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Abstract 
 
This paper reports a piece of research undertaken during the project “Regional 
Indicators to reflect social exclusion and poverty VT/2003/43” funded by the 
Employment and Social Affairs DG of the European Commission. 
This study takes as its point of departure the methodological framework used for 
defining the indicators of poverty and social exclusion endorsed at Laeken, and more 
generally, existing methodological research and data in the area of indicators of 
poverty and social exclusion as well as in the area of regional indicators. 
The strategy recommend for the construction of regional (subnational) indicators of 
poverty and deprivation has three fundamental aspects: (a) making the best use of 
available sample survey data, such as by cumulating and consolidating the 
information so as to obtain more robust measures which permit greater spatial 
disaggregation; (b) exploiting to the maximum ‘meso’ data - such as the highly 
disaggregated tabulations available in Eurostat Free Data Dissemination 
(NewCronos) - for the purpose of constructing regional indicators; and (c) using the 
two sources in combination to produce more precise estimates for regions using 
appropriate small area estimation (SAE) techniques. 
The present work lies within the third aspect described above; in fact, when 
estimating small area models, the dependent variables are direct estimates of the 
measure concerned on the basis of sample data from the small area concerned. These 
direct estimates are normally affected by large variation mainly due to small sub-
sample sizes; in this paper we propose how to calculate these variances in the case of 
EBLUP (Empirical Best Linear Unbiased Prediction) estimators. These variances are 
needed in order to combine the sample and model-based estimates to produce more 
precise SAEs. 
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1. Introduction 
 
This paper reports a piece of research undertaken during the project “Regional 
Indicators to reflect social exclusion and poverty VT/2003/43” funded by the 
Employment and Social Affairs DG of the European Commission. 
As provided in the project Terms of Reference, the general aim of the project was to 
identify the appropriate methodologies and strategies for the development of 
indicators of poverty and social exclusion at regional level, the ultimate goal being 
the development of a coherent and integrated strategy for the incorporation of the 
regional dimension into the Member States’ NAP/incl.1 This study takes as its point 
of departure the methodological framework used for defining the indicators of 
poverty and social exclusion endorsed at Laeken, and more generally, existing 
methodological research and data in the area of indicators of poverty and social 
exclusion as well as in the area of regional indicators.  
The strategy recommend for the construction of regional (subnational) indicators of 
poverty and deprivation has been summarised in Betti et al. (2006); it has three 
fundamental aspects: (a) making the best use of available sample survey data, such as 
by cumulating and consolidating the information so as to obtain more robust 
measures which permit greater spatial disaggregation; (b) exploiting to the maximum 
‘meso’ data - such as the highly disaggregated tabulations available in Eurostat Free 
Data Dissemination (NewCronos) - for the purpose of constructing regional 
indicators; and (c) using the two sources in combination to produce more precise 
estimates for regions using appropriate small area estimation (SAE) techniques. 
The present work lies within the third aspect described above; in fact, when 
estimating small area models, the dependent variables are direct estimates of the 
measure concerned on the basis of sample data from the small area concerned. These 
direct estimates are normally affected by large variation mainly due to small sub-
sample sizes; in this paper we propose how to calculate these variances in the case of 
EBLUP (Empirical Best Linear Unbiased Prediction) estimators. These variances are 
needed in order to combine the sample and model-based estimates to produce more 
precise SAEs. 
The paper is composed of six sections; after this introduction, Section 2 briefly 
describes the SAE models taken into account in the project and fully described in 
Neri and Verma (2006); Section 3, which is the bulk of the paper, presents 
methodological notes on the estimation of sampling errors for the disaggregated 
direct estimates; the methodology is implemented for the case of the head count ratio 
(HCR) poverty measure in Section 4 and for other related poverty statistics in 
Section 5. Finally, Section 6 presents an empirical illustration. 
 

2. Description of the SAE models  
 
There is a wide variety of SAE techniques available, and the field is rapidly 
expanding. The suitability and efficiency of a particular technique depends on the 
specific situation and on the nature of the statistical data available for the purpose. 

                                                 
1 National Action Plans on Social Inclusion. 
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Reference must be made to the work of the ‘Eurarea’ project on ‘Enhancing Small 
Area Estimation Techniques to Meet European Needs’, the final report of which 
became available in August 2004. As stated, the aim of that project was “to provide 
European Statisticians, particularly government statisticians, with the information 
they needed to assess and use a range of small area estimation techniques, including 
techniques incorporating recent theoretical advances.” Several classes of small area 
estimators were investigated and evaluated under that project, in particular: (1) direct 
estimators; (2) area level synthetic estimators; (3) generalised regression estimators 
(GREG); and (4) composite (EBLUB) estimators.  
The Eurarea project did not consider, perhaps in view of practical considerations in a 
multi-country exercise, more complex estimation procedures, such as ‘Empirical 
Bayes’ and ‘Hierarchical Bayes’ approaches. All the methods considered in the 
Eurarea project assumed a situation in which unit level information on the target 
variables (in our case, various measures of poverty, deprivation and social exclusion) 
is provided by data from a sample survey; then there are auxiliary variables 
(covariates) which are known for the target areas (such as all NUTS2 areas in each 
EU country in our case). 

2.1 The ratio approach 
Returning to the present application, it should be noted that – compared to the scope 
of modelling considered in a large project such as Eurarea, for instance – the present 
application is somewhat simplistic in that it does not attempt to incorporate temporal 
or spatial autocorrelations. On the other hand, however, a major positive feature of 
the present approach is that the modelling strategy is designed to be hierarchical. 
We begin with poverty rates and other target variables at the national level, using 
essentially direct survey estimates without involving any modelling.2 Modelling at 
the level of countries is problematic in any case because most pertinent explanatory 
variables able to distinguish among national patterns are likely to be institutional and 
historical – variables which are often too complex and almost impossible to quantify. 
Sometimes countries or national systems are classified into types in an attempt to 
capture these aspects, such as ‘social democratic’, ‘liberal, ‘corporatist’, ‘residual’, 
and so on (e.g., Berthoud, 2004). For some purposes categorisation such as the above 
might be of some use. But generally such schemes are too simplistic to be 
illuminating. And we suspect that not too infrequently, such ‘ideal types’ are 
constructed merely to express or promote ideological prejudice. 
We can expect the predictive power of the model at the regional level to be 
substantially improved when the target variables as well as the covariates are 
expressed in terms of their values at the preceding higher level. Thus for NUTS1 
region i, all target variables and all covariates in the model are expressed in the form 
of the ratio 0ii YYR = , where ( )0i Y,Y  refer to the actual values of the variables, 
respectively, for NUTS1 i and its country. In this way the effect of the difficult-to-
qualify institutional and historical factors, common to the country and its regions, is 
abstracted. Similarly, in going from NUTS1 region i to its NUTS2 region j, we 

                                                 
2 The only exception to using survey estimates directly at the national level is the consolidation we have used to 
reduce sampling variability by ‘benchmarking’ the results to certain aspects of the pattern averaged over group of 
countries, as explained in Neri and Verma (2006).  
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express the model variables in the form iijij YYR = ; and similarly from NUTS2 to 
NUTS3 in the form ijijkijk YYR = . 
The resulting estimates of the R values can be ‘raked’ for consistency across levels 
by ensuring ,1R.W iii =Σ  ,1. =Σ jijj RW  etc., where Wi etc. are the appropriate 
population weights for the regions, scaled to give 1Wii =Σ . 
Occasionally, it may be efficient to specify this type of modelling separately for 
different parts of a large or exceptionally heterogeneous country, examples being 
eastern and western parts of Germany, or the northern and southern parts of Italy. 
The same may apply to metropolitan versus other areas in some countries, such as 
the UK and France.  
The same ideas are extended to the modelling of subpopulations, such as children, 
old persons, single person households, etc. Consider for instance child poverty rate, 
say Z0 at the national level, Zi at NUTS1 level, and Zij at NUTS2 level, with (Y0, Yi, 
Yij) as the corresponding poverty rates for the total population. Then for NUTS1 
regions, we can first model the proportion ( )0i YY  as above, and then using those 
results to model the ratio: 

 
( )
( )

( )
( )00

ii

0i

0i
i YZ

YZ
YY
ZZ

r ==  

to obtain the required child poverty rate Zi for region i. Factor ri indicates how the 
ratio of child to all-person poverty rate varies across regions. Similarly for NUTS2 
regions we can first model the variation in all-person poverty rates ( )iij YY  as 
before, and then using those results model the ratio: 

( )
( )

( )
( )ii

ijij

iij

iij
ij YZ

YZ
YY
ZZ

r == . 

2.2 The target variables 
The poverty and deprivation indicators listed in Table 1 are taken as the target 
variables in the SAE model estimated. 
Head count ratios have been computed for two poverty line levels: poverty lines 
defined with respect to income distribution at the country level, and with respect to 
income distribution separately within each NUTS2 region. All other poverty or 
deprivation rates (measures 5-13) have been computed with reference to HCR_C, 
i.e., using only country-level poverty lines. (See Betti and Verma (1999) for an 
exhaustive description of these measures). 
Country-specific details on the availability of these variables in EU25 and Candidate 
countries will be provided in Section 6 (Table 5). The main point to note is that for 
countries other than EU15, Poland and Romania, we have no micro data available 
and only two of the target variables could be constructed from published data: head 
count ratio with country poverty line, and median equivalised income. 

2.3 Models used 
According to the availability of data for the target variables and the access to area-
coded survey data for each country, three different types of SAE models have been 
estimated: 
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o SAE Model 1: estimated on the ratio NUTS1/Country; 
o SAE Model 2: estimated on the ratio NUTS2/ NUTS1;  
o SAE Model 3: estimated on the ratio NUTS3/ NUTS2. 
One such model has been estimated for each target variable at each NUTS level; all 
countries with area-coded survey data and the particular target variable available are 
pooled together for the estimation of model parameters at the level concerned.  
Such pooling across countries is clearly an over-simplification, and has been 
introduced here primarily for practical reasons. Nevertheless, the ‘ratio approach’ 
described above makes this procedure quite reasonable, we believe. This is because 
the approach removes the effect of factors common to an area and its components at 
the next level of the NUTS hierarchy. 
Model 3 has been estimated for Italy only, as no NUTS3 codes are available in any 
other survey. 
In countries where no area-coded survey data are available, we have had to resolve to 
much simpler and cruder regression-prediction models. This procedure involves 
using the regression coefficients determined from the corresponding EBLUP model 
(for the same target variable and the same NUTS level) to predict the target variables 
on the basis of available predictors. 
Model results need to be evaluated with reference to external criteria, as well as 
internally for consistency. For internal evaluation of the models, the following 
features should be examined: (a) linearity of the regression; (b) choice of prediction 
variables; (c) normality of standardised residuals; (d) homogeneity of the variance 
for standardised residuals; and (e) residual analysis to detect outliers. 
On these diagnostic aspects, only preliminary analysis could be done within the 
framework and resources of the present research. Our aim has been primarily 
illustrative; some deeper analysis must of course be performed in real life 
application. 
 

Table 1 Poverty indicators (Target Variables for SAE models) 

1 HCR_C Head Count Ratio, using country poverty lines (consolidated over 
computations using 50, 60 and 70% of median equivalised income); 

2 HCR_N2 Head Count Ratio, using nuts2 poverty lines (consolidated over 
computations using 50, 60 and 70% of median equivalised income); 

3 LogIncPC Mean of logarithm of the per capita income; 
4 logEqInc Mean of logarithm of equivalised income; 
5 FM_C Fuzzy monetary poverty rate (scaled to equal HCR_C at EU15 level); 
6 FS_C Fuzzy supplementary (non-monetary) deprivation rate 

(scaled to equal HCR_C at EU15 level); 
7 LAT_C Latent deprivation rate; 
8 MAN_C Manifest deprivation rate. 
9 FSUP-1 Fuzzy supplementary deprivation rate: dimension 1 (basic life-style); 
10 FSUP-2 Fuzzy supplementary deprivation rate: dimension 2 (secondary life-style);
11 FSUP-3 Fuzzy supplementary deprivation rate: dimension 3 (housing facilities); 
12 FSUP-4 Fuzzy supplementary deprivation rate: dimension 4 (housing 

deterioration); 
13 FSUP-5 Fuzzy supplementary deprivation rate: dimension 5 (environmental 

problems); 
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3. Methodological note on estimating sampling error for 
disaggregated direct (survey) estimates 
 

3.1 Introduction 
In the production of small area estimates (SAE) using a procedure such as EBLUP, a 
major technical requirement is the production of sampling error estimates for the 
disaggregated estimates produced directly from the survey. Direct estimates refer to 
the estimates derived from the survey data for the small areas concerned, taking into 
account the sampling design. Synthetic estimates are those derived by fitting an 
appropriate small area model. A weighted combination of these two types of 
estimates is then taken to produce the final composite estimates (SAEs). The weights 
in the combination depend on the relative magnitudes of the design variance 
pertaining to the direct estimates, and the model variance of the synthetic estimates.  
Model variance or error is a measure of the disparity (variability) between the direct 
survey estimates (assuming those to be based on 100% coverage of population) of 
the target variables of interest, and the model estimates based on the predictor 
variables (regressors); its primary determinant is how well the model fits the data.  
Sampling variance (or its square-root, standard error) is a measure of the variability 
in the direct estimates as a result of those being based only on a sample of the 
population. Apart from the design, the primary determinant of the magnitude of the 
sampling error is sample size; hence this component of error increasingly 
predominates as we move to small areas and domains. 
Firstly, sampling error estimates in this context are doubly complex: because the 
statistics of interest in the study of poverty and deprivation are generally complex, 
much more so than for instance ordinary proportions, means and ratios; and also 
because the sample designs on which they are based are complex, involving unequal 
selection probabilities, stratification, multi-stage selections, aggregation over 
different samples and times, etc. 
Secondly, typically very large numbers of estimates are required. This may be 
because of the need to include different types of measures, possibly over different 
subpopulations, but primarily this arises because of the large number of small 
domains for which the estimates must be produced.  
The third difficulty arises from the fact that the estimates of sampling error are 
themselves subject to variability, which increases with the degree of disaggregation 
of results as the sample size is reduced. Results of individual computations – even if 
computationally possible – cannot be always trusted or directly used; this can apply 
not only to the estimates of variances but also to the estimated statistics themselves.  
Fourthly, samples are not always designed in practice so as to permit rigorous 
estimation of sampling errors from the sample itself. Approximations are often 
required in making these estimates. 
Finally, there is often a problem of insufficient or incomplete documentation and 
coding in the micro-data of the structure of the sample so as to permit valid estimates 
of sampling error taking into account the complex sample structure (see Verma, 
1993). 
Practical approaches and procedures are required to overcome such common 
difficulties. These involve using approximate procedures and modelling and 
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averaging of individual computations as necessary and appropriate. By ‘appropriate’ 
we mean procedures which – while not exact or perfect – nevertheless provide 
estimates which can be considered sufficiently valid and usable for the purpose for 
which they are produced. In this context it is important to note that the requirement 
of accuracy of the sampling error estimates for the purpose of SAE is somewhat less 
stringent than, for instance, the situation when such estimates are required for 
constructing confidence interval and the like for individual statistics produced from 
the survey. This is because in the context of SAE, the role of sampling error is, in the 
first instance, only to determine the relative weight of the direct survey estimate in 
the final composite estimate. Of course error in the final estimates does depend on 
the sampling error, but increasingly less so as the domain sample size goes down. 
Approximations in the sampling error estimates can be accepted to the extent the 
final results from the SAE process are not sensitive to those. 

3.2 Modelling of sampling errors 
A common practical procedure for estimating sampling errors for a set of related 
statistics is to seek a so-called generalised variance function (GVF) which relates the 
required error of a statistic to some simple and known characteristics of the statistic, 
such as its value and the sample size. Different functional forms may be required for 
different types of statistics to produce reasonable approximations of sampling errors; 
the functional relationships have to be established and validated empirically. There 
are many well-known examples of the use of such functions in official statistics, for 
instance US Bureau of the Census (1978). In the specific SAE context, an important 
example of use of GVFs is National Research Council (1998), reporting the work of 
the Panel on Estimates of Poverty for Small Geographic Areas in the United States. 
Any GVF implies, implicitly or explicitly, constancy of certain parameters (the 
population variance, coefficient of variation, the design effect, etc.) determining the 
magnitude of the sampling error of statistics in the group to which it applies. At least 
the statistics must be similar, and based on the same or a similar design. This 
restriction makes such an approach unsuitable in our multi-country, EU-wide 
context. The survey statistics which we must use are based on national samples with 
different designs and structures, even for standardised surveys such as the ECHP. 
(With the replacement of ECHP by EU-SILC, this diversity is likely to be 
substantially greater.) For this reason, a different and more flexible approach is 
required. 
The following describes the procedures we have adopted for calculating standard 
errors for the poverty and related measures estimated at regional level, going down 
from the country level to NUTS1, and then to NUTS2, and even to NUTS3 where the 
necessary information for the purpose is available in the survey. On the basis of 
experience with analysis of patterns of variation of sampling errors, and taking into 
account our specific multi-country EU-wide context, the approach we recommend 
and have used has the following features. 
1. The standard error of any statistic is broken down into a number of factors which 

together account for its magnitude. Each factor represents some aspect(s) of the 
complexity of the sampling design and the estimation procedure (stratification 
and clustering, weighting, aggregation over surveys, etc.). 

2. There is a considerable body of empirical evidence suggesting that many of these 
factors act more or less independently of each other, so that the factor effects can 
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be taken as multiplicative (see for instance Verma et al. 1980 and Verma and Lê, 
1996). In any case, such a simplifying assumption is usually unavoidable in 
practice. 

3. Each factor depends on parameters corresponding to a number of dimensions, in 
our specific context from the following set: the statistic or variable concerned (v) 
and the population (u) over which it is defined; country (c) and its particular 
domain (i); and for a panel survey such as ECHP, the survey wave (w). Reliable 
estimates of the factors taking into account all these parameters simultaneously 
are not possible, or even necessary in practice. On the basis of theoretical and 
empirical considerations, we simplify - and also make the result more robust - by 
averaging over dimensions as appropriate for each parameter. The most obvious 
and common example is averaging over waves in a panel. 

4. Further simplifying assumptions are often required, whether because of a lack of 
sufficient information (such as on aspects of the sampling design), or because the 
statistic involved is too complex to permit more precise treatment, or simply to 
make the task manageable. 

5. Specifically, we often have to borrow parameters from simpler statistics for use 
with more complex, less traceable statistics. 

These features will be illustrated in the following, starting with the most important 
and basic statistic – estimated poverty rate or head count ratio (HCR). 
 

4. Domain sampling error for HCR 
 
For the head count ratio (HCR), we may factorise the standard error estimate (se) 
into components as follows: 
 ( ) VVVVVVVV r.g.f.s.d.k.serse =  
Subscript V is the general notation for parameters corresponding to various 
dimensions, such as the statistic or variable concerned (v), the population (u) over 
which it is defined, country (c) and its particular domain (i), and survey wave (w). 
Each of the factors are described below in turn. 

4.1 Simple random sample standard error (serV) 
The first factor in the equation above stands for standard error which would be 
obtained in a simple random sample of the same size (nV), without complexities 
which the other factors represent. Neglecting minor factors such as the ‘finite 
population correction’, this factor depends on the sample size in a simple way as 
follows: 
 ( )VVV nsdser = , 

where sdV is the standard deviation, a measure of dispersion of the variable in the 
population, independent of the sample design or size. For a simple proportion p, 

( )p1.psd V −= , which is insensitive to variations in p values over a wide range 
such as 0.25-0.75, and is well estimated even from samples of small size. The 
statistic HCR is more complex than a simple proportion, as it is defined in terms of a 
poverty line which is itself subject to sampling variability. However, empirical 
results indicate that sdV defined as above still provides a reasonable approximation 
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for it (Berger and Skinner, 2003; Verma and Betti, 2005). In any case, it is 
reasonable to average the results over waves and even domains within a country so 
as to obtain more reliable and stable estimates. In other words, for HCR=p and 
domain sample size ni, we can approximate its simple random sample standard error 
as: 
 ( ) iHCR np1.pser −= . 

4.2 Effect of sample weights (Kish factor, kV) 
Often variations in sampling rates and hence in the sample weights are determined by 
reporting requirements and other ‘external’ considerations largely independent of 
statistical characteristics of the domains of interest. In this sense the weights may be 
considered arbitrary or haphazard, the effect of which is to inflate the variance of 
overall estimates. The important thing is that such unequal weights tend to affect 
(inflate) the variance of all estimates for different variables in a rather uniform way, 
independently of the structure of the sample except for the weighting itself. Herein 
lies the practical utility of isolating this effect. It is well approximated by the 
following simple expression (Kish 1965): 

 ( ) ( )j
2
i

2
j

2
jii wcv1ww.nk +== ∑∑  

where the sum is over the ni sample cases, and cvi is the coefficient of variation of 
individual weights wj in domain i. Note that the factor has been taken to depend only 
on domain i. Some variation can be expected to occur over waves because of changes 
in the panel sample, but these are normally minor and the results can be averaged 
over waves. 

4.3 Design factor (dV) 
Design factor (or its square, design effect) is a comprehensive summary measure of 
the effect on sampling error of various complexities in the design. It is the factor by 
which the actual standard error is different from the error in a simple random sample 
of the same size. Here this factor represents primarily the effect of stratification and 
clustering, in so far as the effect of sample weights has already been isolated in terms 
of (ki) above. The design effect depends on the structure of the sample as well as the 
variable being estimated. In the ECHP-UDB data available for the present research, 
codes for the identification of the sample structure have not been provided generally; 
consequently, full computation of design effects is not possible at present. However, 
in Eurostat PAN doc.138 (2000), the information shown in Table 2 below is provided 
on design effects averaged over household income related variables. Note that with 
the exception of Portugal and Italy, the design effects are quite small, all within the 
range 1.0-1.2. In Denmark, Luxembourg and the Netherlands, practically simple 
random samples were used so that dc=1.0. For Finland, for Sweden (register data), as 
well as for the survey data from Poland and Romania, we have assumed similar 
values in the absence of better information at hand. In view of the generally small 
range within which the design effects vary in the present case, it is sufficient to 
assume that, within each country, a common design effect value can be used for the 
set of income poverty and deprivation variables of interest, and that the same value 
applies across different regions in the country. 
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Table 2 Design and Kish factors for income-related variables 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 DE DK NL BE LU FR UK IE IT GR ES PT AT FI SE 

mean

ki 1,07 1,06 1,10 1,08 1,08 1,03 1,04 1,11 1,13 1,09 1,13 1,36 1,19 (1,10) (1,10) 1,11
dc 1,12 1,00 1,00 1,11 1,00 1,12 1,13 1,19 1,86 1,23 1,14 1,67 1,13 (1,00) (1,00) 1,16
ki*dc 1,20 1,06 1,10 1,20 1,08 1,15 1,17 1,32 2,10 1,34 1,29 2,27 1,34 (1,10) (1,10) 1,29

(..) assumed values; PL & RO: the design effect was assumed as 1,20. The Kish factor in Romania is 1,31. 

4.4 Subpopulation factor (sV) 
For a subpopulation distributed reasonably uniformly across the population, the 
sampling error for an estimate over the subpopulation (s) can be related in a simple 
form to that for an estimate over the total population (c). Examples are HCR for 
children or old persons, compared to the HCR estimated for the total population. The 
approximate relationship is: 

( )
2

1

2
c

c

s
2

1

s

c

c

s
V 1d.

n
n

1.
n
n

se
se

s 









−








+








=








= , 1dc ≥ , 

where ns is the number in the sample from the subpopulation (children, elderly 
persons, recent school-leavers, etc.), and nc is number in the sample from the total 
population. The first factor is the increase in sampling error because of the reduced 
sample size when we consider only the subpopulation of interest. This is partly 
balanced by the second factor which gives the reduced design effect. (The design 
effect is reduced because of reduced cluster size when units belonging to the 
subpopulation only are considered.)  

4.5 Reduction due to aggregation over waves (fV) 
Factor fV reduces the standard error because of consolidation of measures over 
waves. Of course, we cannot merely add up the sample seizes over waves since 
ECHP is a panel survey and there is a high positive correlation in the poverty 
measures among the years, which reduces the gain from cumulation. The correlation 
can be estimated as follows. Consider two adjacent waves, with proportion poor as p 
and p', respectively, with the following individual-level overlaps between the two 
waves: 
 Wave w+1 
Wave w Poor (p'i=1) Non-poor (p'i=0) total 
Poor (pi=1) a b p=a+b 
Non-poor (pi=0) c d 1-p=c+d 
total p'=a+c 1-p'=b+d 1=a+b+c+d 
Indicating by pj and p'j the {1,0} indicators of poverty of individual j over the two 
waves, we have, with the sum over all (n) individuals: 
 ( ) ( ) ( ) 1

2
jj vp1.pnpppvar =−=−Σ= , say; 

 ( ) ( )( ) 1jjjj cp.panpp.ppp,pcov =′−=′−′−Σ=′ , say. 

For data averaged over two adjacent years (and ignoring the difference between p 
and p'), variance is given by: 
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The correlation ( )11 vc  between two periods is expected to decline as the two 
become more widely separated. Let ( )1i vc  be the correlation between two points i 
waves apart. A simple and reasonable model of the attenuation with increasing i is: 
 ( ) ( )i

111i vcvc = . 
Now in a set of I periods (waves) there are (I-i) pairs exactly i periods apart, i=1 to 
(I-1). It follows from the above that variance vI of an average over I periods relates to 
variance v1 of the estimate from a single wave as: 
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where a is the overall rate of persistent poverty between pairs of adjacent waves 
(averaged over I-1 pairs), and p is the (cross-sectional) poverty rate averaged over I 
waves. The ratio of the corresponding standard errors is fc. Due to averaging over I 
waves, the effective sample size is increased by ( )2

cf1 . We take factor fc to be 
country-specific, more or less independent of the particular variable in the set.  

Table 3 Reduction in standard error resulting from cumulation over waves  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 DE DK NL BE LU FR UK IE IT GR ES PT AT FI SE
p (average HCR) 0,12 0,11 0,11 0,14 0,12 0,15 0,19 0,19 0,19 0,21 0,19 0,21 0,13 0,10 0,10
a (persistent poverty rate) 0,07 0,06 0,06 0,09 0,09 0,10 0,12 0,13 0,13 0,14 0,12 0,15 0,08 0,06 0,01
I (no of waves) 8 8 8 8 7 8 8 8 8 8 8 8 7 6 5
Gain over single wave fc 0,59 0,54 0,57 0,59 0,69 0,60 0,60 0,63 0,60 0,60 0,57 0,65 0,61 0,66 0,45
Effective number of 
waves 2,90 3,39 3,13 2,86 1,86 2,76 2,77 2,49 2,76 2,80 3,02 2,36 2,67 2,29 5,00

Poland and Romania: no cumulation over waves is involved 

Table 3 shows values of the parameters actually obtained for ECHP data over 8 
waves. The last two rows show, respectively, the gain in precision (reduced standard 
error) over a single wave as a result of cumulation, and the factor by which the 
effective sample size achieved exceeds the average sample size for a single wave. 

4.6 Reduction from averaging different poverty thresholds (gV) 
One of the important recommendation of this research is that in constructing regional 
poverty rates and similar statistics from limited sample sizes, some gain in efficiency 
can be achieved by computing those using different poverty thresholds (such as 50, 
60 and 70% of the median income), and then taking an appropriately weighted 
average of those. It is desirable to take these weights as externally determined 
constants. Consider three poverty line thresholds, with poverty rates pi, 321 ppp << , 
such the with fixed weights Wi, the final rate is computed as iii p.Wp Σ= . Its 
variance is given by: 
 ( ) ( ) ( )jijiiji

2
ii p,pcov.WW.2pvar.Wpvar <Σ+Σ= . 

By considering the poverty indicator variables { }1,0p k,i =  for individual j in the 
population, it can be easily seen that the above equation becomes: 



 13

 ( ) ( ) ( )ijjiijii
2
ii p1.p.WW.2p1.p.Wpvar −Σ+−Σ= < . 

It is this variance that we compare with the variance of a rate (p2) computed using a 
single poverty line such as 60% of the median, as is normally done: 

( ) ( )222 p1.ppver −= . The ratio ( ) ( )( ) 2
1

2V pvarpvarg =  gives the required factor by 
which the standard error is reduced. Table 4 gives the actual factors obtained for 
ECHP data, using appropriately weighted consolidation over three poverty line 
thresholds, namely 50%, 60% and 70% of the median as explained above. In fact, 
computations have been performed, also using different poverty line levels in the 
sense described earlier, that is by defining the median for population aggregations to 
different levels such as NUTS2, NUTS1, Country or EU where possible. The factors 
are remarkably robust to such changes in the level as seen in Table 4. (Only country 
and NUTS2 poverty line results are shown in the table, as they are the most relevant.) 

Table 4 Reduction in standard error from consolidation over different poverty line 
thresholds  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 25 
Poverty line 
level DE DK NL BE LU FR UK IE IT GR ES PT AT FI SE PL 

NUTS2 0,93 0,87 0,91 0,90 0,87 0,91 0,94 0,88 0,94 0,96 0,94 0,95 0,89 0,88 0,92 0,95
Country 0,93 0,87 0,91 0,90 0,87 0,91 0,93 0,88 0,95 0,97 0,95 0,96 0,89 0,87 0,92 0,96

This factor equals 1.0 for RO as no consolidation over poverty line thresholds was 
carried out in this country. 

4.7 Standard error of ratio of estimates in a hierarchy (rV) 
As noted earlier, it is more efficient to model the small area estimates in a 
hierarchical manner. In place of estimating the absolute value of any statistic (say e2), 
we estimate instead the ratio (r=e2/e1) of the statistic at one level such as NUTS2, to 
its estimate at the preceding (higher) level such as NUTS1. The objective is to obtain 
var(r), given var(e2) obtained as described in the steps above. We have: 

 ( ) ( ) ( ) ( )( )212
2

22
11

2 e,ecov.r.2evar.revar.
e
1

e
e

varrvar −+=







= . 

The covariance is easily evaluated by noting that sample “2” is just a subsample of 
“1”, with the same measurements so that correlation between them is 1.0. It can be 
shown that with n2 as the size of the subsample of sample n1: 

 ( ) ( ) ( )( )[ ] 2
1

122121 nn.evar.evare,ecov = . 
With the reasonable assumption: 
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we get the simple expression for the required factor (rV): 
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the second factor representing the gain resulting from the fact that sample “2” is 
simply a subsample of “1”. 
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5. Standard errors for other statistics 
 
In this application we have considered 13 main poverty measures, listed in Table 1 
above, for which estimates of standard errors are required at various levels (Country, 
NUTS1, NUTS2, … ). Using the factors for the head count ratios [statistics 1-2] 
derived above, the corresponding factors for the other statistics have been obtained 
using the following simplified procedures. 

5.1 Measures related to income levels 
The main differences from the HCR sampling error concern the computation of the 
standard deviation sdV, and factor gV which equals 1.0 since no consolidation over 
poverty lines is involved. We have assumed all other factors to be the same as those 
for HCR. 
For a variable y such as log-income, standard deviation is computed as: 

 ( )( ) 2
1

j
2

jjw,v,c wyy.wsd Σ−Σ= ,  

with ( )jjj w.ywy ΣΣ= , and wj as the sample weights. The subscripts have been 
used in the above to indicate that the expression is specific to country (or region), 
variable and wave. In order to average values over waves, it is preferable to work 
with the coefficient of variation ysdcv w,v,cw,v,c = , which is scale-free and therefore 
not affected by inflation or the unit of measurement. This permits its straightforward 
averaging over waves: 

  ∑=
T

1:w
w,v,cv,c cv.

T
1cv .  

After that, averaged value of standard deviation can be calculated as: 

 ∑=
T

1:w
w,v,c

v,c
v,c y.

T
cv

sd  

5.2 Fuzzy measures 
We assume that the same structure and parameters as above for sampling error of 
HCR apply for related fuzzy measures of the degree of poverty and deprivation. Of 
course, standard deviation is computed with reference to proportion pv for the 
variable concerned, which may differ significantly from p for HCR. Fuzzy measures 
have been computed here with reference to a single poverty threshold (60% of the 
median income), rather than consolidated over three thresholds as was done in the 
case of the HCR. Consequently, factor gc=1. On the other hand, however, we expect 
fuzzy measures to have smaller variance than conventional HCR based on a 
dichotomous (yes-no) variable. We have not investigated the magnitude of this effect 
in the present (ECHP) data, but have simply kept the HCR gc<1 unchanged to make 
an allowance for it. (See Betti et al. (2006) for a complete discussion of such 
measures). 
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6. Empirical results 
 
The methodology proposed in Section 3 and implemented to poverty measures in 
Section 4 and Section 5 has been applied in EU-25 and Candidate countries. 
The availability of data for the estimation of such measures is presented in Table 5. 
Sufficient information is not available in the ECHP surveys in Germany, 
Luxembourg and Sweden to construct deprivation measures in special dimensions 
(variables Fuzzy Supplementary 1-5). Only income related measures could be 
computed from the survey in Romania. It should also be noted that some of the non-
monetary measures for Poland lack comparability with corresponding ECHP 
measures because of differences in the survey questions used. 
 
Table 5 The availability of the target variables in EU25 and Candidate countries 

target variable 1 2 3 4 5 6 7 8 9 10 11 12 13
HCR_c HCR_n2 logEqInc logIncPC FM_c FS_c LAT_c MAN_c FSUP-1 FSUP-2 FSUP-3 FSUP-4 FSUP-5

1 DE Germany X X X X X X X X
2 DK Denmark X X X X X X X X X X X X X
3 NL Netherlands X X X X X X X X X X X X X
4 BE Belgium X X X X X X X X X X X X X
5 LU Luxembourg X X X X X X X X

6 FR France X X X X X X X X X X X X X
7 UK United Kingdom X X X X X X X X X X X X X
8 IE Ireland X X X X X X X X X X X X X
9 IT Italy X X X X X X X X X X X X X

10 GR Greece X X X X X X X X X X X X X

11 ES Spain X X X X X X X X X X X X X
12 PT Portugal X X X X X X X X X X X X X
13 AT Austria X X X X X X X X X X X X X
14 FI Finland X X X X X X X X X X X X X
15 SE Sweden X X X X X X X X

23 PL Poland X X X X X X X X X X X X X
27 RO Romania # X X X X X

16 CY Cyprus * *
17 CZ Czech Republic * *
18 EE Estonia * *
19 HU Hungary * *
20 LT Latvia * *
21 LV Lithuania * *
22 MT Malta * *
24 SI Slovenia * *
25 SK Slovakia * *
26 BG Bulgaria * *
28 TR Turkey * *

# Romania: Consumption instead of income variables
* Only published indicators available on HCR (poverty line 60% of national median), and national median income, mostly based on HBS.  

 

6.1 Performance measures 
Table 6 shows some ‘performance measures’ of SAE Model 1. For each model (i.e., 
target) variable, three measures are shown: 

i) the model parameter gamma (γ). It is the ratio between the model 
variance and the total variance, and is the share of the weight given to the 
direct survey estimate in the final composite estimate. 
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ii) ratio (a)*/(a), i.e., the ratio between the EBLUP estimated value of (a)* 
and the corresponding direct estimation (a). This is to check the extent to 
which the modelling changes the input direct estimates. 

iii) ratio (b)*/(b), i.e., the ratio between mean-squared error (MSE) of the 
EBLUP estimate of the (NUTS1: Country) ratio, and MSE of direct 
survey estimate of this ratio. This is to check the extent to which the 
modelling has improved precision of the estimates.  

For each of the above, the following summary statistics are given: the mean value 
over all NUTS1 areas in the model; the coefficient of variation of those values; and 
the minimum and maximum values. 

Overall the results are as expected: the SAE Model1 for NUTS1 level does not 
provide much gain, as can be seen from the mean ratio of mean-squared errors. This 
is because the sample sizes for most NUTS1 areas are actually quite large; NUTS1 
can hardly be called ‘small areas’. The large sample sizes are achieved by 
cumulation of data over survey waves. 
The largest gains in efficiency are for Manifest Deprivation Rate and HCR with 
NUTS2 poverty line. It is particular noteworthy for HCR_N2, where the MSE is 
reduced to two-thirds, which implies more than doubling the effective sample size. 
Since this variable is based on income distributions within each NUTS2 region (even 
though the modelling being discussed is from country to NUTS1 level of 
aggregation), it is possible that the sampling errors of the direct estimates are larger. 
The main reason for the better performance of the model, however, must be a 
stronger relationship of HCR_N2 with the predictor variables used, compared to the 
same relationship for HCR_C. This is an important observation because of the 
substantive importance, as noted earlier, of HCR_N2 as a regional indicator of 
poverty. 
 
Table 6 Performance measures for SAE Model 1 

Gamma Estimate Mean-squared error (MSE)
EBLUP/direct estimate MSE(EBLUP)/MSE(direct estimate

mean CV min max mean CV min max mean CV min max
1 HCR_C 0,86 0,15 0,41 0,99 0,99 0,10 0,70 1,49 0,95 0,19 0,35 1,90
2 HCR_N2 0,35 0,47 0,03 0,73 1,00 0,05 0,84 1,14 0,67 0,23 0,23 0,93
3 logEqInc 0,95 0,05 0,71 0,99 1,00 0,00 1,00 1,00 0,98 0,02 0,89 1,00
4 logIncPC 0,95 0,05 0,71 0,99 1,00 0,00 1,00 1,00 0,98 0,02 0,89 1,00
5 FM_C 0,83 0,16 0,35 0,98 0,99 0,05 0,72 1,05 0,92 0,07 0,68 0,99

6 FS_C 0,83 0,16 0,39 0,98 1,00 0,05 0,84 1,28 0,93 0,07 0,70 0,99
7 Latent 0,86 0,14 0,38 0,98 1,00 0,03 0,81 1,11 0,94 0,06 0,70 0,99
8 Manifest 0,66 0,36 0,15 0,96 0,98 0,12 0,60 1,39 0,83 0,18 0,43 0,99

9 Fsup_1 0,93 0,05 0,74 0,99 1,00 0,02 0,96 1,03 0,97 0,02 0,89 1,00
10 Fsup_2 0,86 0,10 0,65 0,98 1,00 0,03 0,89 1,11 0,94 0,04 0,84 0,99
11 Fsup_3 0,70 0,32 0,08 0,98 0,99 0,17 0,36 1,32 0,86 0,16 0,29 1,00
12 Fsup_4 0,88 0,09 0,65 0,98 1,00 0,02 0,94 1,06 0,96 0,04 0,84 0,99
13 Fsup_5 0,88 0,07 0,73 0,98 1,00 0,02 0,96 1,05 0,96 0,03 0,89 0,99  

 
Table 7 shows some ‘performance measures’ of SAE Model 2. For each model 
(target variable), three measures are shown as in Table 6. 
The performance of the model in terms of gain in efficiency is obviously better for 
Model 2 (NUTS2 level) compared to Model 1 (NUTS1 level). This is because in the 
former the sample sizes available for direct estimates are smaller. The highest gains, 
of 20-25%, are for Latent, Manifest and FSUP-1 deprivation measures. Again, as 
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with Model1, the gain for HCR_N2 is almost twice as large as that for HCR_C. This 
is important in the context of constructing regional indicators. The gain for HCR_C, 
FSUP-2, FSUP-4 and FSUP-5 is around 10%, while no prediction is possible for 
FSUP-3 for lack of adequate data. For logarithm of equivalised income and the 
logarithm of the per capita income, the relative gains are the smallest among the 
variables.  
 
Table 7 Performance measures for the SAE Model 2  

Gamma Estimate Standard error (SE)
EBLUP/direct estimate SE(EBLUP)/SE(direct estimate)

mean CV min max mean CV min max mean CV min max
1 HCR_C 0,80 0,22 0,45 0,98 1,01 0,08 0,86 1,34 0,90 0,11 0,71 1,00
2 HCR_N2 0,66 0,38 0,19 0,95 1,01 0,07 0,83 1,30 0,82 0,22 0,47 1,00
3 logEqInc 0,81 0,23 0,44 0,98 1,00 0,00 1,00 1,01 0,94 0,18 0,68 1,35
4 logIncPC 0,85 0,14 0,65 0,99 1,00 0,00 0,99 1,01 0,92 0,12 0,74 1,21
5 FM_C 0,75 0,27 0,40 0,98 1,02 0,14 0,80 1,63 0,88 0,12 0,66 1,02
6 FS_C 0,68 0,32 0,32 0,97 1,02 0,09 0,85 1,45 0,85 0,14 0,63 0,99
7 Latent 0,61 0,36 0,23 0,96 1,01 0,08 0,84 1,41 0,81 0,16 0,50 0,98
8 Manifest 0,55 0,49 0,12 0,97 1,06 0,25 0,71 2,25 0,76 0,24 0,36 1,00
9 Fsup_1 0,60 0,41 0,22 0,97 1,01 0,08 0,86 1,28 0,80 0,18 0,54 1,00

10 Fsup_2 0,73 0,22 0,47 0,97 1,01 0,07 0,87 1,26 0,88 0,09 0,70 0,99
11 Fsup_3
12 Fsup_4 0,77 0,15 0,51 0,97 1,01 0,05 0,88 1,24 0,90 0,06 0,76 0,99
13 Fsup_5 0,76 0,22 0,49 0,98 1,00 0,05 0,87 1,11 0,89 0,10 0,72 1,01  

 
Let us now pass to EBLUP models for going from NUTS2 to NUTS3 level. SAE 
Models 3 are estimated for Italy (only this database makes possible the access to 
area-coded survey at NUTS3 level). Given the high level of disaggregation we 
decided to consider only three poverty indicators (consequently three models): the 
HCR_C, the HCR_N2, logEqInc. The list of the independent variables available is 
also more limited; it is confined to the relevant covariates, tables for which are 
provided in NewCronos at NUTS3 level.  
The available set covariates is very limited indeed. It would be important to find 
additional and better covariates in real-life replications of SAE Model 3. 
Table 8 shows some ‘performance measures’ of SAE Model 3. For each model 
(target variable), three measures are shown as in Table 7. 
In this case we really have small areas with very small sample sizes. The average 
gain in precision is at least 20%, and it is quite consistent across the target variables. 
It is interesting to note the minimum value of the ratio between the EBLUP standard 
error and the direct standard error: the minimum values in all the three models are 
less the 0.10. This means that in some areas the EBLUP estimator provides a gain in 
efficiency, compared to the direct survey estimates, that is higher than 90%.  
 
Table 8 Performance measurement for the SAE Model 3  

Gamma Estimate Standard error (SE)
EBLUP/direct estimate SE(EBLUP)/SE(direct estimate)

mean CV min max mean CV min max mean CV min max
HCR_C 0.70 0.41 0.01 1.00 1.05 0.27 0.44 2.53 0.81 0.30 0.10 1.00
H_N2 0.76 0.36 0.00 1.00 1.03 0.20 0.46 2.21 0.85 0.27 0.08 1.00
logEqInc 0.62 0.44 0.00 1.00 1.00 0.01 0.96 1.05 0.77 0.32 0.05 0.98  
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