) is a capacity vector
resulting from stage-1 decisions. We also let A = fi j qi > 0g and n = #A
be the set and the number of active �rms at q, respectively, q�i the capacity
vector of i�s rivals, Q total capacity, and g any �rm with the largest capacity.
At stage 2 every i 2 A knows q.

As a competitive benchmark we refer to the (long-run) competitive equi-
librium (CE), i. e., the equilibrium of an industry where price-taking poten-
tial entrants make simultaneous capacity and quantity decisions. However,
the CE does not usually exist here.5 Total supply S(p) is inde�nitely large
at p > c, and zero at p < c, while S(c) 2 F+: at p = c, entrants choose any
feasible capacity and supply it entirely (any lower output results in losses).

4For Q > D(0) we let P (Q) = 0.
5For nonexistence under U-shaped average cost, see Mas-Colell et al. (1995), pp. 337-8.
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Thus it can be S(c) = D(c) only if D(c) 2 F+.6 To overcome non-existence
we letD(c) 2 F+: the competitive price and output are, respectively, pce = c
and Qce = D(c).

At any q, let pw(q) and Qw(q) be, respectively, the market-clearing price
and total output with price-taking �rms: pw(q) = P (Q) and Qw(q) = Q
if Q � D(0), while pw(q) = 0 and Qw(q) = D(0) if Q � D(0). Further,
�wi (q) = [pw(q) � c]qi denotes �rm i�s pro�t at q under market clearing
and �wi (qi; q�i) = [pw(qi; q�i) � c]qi denotes �rm i�s pro�t under market
clearing as a function of qi; given q�i. If qi were continuous, then concavity
of �wi (qi; q�i) would follow from D00(p) � 0.

A PS is played at any q. Let p =(p1; :::; pn) = (pi; p�i) be a pure
strategy pro�le in the PS, p�i being the strategy pro�le of i�s rivals, and
let di(pi; p�i; q); qi(pi; p�i; q); �i(pi; p�i; q) and �i(pi; p�i; q) be, respectively,
�rm i�s demand, output, pro�t and revenue in the q-PS at strategy pro-
�le p: �i(pi; p�i; q) = piqi(pi; p�i; q) � cqi = pimin fdi(pi; p�i; q); qig �
cqi. With e¢ cient rationing, di(pi; p�i; q) = maxf0; D(pi)�

P
j 6=i qjg when

pi > pj for any j 6= i. With
P
j 6=i qj < D(0), we let eqi = eq(Pj 6=i qj) =

argmaxqi P (qi +
P
j 6=i qj)qi, e�i = P (eqi +Pj 6=i qj)eqi, and epi = ep(Pj 6=i qj) =

argmaxp p[D(p) �
P
j 6=i qj ]. Clearly, epi = P (eqi +Pj 6=i qj) and hence e�i =epieqi; also, maxi epi = epg since ep0(�) < 0. So long as eqi � qi, eqi is i�s (short-run)

Cournot best response to an output of
P
j 6=i qj by rivals: eq0(�) < 0. Let �i(q)

and �i(q) be, respectively, i�s expected pro�t and revenue at an equilibrium
of the PS. The following fact is easily understood.

Lemma 1. For any i 2 A, �i(q) � �wi (q):

Proof. This is obvious if pw(q) = 0. With pw(q) > 0, by charging pw(q)
�rm i fully utilizes capacity and hence earns �wi (q); regardless of p�i.

With Q 6= D(0); qg=Q must be su¢ ciently small in order for the market-
clearing price to obtain at an equilibrium of the PS.

Lemma 2. (i) If pw(q) = 0, ( pw; :::; pw) is an equilibrium of the q-PS
i¤ qg=Q � 1�D(0)=Q. (ii) If pw(q) > 0, ( pw; :::; pw) is the equilibrium of
the q-PS q i¤

�p
wD0(pw)

qg
� 1: (1)

Proof. (i) All prices equal to zero is an equilibrium i¤
P
j 6=g qj � D(0),

which leads to the stated condition.7

6Even then, some coordination is needed for the �rms to exactly supply D(c):
7Any strategy pro�le such that

P
j 6=i:pj=0 qj � D(0) for any i : pi = 0 is an equilibrium.
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(ii) (pw; :::; pw) is an equilibrium i¤ [@(p(D(p)-
P
j 6=i qj))=@p]p=pw(+) � 0

for all i 2 A: this leads to �pwD0(pw) � qi; hence to (1). Uniqueness of
equilibrium can be established straightforwardly.

Inequality (1) has a clear meaning: pw > 0 is an equilibrium if and
only if each �rm�s residual demand has elasticity not less than 1 when its
price is raised above pw. (1) can also be written qg=Q � �p=pw , where
�p=pw is total demand elasticity at price p

w, or epg � pw. A pure-strategy
equilibrium (pse) does not exist when pw = 0 and

P
j 6=g qj < D(0) or when

pw > 0 and epg > pw. Then a mixed-strategy equilibrium (mse) exists:
all the su¢ cient conditions of Theorem 5 of Dasgupta and Maskin (1986)
for equilibrium existence are satis�ed. It is a key property of mse that g�s
expected revenue equals the revenue of the Stackelberg follower when rivals
supply their capacity.

Lemma 3. At any q for which no pse exists, �g(q) = e�g = epgeqg.
Proof. See Boccard and Wauthy (2000), De Francesco (2003) and, more

recently, Hirata (2009).

Let �wi (eqi; q�i) = [P (eqi+Pj 6=i qj)�c]eqi. By Lemma 3, �g(q) = �wg (eqg; q�g)�
c(qg � eqg) at a mse. We denote by Q� = fq�g the set of the least concen-
trated capacity con�gurations consistent with the CE-capacity: q� is such
that n� = Q

�
= D(c). We have this result.

Proposition 1 (i) If �cD0(c) � 1, then any q� is (part of) an equilibrium
of the CPG where the competitive price c is charged on the equilibrium path;
(ii) if �cD0(c) < 1, then any q� is (part of) an equilibrium of the CPG where
the �rms randomize over prices on the equilibrium path. (iii) Q = D(c) at
any equilibrium of the CPG.

Proof. (i) At q� inequality (1) reads �cD0(c) � 1: holding it, (c; :::; c)
is the equilibrium of the PS. An active �rm (any i 2 A�) has made a best
capacity response to q��i. If ep�i > P (D(c)+1),8 a mse obtains if deviating to
q0i � 2, resulting in �i(q0i; q��i) = ep�i eq�i � cq0i: This is negative because ep�i � c
and 1 � eq�i < 2 � q0i. If ep�i � P (D(c)+1); deviating to q0i = 2 leads to a pse,
hence to a loss. A fortiori losses arise if deviating to q0i > 2. Finally, at q

� an
inactive �rm (any u =2 A�) has made a best response. Denote by (q0u; q��u)
the capacity vector when u deviates to q0u > 0. Obviously �u(q

0
u; q

�
�u) < 0

if a pse obtains. At a mse, �u(q0u; q
�
�u) = epuequ � cq0u; this is negative sinceepu = P (equ +D(c)) < c and equ = eq(D(c)) < q0u.

8According to our notation, ep�i = P (eq�i+Pj 6=i q
�
j ) and eq�i = argmaxqi P (qi+Pj 6=i q

�
j )qi.
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(ii) A symmetric mse arises at q� and �i(q�) = ep�i eq�i � c > 0.9 For
i 2 A�, deviating to q0i > 1 raises cost while, by Lemma 3, expected revenue
does not change. For u =2 A�, deviating to q0u > 0 leads to a mse,10 hence
�u(q

0
u; q

�
�u) = epuequ � cq0u < 0 since epu = P (equ + D(c)) < c and equ =eq(D(c)) < q0u.

(iii) With Q < D(c), any u =2 A will pro�t by deviating to q0u = 1
and charging P (Q + 1).11 With Q > D(c) and holding (1), any i 2 A
makes losses. If Q > D(c) and (1) does not hold, then g will pro�t by
reducing capacity by one. This is immediate if qi = 1 for all i 2 A: then
�i(q) = epieqi � c < 0 since epi = P (eqi +Pj 6=i qj) < c (

P
j 6=i qj > D(c)) andeqi < 1. With qg > 1, �g(q) = epgeqg � cqg. Let epg > c (otherwise we are

already done), i. e., eqg +Pj 6=g qj < D(c): Note that qg +
P
j 6=g qj �D(c) is

a positive integer, hence eqg < qg � 1. Thus, �rm g will pro�t by deviating
to q0g = qg�1: this lowers costs while expected revenue is not less than epgeqg
at an equilibrium of the resulting PS.12

The condition in Proposition 1(i) can be written D(c) � 1=�p=c, showing
how the competitive outcome depends upon a su¢ ciently "large" market:
the ratio between competitive industry output and the �rm minimum ef-
�cient size (1, the minimum average-cost minimizing output) must be not
less than the inverse of demand elasticity. To illustrate this point, take c
as given and let an industry be identi�ed by the value of parameter r in
the family of demand functions D(r)(p) := rD(p), with r � 1 such that
rD(c) 2 F+. The industry is the larger as r is the higher (D(r)(c) = rD(c)
increases with r), whereas, at any given p, demand elasticity is una¤ected
by r: hence D(r)(c) � 1=�p=c for r su¢ ciently high.

Example. Let c = 1:5 and D(r)(p) = r(10:5� p)=3. At any equilibrium:
if r = 1, then n = Q = D(c) = 3 and, on the equilibrium path, �i = e��i =
1:6875, �i = :1875, and �(p) = 2

q
3(1:6875�p)
p(1:5�p) for p 2 [1:6875; 2:25]; if r = 3;

then n = Q = D(c) = 9 and price c obtains on the equilibrium path.

9 It can easily be checked that the equilibrium strategy is �(p) = D(c)�1

r
p�e��i

p[D(c)�D(p)]

for p 2 [p�; p�], where p� = ep�i and p� = e��i .
10This is immediate if q0u +D(c) � D(0) since then pw(q0u; q

�
�u) = 0 while

P
j 6=u q

�
j =

D(c) < D(0). If q0u + D(c) < D(0), then d[p(D(p) � D(c))]=dp > 0 at p = pw(q0u; q
�
�u):

this follows since d[p(D(p)� (D(c)� 1))]=dp > 0 at p = c and D00 � 0:
11With Q = Q

� � 1; this would result in zero pro�t if the resulting PS has a pse. Any
such q is disposed of if, at zero pro�t, entering is preferred to not entering.
12Expected revenue is unchanged if a mse still obtains (i.e., epg > P (Q � 1)) and g

remains (one of the) largest �rm(s).
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We have seen that, at any equilibrium, Q = D(c) and that capacity
vector q� is always part of an equilibrium. Then it might be asked whether
any q such that qg > 1 and Q = D(c) can be always ruled out as an
equilibrium. The answer is de�nitely yes under linear demand.

Proposition 2 If D00(p) = 0, then q 2 Q� at any equilibrium of the CPG.

Proof. In the Appendix.

Unlike with linear demand, with D00(p) < 0 there might be equilibria
with qg > 1. For example, let p = 16:01�Q2 and c = 0:01. Then D(c) = 4
and �cD0(c) < 1, hence any q� (q�i = 1 for all i 2 A� and Q� = 4) is an
equilibrium where active �rms randomize on the equilibrium path. However,
one can check that any q such that Q = 4; n = 3; qg = 2 is an equilibrium
too, again with active �rms randomizing on the equilibrium path.

3 Two production techniques

To see how the competitive outcome can arise under a plurality of techniques,
suppose now that, at the time of entry-capacity decisions, �rms can choose
between two production techniques, � and �, entailing cost per capacity unit
of c� and c� and capacity choice sets �F+ and �F+, respectively. Let � > �,
c� < c� and c�� < c��: while � is the average-cost minimizing technique,
� is cheaper at a su¢ ciently low output since it involves a lower minimum
capacity. Similarly as before, we let D(c�) 2 �F+: hence a CE exists, where
technique � is adopted, pce = c�, and Q

ce
= D(c�). We de�ne Q

(�)
=

fq(�) : n(�) = D(c�)=�;Q
(�)

= D(c�)g, i.e., q(�) is any least concentrated
industry con�guration consistent with the competitive capacity. We also let
D(c�) 2 �F+ and de�ne Q

(�)
= fq(�) : n(�) = D(c�)=�;Q(�) = D(c�)g. For

any i 2 A(�) 13 we let eq(�)i = eq(Pj 6=i q
(�)
j ) and ep(�)i = P (eq(�)i +

P
j 6=i q

(�)
j ) (of

course,
P
j 6=i q

(�)
j = D(c�)� �) and similarly for any i 2 A(�) we let eq(�)i =eq(Pj 6=i q

(�)
j ) and ep(�)i = P (eq(�)i +

P
j 6=i q

(�)
j ) (where

P
j 6=i q

(�)
j = D(c�)��).

We do not intend here to fully characterize the several patterns of equilibria
which can arise according to circumstances. The results in the following
Proposition call attention to two facts. First, there is an additional condition
in order for the competitive outcome to arise in the CPG. Second, at an
equilibrium of the CPG total capacity can be lower than the competitive
capacity and the less e¢ cient technique � can be adopted.

13A(�) (A(�)) is the set of active �rms at some capacity con�guration q(�) (resp., q(�)).
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Proposition 3 (i) Any q(�) is an equilibrium of the CPG where c� is
charged on the equilibrium path if and only if �c�D0(c�) � � and P (D(c�)�
�+ �) � c�.14 (ii) Inequalities �c�D0(c�) � � and P (D(c�)� �+ �) � c�
are su¢ cient for q(�) to be an equilibrium of the CPG where c� is charged on
the equilibrium path. (iii) Any q(�) is an equilibrium of the CPG where a mse
for the PS is played on the equilibrium path if and only if �c�D0(c�) < �.

Proof. 15 (i) [Su¢ ciency] With �c�D0(c�) � �, a pse obtains at q(�).
For any i 2 A(�) it is not worth to reduce capacity, i. e., to deviate to
technique � and install, say, capacity �: at the new pse 16 it will sell �
at price P (D(c�) � � + �) � c�, hence losses (or no gains). [Necessity]
With �c�D0(c�) < � a mse obtains at q(�) and a fortiori at q such that
Q = D(c�); qg > �: With �c�D0(c�) � � and P (D(c�) � � + �) > c�, at
q(�) it pays any i 2 A(�) to deviate to technique � and capacity �.

(ii) Since D00 � 0, it is also �c�D0(c�) � �, hence at q(�) prices are set
equal to c� . It does not pay any i 2 A(�) to deviate to technique � and, say,
capacity �: the new market-clearing price P (D(c�) + � � �) is not higher
than c�, hence losses or at most zero pro�t at a pse. If a mse obtains,17

expected pro�t is ep(�)i eq(�)i � c��; less than 0 since eq(�)i < � and ep(�)i � c�:

the latter follows since ep(�)i � c� (by assumption, a pse obtains at q(�)),ep0(�) < 0, and Pj 6=i q
(�)
j = D(c�)� � �

P
j 6=i q

(�)
j = D(c�)� �).

(iii) A mse obtains at q(�). It does not pay any i 2 A(�) to deviate to
technique � and, say, capacity �: this raises capacity cost (c�� > c��) while

expected revenue is still ep(�)i eq(�)i at the mse of the new PS.18

We can see the relevance of the size of market for the competitive out-
come in terms of our family of demand functions, D(r)(p) = rD(p). Similarly

14The latter condition may well be more restrictive than the former. Let D(r)(p) =
r(a � p): Then the former condition amounts to r � �=c� and the latter condition to
r � (� � �)=(c�� c�); hence the latter is more restrictive than the former if and only if
c� > �c�=(2�� �).
15 In the proof we will ignore deviations that can easily be ruled out. For example, as for

part (i): deviating to capacity q0i > � while sticking to technique � is ruled out as in the
proof of Proposition 1(i); deviating to capacity q0i > � and to technique � can easily be
ruled out; and one can also easily rule out entry (with either technique) by any u =2 A(�).
16From �c�D0(c�) � � and D00 � 0 it follows that (1) also holds at the new PS:

�pD0(p) � � at p = P (D(c�)� �+ �).
17 In the given circumstances, while q(�) has a pse, the PS resulting from the deviation

of i 2 A(�) under consideration may have a mse, so long as P (D(c�)� �+ �) > c� :
18Any u =2 A(�) faces an expected loss if entering. The proof goes as for Proposition

1(ii) if technique � is chosen by u. If choosing technique �, expected revenue is actually
the same, by Lemma 3: thus, a fortiori an expected loss, since c�� > c��:
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as before, it must be rD(c�)=� � 1=�p=c� in order for a pse to obtain at q(�).
Furthermore, j rD0(p) j must be su¢ ciently high on a right neighbourhood
of the competitive price c� so that at q(�) it does not pay an active �rm to
shrink capacity, what it can do by deviating to technique �: the resulting
increase in the market-clearing price (in fact, of the uniform price at the
equilibrium of the new PS) must not exceed the increase in unit cost. Note
that P (D(r)(c�)��+�) � c�+(1= j rD0(c�) j)[���] (strict equality hold-
ing i¤ D00 = 0), hence P (D(r)(c�)� � + �)! c� as r !1. Consequently,
P (D(r)(c�)� �+ �) < c� for r su¢ ciently large.

Examples. 1: D(p) = 32 � 2p, (c� = 1; � = 1), (c� = 1:2; � = :8). The
conditions of Proposition 3(i) hold: at q(�) the �rms charge the competitive
price c� and q(�) is an equilibrium of the CPG.

2: D(p) = 16 � p; (c� = 2; � = 2), (c� = 2:2; � = :6). The su¢ cient
conditions of Proposition 3(ii) hold: at q(�) prices are set at the market-
clearing level 2:2 and q(�) is an equilibrium of the CPG. (If any i 2 A(�)
raised capacity while deviating to �, this would result in losses at a mse of
the new PS.)

3: D(p) = 20:5� p; (c� = :25; � = 2:25), (c� = :5; � = 1). A mse obtains
at q(�) and q(�) is an equilibrium of the CPG: it does not pay any i 2 A(�)
to raise capacity and adopt �: this leads to a lower expected pro�t at a mse
of the new PS.

4 Concluding remarks

The role of capacity indivisibility for the competitive outcome is easily un-
derstood. Under constant returns at full capacity utilization, long-run cost
is C(qi) = c�qi19 at any qi 2 R+ with perfect divisibility. Now, consider any
capacity vector consistent with the competitive capacityD(c�) and such that
prices equal the competitive level c� at an equilibrium of the PS. Then it pays
an active �rm to reduce capacity: this raises the market-clearing price above
unit cost c�, which leads to positive pro�t at an equilibrium of the PS. Things
are quite similar if C(qi) is strictly convex. Then, at the CE each potential
entrant is active with capacity qcei , the solution of equation P (zqi) = C

0(qi).
Suppose that, at the competitive capacity vector, the competitive price
P (zqcei ) is charged at the equilibrium of the PS.20 That capacity vector
is not an equilibrium of the CPG, though: �rm i will raise pro�ts by mar-

19C(qi) = cqi, if, as in Section 2, a single technique is available.
20Otherwise the competitive outcome is immediately dismissed.
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ginally reducing capacity while charging the market-clearing price (the rate
of change of its pro�t will be P 0(zq�i )q

�
i +P (zq

�
i )�C 0(q�i ) = P 0(zq�i )q�i < 0).
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Proof of Proposition 2. Let P (Q) = a� bQ for Q � a=b (a; b > 0).
Then D(c) = (a � c)=b, eqi = a�b

P
j 6=i qj
2b and epi = a�b

P
j 6=i qj
2 . Further,

@2�wi (qi; q�i)=@q
2
i = �2b when qi +

P
j 6=i qj < D(0). Given Proposition 1,

we just need to rule out any q such that Q = (a� c)=b and qg > 1. In fact,
�rm g can pro�tably deviate to qg � 1. This is immediate when the q-PS
has a pse: then �i(q) = 0 for any i 2 A, hence g will pro�t by deviating to
qg � 1 and charging P (D(c)� 1) = c+ b: If the q-PS has a mse, then epg > c
and �g(q) = e�g � cqg. If epg � c+ b, then deviating to qg � 1 would raise g�s
expected pro�t to at least e�g�c(qg�1): since rivals can producePj 6=g qj at
most, �rm g will sell at least eqg = D(epg)�Pj 6=g qj � qg � 1 when chargingepg. If epg < c+ b, then qg � 1 < eqg < qg. Let qyi = argmaxqi2R+�wi (qi; q�i).
With

P
j 6=i qj � (a� c)=b; then q

y
i =

�
a�c
b �

P
j 6=i qj

�
=2 and one can write

�wi (qi; q�i) = �wi (q
y
i ; q�i) � b

�
qi � q

y
i

�2
. The capacity reduction can be

broken down in two virtual reductions, from qg to eqg and then from eqg to
qg�1. It su¢ ces to prove that g�s pro�t will rise if, at each step, g is charging
the market-clearing price. Assuming so, g�s pro�t will rise to �wg (eqg; q�g) in
the �rst step. After the second step, g�s pro�t will be �wg (qg�1; q�g), higher
than �wg (eqg; q�g) because qyg � qg � 1 < qg at any q : Q = (a� c)=b; qg � 2.
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