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1 Introduction

The core of a game is the set of its undominated outcomes, with respect
to a suitably defined irreflexive dominance relation, or loopless digraph. In
particular, such a dominance relation may well be a symmetric one, thus de-
noting in fact mutual incompatibilities between outcomes: then, the core
is generated by a symmetric digraph and is therefore denoted here as a
symmetrically-based or simply symmetric core. Indeed, in that case the core
may be equivalently regarded as the set of outcomes which are compatible
with every feasible alternative.

Now, consider the ongoing operation of an interaction system, e.g. an or-
ganization or indeed any suitably complex decision-making unit that is aptly
modelled as a game. Furthermore, let us assume that the set of available
options does change at a faster pace than the behavioural attitudes of the
relevant players and the latter interact as predicted by the (symmetric) core
of that game. It follows that the corresponding choice behaviour of the given
interaction system as recorded by its choice function should be constrained
in some way by its underlying game-theoretic structure, and thus somehow
reveal it. But then, what are the characteristic features of such a choice
function, hence the testable behavioural predictions of the core as a solu-
tion concept when applied to games with a symmetric dominance relation?
Namely, how can one tell choice functions induced by cores under a symmet-
ric dominance digraph from non-symmetric cores or other game solutions?
Or, to put it in the simplest way, which choice functions may be regarded as
symmetric revealed cores?

To the best of my knowledge, that problem has never been addressed in
the extant literature. To be sure, parts of the massive body of literature on
‘revealed preference’ provide partial answers addressing the case of nonempty
cores, i.e. of acyclic revealed dominance digraphs (see e.g. Wilson (1970),
Sen (1971), Plott (1974), Suzumura (1983)). Moreover, there is also some
work covering the case of empty sets of undominated outcomes for an ar-
bitrary -possibly not irreflexive- binary relation R, hence putting aside the
standard game-theoretic interpretation of R as a dominance relation (see e.g.
Aizerman and Aleskerov (1995), and Danilov and Koshevoy (2009)). But of
course the dominance relation of a game as usually construed has to be ir-
reflexive (no outcome dominates itself), and the core of a game may well be
empty, because its revealed dominance digraph may have cycles. Here, we are
interested precisely in the general symmetric version of the core revelation



problem: thus, we provide a characterization of all symmetric revealed cores
as solutions for a certain ‘universal’ outcome set and its subsets, includ-
ing (locally) empty-valued symmetric cores. The class of symmetric revealed
pseudocores, obtained by dropping irreflexivity of the underlying revealed
digraph, is also considered. Moreover, building on such characterizations,
the basic order-theoretic structure of the class of symmetric revealed cores
and pseudocores is analyzed. In particular, it is shown that the posets of
symmetric revealed cores and pseudocores are both sub-meet-semilattices (but
not sub-lattices) of the canonical lattice of all choice functions under the
component-wise set-inclusion order (see section 4 below).

As clearly exemplified by the foregoing discussion, game-theoretic solu-
tion concepts may be typically represented by choice functions on a suitably
defined outcome set. Choice functions are deflationary or contracting oper-
ators on a certain ground set: for any feasible subset of the latter a choice
function specifies the subset that is selected out of it for acceptance (or per-
haps rejection). By contrast, inflationary or extensive operators as similarly
defined on a certain ground set attach a superset to any subset of the latter.
Closure operators are those inflationary operators that are also projections
i.e. satisfy idempotence and monotonicity. Amongst them, Lawvere-Tierney
(LT) closure operators are those enjoying the further property of being meet-
homomorphic (or multiplicative): they may be interpreted as an algebraic
representation of a geometric modality denoting local truth (e.g. ‘it is locally
the case that’), and when introduced in a suitable categorial framework they
provide a generalized version of so-called ‘Grothendieck topologies’ (see e.g.
Goldblatt (2006)).

In a recent remarkable paper, Danilov and Koshevoy (2009) define both
an antitone and an isotone bijection between choice functions (i.e. defla-
tionary or contracting operators) and inflationary (or extensive) operators,
and use them in order to establish correspondences between several classes of
choice functions and inflationary operators (including monotonic inflationary
operators, closure operators, additive inflationary operators). However, they
do not take into consideration LT closure operators as discussed above.

The present paper shows that according to the isotone bijection defined by
Danilov and Koshevoy the choice functions that do correspond to LT closure
operators are precisely the symmetric revealed pseudocores. It follows that
the posets of symmetric revealed pseudocores and of LT closure operators
are isomorphic hence our results on the basic order-theoretic structure of the
former also apply to the latter.



The paper is organized as follows: section 2 includes a presentation of the
model and the main characterization results; section 3 introduces LT closure
operators and discusses their isotonic bijection to symmetric revealed pseudo-
cores; section 4 provides some basic results concerning the order-theoretic
properties of the classes of symmetric revealed cores and pseudocores as pre-
viously characterized; section 5 consists of a few concluding remarks.

2 Choice functions and symmetric revealed
cores and pseudocores

Let X be a set denoting the ‘universal’ outcome set, with cardinality #X > 3,
and P(X) its power set. It is also assumed for the sake of convenience that X
is finite (but it should be remarked that the most part of ensuing analysis is
easily lifted with suitable minor adaptations to the case of an infinite outcome
set). A choice function on X is a deflationary operator on X i.e. a function
¢:P(X) — P(X) such that ¢(A) C A for any A C X (empty choice sets are
allowed). A choice function c is proper if ¢(A) # @ whenever & # A C X.
We denote Cx the set of all choice functions on X. For any binary relation
BC XxX,andanyY C X, By = BN(Y xY) and B = (X x X)\ B, while B*
and B* denote the symmetric and asymmetric components of B, respectively.
Recall that B C X x X is reflexive iftf xBx for all x € X, irreflexive iff not
xBx for all x € X, symmetric iff xBy entails yBx for any x,y € X. Moreover,
B is a tolerance relation iff it is both reflexive and symmetric.

Let A C X x X be an irreflexive binary relation on X, denoting a suitably
defined dominance relation: (X, A) is the corresponding dominance digraph
(in graph-theoretic parlance, (X, A) is in particular a simple, loopless digraph
i.e. a directed graph with at most one arc between any ordered pair of
vertices, and with no arc from any vertex to itself). In particular, (X, A) is
a symmetric dominance iff A is symmetric i.e. A = A,

For any Y C X, Ay = AN (Y x Y) denotes the dominance relation
induced by A on Y (of course Ax = A), and (Y, Ay) is the induced domi-
nance subdigraph on Y. The core of (Y, Ay) is the set of Ay-undominated
outcomes in Y, namely C(Y,Ay) ={y € Y : not zAyy for all z € Y}.

Remark 1 [t should be emphasized here that any (irreflexive) dominance
digraph may arise in a natural way from an underlying game in coalitional
form. Moreover, any symmetric (irreflexive )dominance digraph may arise
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i a natural way from a game in coalitional form and from a related game
in strategic form (see Vannucci (2009) for further details).

The basic revealed dominance digraph (X, A(c)) of a choice function ¢ €
Cx is defined by the following rule: for any z,y € X, xA(c)y if and only if
x #yand y ¢ c({z,y}). Clearly enough, A(c) is irreflexive by definition.
Two further binary relations R(c), R. induced by ¢ on X and defined as
follows will also be considered below: for any z,y € X, xR.y if and only
if z € ¢({z,y}), while zR(c)y if and only if there exists Y C X such that
ze€c(Y)andy €Y.

A choice function ¢ € Cx is a symmetric revealed core-solution (or more
loosely a symmetric revealed core) if there exists a symmetric irreflexive rela-
tion A C X x X such that ¢(Y) = C(Y, Ay ). Moreover, if A is just symmetric
(but possibly not irreflexive) we shall declare ¢ € C'x to be a symmetric re-
vealed pseudocore-solution (or a symmetric revealed pseudocore).

Then, we shall also say that c is s-core-rationalizable (s-pseudocore-rationalizable,
respectively ) by digraph (X, A).

Example 2 Notice that the digraph (X, @) is also a symmetric dominance
digraph, and C(A, @) = A for any A C X. Therefore, the identity opera-
tor ¢ . P(X) — P(X) is a symmetric revealed core-solution. It is worth
emphasizing that ¢ does indeed admit a full-blown game-theoretic imple-
mentation. Here is an example: consider a nonempty set N, an effectivity
function E : P(N) — P(P(X)) such that for any S C N, AC X, A€ E(S)
iff S=Nand A# D or S # @ and A = X, and for any i € N, a symmet-
ric binary relation ;. Then, define the canonical (symmetric) dominance
AV C X x X attached to the coalitional game I' = (N, X, E, (=)icn) as
follows: for any x,y € X, xAy iff x »=; y and not y =; x for each i € N.
Clearly, A¥ = @.

Example 3 By way of contrast, take @ C G C X and consider the di-
chotomic choice function € : P(X) — P(X) as defined by the ‘strict’ sat-
isficing rule c“(A) = ANG for any A C X. It is easily checked that ¢ is
not a symmetric revealed core: to see this, take any x € X \ G. Then,
c“({x}) = @ while for any dominance digraph (X,A) and any v € X, it
cannot be the case that Az hence C({z},Ary) = {z}. However, % is a

symmetric revealed pseudocore: to check this, just consider A% = (X \ G)?
i.e. A% iff {x,y} C X\ G.



Example 4 Next, take again @ C G C X and consider the nonempty-
valued dichotomic choice function ¢ : P(X) — P(X) as defined by the
‘laz’ satisficing rule ¢§(A) = ANG forany A C X if ANG # @, and
c(A) = A otherwise. Such a choice function is not a symmetric revealed

pseudocore. Indeed, suppose cf is s-pseudocore-rationalizable by (symmetric)

digraph (X,A), and consider A = X \ G. By definition, ¢S (A) = A hence
not yAz, for any y,z € A, while ¢§(X) =G = X \ A, hence for anyy € A
there exists x € G such that Ay whence yAx. It follows that = ¢ ¢(X), a
contradiction.

The main objective of this article is precisely to provide a characterization
of all symmetric revealed cores and pseudocores in C'x, and study their basic
order-theoretic structure.

To begin with, let us consider a requirement concerning local existence of
nonempty solution sets.

No-dummy property (ND): c({z}) = {z} for any = € X.

It is easily checked that ND is satisfied by all symmetric revealed cores,
while it may well be violated by a symmetric pseudocore.

The following properties of a choice function ¢ € Cx play a prominent
role, under various labels, in the extant literature:

Chernoff contraction-consistency (CC): for any A, B C X such that A C
B, c¢(B)NACc(A).

Concordance (CO): for any A, B C X, c(A) N¢(B) C c¢(AU B).

Consistency under good additions (CGA): for any A C X and x € X, if
z € c(AU{x}) then ¢(A) C c(AU{x}).

Property CC is a contraction-consistency condition for choice sets in that
it requires that any outcome chosen out of a certain set should also be chosen
out of any subset of the former: essentially, it says that any good reason to
choose a certain option out of a given menu should retain its strenght in every
submenu of the former containing that option.

Conversely, property CO (also variously denoted as v or Generalized
Condorcet-consistency) is an expansion-consistency condition for choice sets,



requiring that an outcome chosen out of a certain set and of a second one
should also be chosen out of the larger set given by the union of those two sets:
it says any good reason to choose a certain option out of two given menus
should retain its strenght in the larger menu obtained by merging those two
menus.

Property CGA (introduced in Danilov and Koshevoy (2009) under the
alternative label ‘Matroidal axiom’) is also an expansion-consistency require-
ment for choice sets: it rules out the possibility that adding a good option
to a certain menu renders ‘bad’ some ‘good’ option of the previous menu.

We are now ready to proceed to the statement and proof of the announced
characterizations of symmetric revealed cores and pseudocores.

Let us start from the following simple observation, namely

Claim 5 Let R C X x X be any (binary) relation on X, and define A® C
X x X by the following rule: for any x,y € X, xARy iff not yRx. Then,
(i) RA" = R;
(ii) for any Y C X, max Ry = {x €Y :not yAfx for all y € X}, and
max Al = {z € Y : not yRz for ally € X};
(iii) R is reflexive iff AT is irreflexive, and irreflexive iff A is reflexive;
(iv) R is symmetric iff AR is symmetric.

Proof. (i) For any z,y € X, by definition 2 RA"y iff not yARx iff not (not
xRy) iff xRy.

(ii) Let x € Y, and zRy for all y € Y: then, by definition, not yAfz for
all y € Y , and conversely if not yAfz for all y € Y then not (not xRy) i.e.
xRy for all y € Y. Similarly, x € Y and not yRx for all y € Y: then by
definition Afy for all y € Y.

(iii) Indeed, by definition for any = € X, not x ARz iff not( not zRx) i.e.
rRx. Similarly, not xRz iff xARz.

(iv) Suppose A is symmetric: then, for any z,y € X, zAfy entails
yAfx. Now, if Ry then not yAfx hence not Afy: thus by definition y Rz,
as claimed. Conversely, suppose R is symmetric. For any z,y € X, if 2Afy
then not yRx hence not xRy: therefore, by definition, yAfz. m

We can now state our characterization of symmetric revealed cores, namely

Theorem 6 Let c € Cx. Then, the following statements are equivalent:

(i) ¢ satisfies ND, CC, CO and CGA;



(i) there exists a symmetric dominance digraph (X, A) such that ¢(Y') =
C(Y,Ay) foranyY C X;

(1) there exists a tolerance relation R C X x X such that ¢(Y') = max Ry
foranyY C X.

(iv) R(c) = R., R(c) is a tolerance relation, and c(Y') = max R(c)y for
any Y C X.

Proof. (i)==(iv): The equality R(c) = R. follows immediately from CC:
indeed, R. C R(c) by definition, and zR(c)y implies by CC that = €
max R(c)(zyy = c({z,y}) ie. xRy hence R. = R(c) (of course, this is
an extension to arbitrary choice functions of the proof of the same result for
nonempty-valued choice functions due to Sen (1971)).

Now, observe that for each Y C X and z € ¢(Y'), xR(c)y for any y € Y,
by definition of R(c). Hence ¢(Y) C max R(c)y. Next, let x € max R(c)y.
Then, by definition, for any y € Y there exists Y, such that y € Y, and
z € c(Yy). It follows, by CC, that x € c({z,y}) for any y € Y whence, by
CO, z € ¢(Y). Therefore, ¢(Y') = max R(c)y (clearly it may be the case that
max R(c)y = &). Notice however that, by ND, = € c({z}) i.e. xR(c)z for
any z € X. Thus, R(c) is reflexive. Moreover, if zR(c)y then by the equality
R(c) = R., zR.y i.e. x € c({x,y}). Therefore, by CGA, c({y}) C c({z,y}),
and by ND y € c¢({y}), whence y € c({z,y}). It follows that yR.z i.e.
R(c) = R, is also symmetric as required.

(iv)==-(iii): Trivial.

(ii)<=(iii): By Claim 5 (ii), if there exists R C X x X such that ¢(Y) =
max Ry for any Y C X, then ¢(Y) = {z € Y : not yAfz for all y € X}, for
any Y C X. Moreover, if R is reflexive and symmetric then by Claim 5(iii)-
(iv) A is irreflexive and symmetric hence ¢(Y) = C(Y, Af}) for any Y C X,
i.e. ¢ is a symmetric revealed core. Conversely, if there exists an irreflexive
and symmetric R C X x X such that ¢(Y) = C(Y, Ry) for any Y C X then
by Claim 5 (ii)-(iii)-(iv) ¢(Y) = max R for any Y C X, and R* is reflexive
and symmetric.

(ili))==(i): Suppose that there exists a tolerance relation R C X x X
such that ¢(Y) = max Ry for any Y C X. Clearly, by reflexivity of R,
c({z}) = max Ry = {z}, hence c satisfies ND. Moreover, for any ¥ C Z C
X and any z € ¢(Z) = max Ry, it must also be the case, by definition, that
x € max Ry = ¢(Y') hence CC is also satisfied by c¢. Furthermore, for any
Y, Z C X and z € X, if 2 € ¢(Y) = max Ry and ¢(Z) = max Ry then
clearly + € max Ryz whence z € ¢(Y U Z) as well and CO is satisfied.
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Finally, for any ¥ € X and z,y € X, if v € ¢(Y U {z}) = max Ry
and y € ¢(Y) = max Ry then y € ¢(Y U {x}): in fact, suppose it does not
ie. y ¢ maxRyyg). Then, it must be the case that not yRx hence, by
symmetry of R, not xRy which implies x ¢ max Ryy,}, a contradiction.
Therefore, CGA also holds. m

Remark 7 The foregoing characterization result is tight. To check that,
consider the following examples.

(1) Let ¢® € Cx be the empty choice function defined as follows: for
any A C X, ¢?(A) = @. Clearly, ¢? wviolates ND, but satisfies CC, CO and
CGA;

(2) Let X = {x,y,z}, and ¢ € Cx be defined as follows: c({x,y}) = &
for any pair of distinct z,y € X and c¢(Y) =Y for any Y C X such that
#Y # 2. It is immediately checked that, by construction, ¢ satisfies ND and
CO. Moreover, c satisfies CGA: indeed, let v € c(Y U{z}) andy € ¢(Y) C Y
and assume without loss of generality that © # y (if x = y there is nothing
to prove); by definition c(Y U{z}) =Y U {x} since c(Y U{z}) # @, hence
y € c(Y U{z}) as required by CGA. However, ¢ violates CC since e.g. for
any r,y € X with x £y, v € ¢(X) N{x,y} but x ¢ c({x,y}).

(8) Let ¢ € Cx be defined as follows: for any A C X, d(A) = A,
and (X)) = @. It is easily seen that by construction ¢ satisfies ND and
CC. Moreover, let x € (Y U{x}) and y € (V). Now, suppose that y ¢
(Y U{zx}): then, by definition of ¢, Y = X ~ {z} and (Y U {z}) = @,
a contradiction since x € (Y U{x}). Thus, ¢ also satisfies CGA. On the
other hand, clearly ' violates CO.

(4) Let X = {x,y,z}, withx #y # z # x, and " € Cx be defined as
foltows: ({h}) = {h} for any h € X, "({r.0}) = 1o}, (. 2}) = o),
d"({z,2}) =A{z}, and '(X) = @. It is immediately checked that ¢" satisfies
ND, CC and CO, but obviously it violates CGA since e.q. = € ' ({z,y}),

ye"({y}) buty & "({x,y}).

Notice that, by pointing out that symmetric core outcomes are precisely
the maximizers of an underlying tolerance relation, Theorem 6 makes also
precise our previous claim that the symmetric core selects precisely those
outcomes which are compatible with any feasible outcome (see e.g. Schreider
(1975) for a thorough discussion of tolerance relations).



By dropping the ND property, the following characterization of symmetric
revealed pseudocores obtains

Theorem 8 Let c € Cx. Then, the following statements are equivalent:

(i) ¢ satisfies CC, CO and CGA;

(i1) there exists a symmetric digraph (X,A) such that for any Y C X
cY)={yeY: foreachze€ X, not zAy } i.e. ¢ is a symmetric revealed
pseudocore;

(iii) there exists a symmetric relation R C X x X such that c¢(Y) =
max Ry for any Y C X.

(iv) R(c) = R., R(c) is a symmetric relation, and c¢(Y') = max R(c)y for
any Y C X.

Proof. It follows at once from the proof of the previous theorem. m

Remark 9 Notice that Examples (2),(3),(4) from the previous Remark es-
tablish that the foregoing characterization of symmetric revealed pseudocores
18 also tight.

It should be remarked that the pseudocore amounts to a slight extension
of the core arising from the allowance of some outcomes that are somehow
‘self-dominated’, and in any case are never selected. Such a mild extension
of the core does in fact disable the standard interpretation of its induced
‘dominance’ digraph as the outcome of an implicit underlying coalitional,
strategic or even extensive game and is therefore not inconsequential. How-
ever, the foregoing drawback of the pseudocore should not be exaggerated:
for instance, one might allow a subset X° C X of ‘dummy’ outcomes in the
outcome set, and regard the induced digraph (X, A) of a pseudocore as an
‘extended’ dominance digraph where A is the set-theoretic join of the stan-
dard irreflexive ‘dominance’ relation (induced on X\ X°) and X x X° (i.e. by
definition ‘dummy’ outcomes are ‘extendedly’ dominated by any outcome).
Thus, allowance of a locally reflexive induced digraph is not that disruptive
for a game-theoretic interpretation of the choice function under considera-
tion, if outcomes in the reflexive component of A are in fact never selected.
Hence, the pseudocore is after all consistent with a suitably adjusted game-
theoretic model and is otherwise a rather innocuous generalization of the
core as a solution concept.



3 Choice functions and Lawvere-Tierney clo-
sure operators

An inflationary or extensive operator on X is a function k : P(X) — P(X)
such that A C k(A) for any A C X. An operator k on X is monotonic
if k(Y) C k(Z) for any Y,Z C X such that Y C Z, and idempotent iff
E(Y) = k(k(Y)). An inflationary operator k on X is a closure operator if it is
both monotonic and idempotent. A Lawwvere-Tierney or LT closure operator
on X is a closure operator k that is also meet-homomorphic i.e. such that
EYNZ)=k(Y)Nk(Z) for any Y, Z C X (notice that a meet-homomorphic
operator is bound to be monotonic as well, hence a LT closure operator
can also be described as an inflationary, idempotent and meet-homomorphic
operator).

In a recent paper, Danilov and Koshevoy (2009) define an isotonic bi-
jection between choice functions that satisfy CC and monotonic inflationary
operators on X (to a certain extent, that remarkable paper relies on -and
extend- some previous related work, including Koshevoy (1999), Monjardet
and Raderanirina (2001), Johnson and Dean (2001), Danilov and Koshevoy
(2005), Ando (2006), Monjardet (2007)).

Indeed, let (C%, <) and (I%, <) denote respectively the class of all choice
functions that satisfy CC and the class of monotonic inflationary operators
on X, endowed with their component-wise set-inclusion orders: namely, for
any ¢, € C%, and any k, k' € I, ¢ < ¢ iff ¢(A) C ¢(A) for each A C X,
and similarly k£ <" k' iff k(A) C k'(A) for each A C X. Also, for any
A C X denote A its complement in X. Then, the isotonic bijection (namely,
the order-isomorphism between (C%,<) and (/%,<’)) mentioned above is
provided by the function F* : O, — I defined by the following rule: for
any choice function c € C%,

F*(¢) = k. where forany A C X andz € X: x € k.(A) iff [v € c(AU{z})
or x € Al,

or by its inverse G* : Iy — C% defined by the following rule: for any
inflationary operator k € I%,

G*(k) = ¢, where for any A C X and z € X: z € x(A) iff [v € A and
z € k(A)].
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Remark 10 It is worth noticing at the outset that F*admits the following
equivalent formulation:

foranyce Cyx, ACX andv € X: k. € Ix and x € k(A\ {z}) iff
x € (AU {x}).

To check this claim, suppose first k. = F*(c). Clearly, F*(c) € Ix by con-
struction. Now, assume x € k.(A\{x}). Then, by definition, x € c(A\ {z}U
{2}) = c(AU{z}). On the other hand, if v € c(AU{x}) = c(A\ {z} U {z})
then by definition x € k.(A\ {z}).

Conversely, let ¢ € C% and k € Ix be such that for any A C X and
re X:

x € k(A\ {z}) iff v€c(AU{x}).

Then, x € k(A) iff v € k(A\ {z}) U{x}) iff © € c(A\{z} U {z}) =
c(A U {x}) hence, by definition of F*, v € k.(A). On the other hand, if
x € k.(A) then, by definition of F*, v € c(AU{x}) orz € A. Ifx €
c(AU{z}) = c(AU{z} U {x}) hence, by definition of k, v € k(A), while
x € A entails x € k(A) as well since k € Ix .

It is easy to confirm that F*and G* are mutually inverse functions and
order-homomorphisms (i.e. order-preserving) w.r.t. (C%,<) and (I%, <),
and do therefore establish an isotonic bijection between C% and I% thus
ordered: that fact is noticed and stated by Danilov and Koshevoy (2009)
without an explicit proof. We provide here a detailed proof of the foregoing
fact for the sake of completeness.

Claim 11 Let (C%,<), (I%,<') and F*,G*be as defined above. Then, F*
and G* are mutually inverse order-isomorphisms (from (C%, <) to (I%,<')
and from (I, <') to (C%, <), respectively).

Proof. First, notice that F*and G* are well-defined functions. Then,
we are going to check that F™is indeed injective, surjective, and an order-
homomorphism from (C%, <) to (I%, <').

To see that F™* is injective, take any c, ¢’ € C% such that ¢ # ¢/. Then,
there exist A C X and = € A such that, say, v € ¢(A) and = ¢ ¢/(A). Thus,
v € Aie ¢ Aand A = AU {2} = AU {x}: therefore, by definition,
x € k(A) and x ¢ ko(A) i.e. F*(c) # F*(c).

To check surjectivity of F*, take any k € I% and consider ¢, = G*(k) €
Cx, namely for any A C X and = € X,

x € cp(A)iff v € Aandux € k(A).
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Thus, for any A C X and =z € X,

x € F*(ci)(A) iff [x € (AU {z}) or v € A iff [(x ¢ A
and © € ¢ (AU {x})) or v € A] iff [z € c,(A) or v € A] iff [(x ¢ A and
x € cp(A)) orx € Aliff [(x ¢ Aand z € k(A)) or v € A iff v € k(A), i.e.
F*(G*(k)) = k.

To check that F™* is order-preserving, consider any c,¢ € C% such that
¢ < . Therefore, for any A C X, and = € X, if z € F*(c)(A) then by
definition = € ¢(AU {z}) or x € A, hence by hypothesis z € /(AU {z}) or
r e Aie x € F*(d)(A). It follows that F*(c) <' F*(¢') as required.

Moreover, take any ¢ € C%: forany A C X and x € X, x € G*(F*(¢))(A)

iff [t € Aand z € F*(c)(A)] iff [x € Aand x € c(AU{x})] iff z € ¢(A). Thus,
G*(F*(c)) = c. Tt follows that F'* and G* are mutually inverse bijections.
Finally, it remains to be checked that G* is also order-preserving. Indeed,
consider any k, k' € I such that k <" k’. Then, for any A C X, and = € X,
x € G*(k)(A) entails € A and x € k(A) hence by hypothesis » € k'(A) and
therefore x € G*(k')(A) as well, i.e. G*(k) < G*(k') and the thesis follows.

Relying on the basic bijection between C% and /% introduced above, a few
more specialized bijective correspondences may be established as recorded by
the following

Proposition 12 Let F* : C% — I% the bijection defined above, and c € C%.
Then,

(i) F*(c) € I s idempotent iff ¢ satisfies CGA;

(ii) F*(c) € I s meet-homomorphic iff ¢ satisfies CO.

Proof. (i) To begin with, observe that any inflationary operator k on X
is idempotent iff for all A C X, k(k(A)) C k(A). Next, following Danilov
and Koshevoy (2009) notice that a monotonic inflationary operator k € I% is
idempotent (hence a closure operator) iff it satisfies the following property:

() forany A C X and z € X, z € k(A) entails k(AU {z}) C k(A).

(To check the latter statement, suppose first that k£ € I% is idempotent,
and consider A C X and x € k(A). By construction, AU{z} C k(A). Hence,
by monotonicity k(AU {z}) C k(k(A)), and by idempotence k(AU {z}) C
k(k(A)) = k(A). Conversely, let k € I satisfy (). By a simple inductive
argument, it follows that for any (finite) B C k(A), k(AU B) C k(A), hence
in particular k(k(A)) = k(AU k(A)) C k(A) : see Danilov and Koshevoy
(2009)).
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Now, suppose that ¢ € C% and k., = F*(c) € I is idempotent. Then,
take any = € ¢c(AU{z}) and y € ¢(A): by definition of F*, x € k(AU {x})
and, since clearly y € A whence A = AU {y}, y € k.(A). Therefore, by
idempotence of k., and in view of the foregoing observation, k.(A U {z}) =
k(AU {x}U{z}) C k(AU {z}). By monotonicity of k., k.(A) C k.(AU{x}),
hence y € k(AU {z}) because y € k.(A). Since by construction y € AU{z},
and by definition of G* (the inverse bijection of F'* as defined above in the
text), y € ek, (AU {x}) = G*(F*(c))(AU{z}) = ¢c(AU{z}) hence c satisfies
CGA.

Conversely, let ¢ € C% satisfy CGA. If A C X, = € k.(A) and y €
k.(AU{z}) then, by definition of F*, [z € Aor (v ¢ A and z € c(AU{x}))]
and [y € AU{z} or (y ¢ AU{z} andy € c(AU{z} U{y}))]. Now, ifx € A
then AU{z} = Ahencey € k.(A). f v ¢ A,z € c(AU{x}) andy € AU{x}
then either y = x whence y € k.(A) or y € A hence again y € k.(A) since k.
is an inflationary operator. Finally, if z ¢ A, v € c(AU{x}), y ¢ AU {z}
and y € c(AU{z}U{y}) then AU{z}U{y} = AU {z}ie y € c(AU{x}).
Since z € c(AU{x}) = c(AU {z} U{x}), it follows that, by CGA, c(AU {z}
) Ce( AU{z}) hence y € c( AU {x}): thus, by definition, y € k.(A) again,
(%) holds, and idempotence of k. follows as required.

(ii) Let F*(c) = k. € Ix be meet-homomorphic i.e. for any A, B C X,
k.(A) N k(B) C k(AN B). Then, take any = € c¢(A) N¢(B) ie. = €
c((A\{z}) U{z}) ne((B\ {z}) U{z}): in view of Remark 10 above, = €
ke((A\{z}) \ {z}) = ke(A\ {2}) and @ € k((B\ {2}) U{z}) = k(B \ {z}).
Thus, by hypothesis, © € k.(A\{z})Nk.(B\{z}) C k.((A\{z})N(B\{z})) =
k(AN B)\{z}) = k((AU B) \ {z})

hence, by Remark 10 again, = € ¢((AU B) U{z}) i.e. x € ¢(AU B) since
clearly x € AU B. It follows that ¢ does satisfy CO.

Conversely, let ¢ satisfy CO. Then, take any = € k.(A) Nk.(B) i.e. x €
ke((AU{z})\ {2}) and 2 € k((BU{z}) \ {}). _

Thus, by Remark 10, z € ¢ (AU{z}) U {z}) = ¢c(AU {z}) and = E
c((BU{z})U{z}) = c«(BU{z}). Therefore, by CO, z € ¢((AU{z})U (B
) = (AU B) U {a}) = (AN B U {a})

whence, by definition of k., v € k.(A N B). It follows that k. is meet-
homomorphic. m

By combining Proposition 12 and Theorem 8 we may immediately estab-
lish a truly remarkable fact, namely

Theorem 13 Let k € Ix , c € Cx, F*,G* the isotonic bijections as defined
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above, ¢ = ¢, = G*(k) and k = k. = F*(c). Then, the following statements
are equivalent:

(i) k is a LT closure operator;

(ii) ¢ is a symmetric revealed pseudocore .

Proof. Immediate from Theorem 8 and Proposition 12 above. m

Remark 14 To be sure, virtually all of the results of this section (apart
from Theorem 13) can be shown to follow, in a somewhat roundabout way,
from some of the results provided in Danilov and Koshevoy (2009), though
-as mentioned previously- the latter work does mot cover Lawvere-Tierney
closure operators. We have opted here for a direct proof of the relevant order
duality for the sake of completeness, and clarity.

4 The semilattices of symmetric revealed cores
and pseudocores

Let us now turn to a global description of the order-theoretic structure of the
class of all symmetric revealed cores (pseudocores, respectively). Of course, in
view of the duality result embodied in Proposition 11 and Theorem 13 above,
the order-theoretic structure of symmetric revealed pseudocores is precisely
the same as that of LT closure operators.

A partially ordered set or poset is a pair P = (P, <) where P is a set and
< is a reflexive, transitive and antisymmetric binary relation on P (i.e. for
any * € P, x < z and for any z,y,2 € P, x < z whenever z < y and y < 2,
and x = y whenever z < y and y < 2). For any P’ C P, and with a slight
abuse of language, we shall typically denote by (P’, <) the poset (P, <pr)
where <p= (P’ x P') N (<L). A coatom of a poset P = (P, <) with a top
element or maximum 1p is any j € P which is covered by 1p- written j <1p-
ie. j <1p and ! = j for any [ € P such that j <[ < 1p. The set of all
coatoms of P is denoted A},. Dually, an atom of P is any j € P which is an
upper cover of Op- written Op < j-i.e. Op < j and [ = j for any [ € P such
that Op < [ < j. The set of all atoms of P is denoted Ap.

A poset P = (P, <) is a meet semilattice (join semilattice, respectively)
if for any z,y € P the <-greatest lower bound z Ay (the <-least upper
bound z V y, respectively) of {z,y} does exist. Moreover, P is a lattice if it
is both a meet semilattice and a join semilattice.
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A lattice P = (P, <) is bounded if there exist both a bottom element 0p
and a top element 1p (hence in particular a finite lattice is also bounded),
distributive iff e A (yV z) = (x Ay)V (xAz) for any x,y, z € P, complemented
if it is bounded and for any x € P there exists 2’ € P such that x V 2’ = 1p
and z A 2’ = 0p, and Boolean iff it is both distributive and complemented.

Recall that, as pointed out in Section 2 above, the set C'xy of all choice
functions on X can be endowed in a natural way with the point-wise set
inclusion partial order < by positing, for any ¢, ¢’ € Cx, ¢ < ' iff ¢(A) C (A)
for each A C X. Clearly, the identity operator ¢ is its top element, and
the constant empty-valued choice function ¢ its bottom element. It is well-
known, and easily checked, that (C'y, <) is in fact a Boolean lattice with join
V = U (i.e. set-union) and meet A = N (i.e. set-intersection), both defined
in the obvious component-wise manner: see e.g. Monjardet, Raderanirina
(2004).

For any x,y € X such that x # y, ¢,y € Cx and ¢;, € Cx are defined as
follows: for all A C X, ¢;(A) = AN {x,y} if {z,y} C A, and ¢,y(A) = A
otherwise, ¢, ({7,y}) = {z,y}, c5,({z}) = {2} for any 2z € X, and ¢} (A) =

) Yy

@ for all A C X such that A # {x,y} and #A # 1. Moreover, C% =
{czy *x,y € X, #y}, and C¢ = {c;y cry € X, x #£ y}

The minimum ND choice function c[¥ is defined by the following rule:
for any z € X, cl({z}) = {2}, and (Y) = @ for any Y C X such that
#Y #£ 1.

Now, let ¢ C Cx denote the set of all symmetric revealed cores on X,
and CY° C Cx the set of all symmetric revealed pseudocores. We have the
following

Theorem 15 The poset (C5, <) of symmetric revealed cores is a sub-meet-
semilattice of (C'x, <) with ¢ itself as its top element, but not a sub-join-
semilattice of (Cx,<). The bottom element of (C3, <) is the minimum ND
choice function c'l. Moreover, the set of coatoms of (C3¢,<) is C%, and the
set of its atoms is CY .

Proof. Let ¢,¢ € C¥, and consider ¢ N ¢’. By Theorem 6 above ¢ and ¢
satisfy ND, CC, CO and CGA.

Clearly, for any x € X, (cNd)({z}) = c({z}) N ({z}) = {x} since ¢ and
¢ satisfy ND: hence ¢ N ¢ does also satisfy ND.

Also, for any A C B C X, since ¢ and ¢’ both satisfy CC, (¢cNd)(B)NA =
(c(B)yNnd(B)NA=cB)N((B)NA Cc(B)Nd(A) Ce(B)NAC A
hence ¢ N ¢ satisfies CC.
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Moreover, since ¢ and ¢ satisfy CO, for any A, B C X,

(cnd)(A)N(end)(B) =

=(c(A)NneB)N(d(A)Nd(B)) Cc(AUuB)Nd(AUB) =

= (cnNd)(AU B) and CO also holds for cN ¢.

Finally, if x € (cNd)(AU{z}) then v € c(AU{z}) and = € (AU {z})
hence by CGA ¢(A) € ¢(AU{z}) and d(A) C (AU {z}). Therefore
(end)(A) C(end)(AU{x}) ie. cN satisfies CGA.

It follows that, by Theorem 6 again, c N ¢ € C%, whence (C¥,<) is a
sub-meet-semilattice of (Cx, <).

It is easily checked that ¢, the top element of (Cx, <), does also satisfy
ND, CC, CO and CGA hence as observed above ¢ € C5¢ (see Example 2).

Now, consider ¢! as defined above: by definition, it satisfies ND and,
being nonempty-valued precisely on singletons, it trivially satisfies CC, CO
and CGA as well. Thus, ¢! € C%. On the other hand, for any ¢ € C%, ¢
must satisfy ND, hence A < ¢ as claimed.

Next, take any ¢, € C%. Notice that, by definition, c,, satisfies ND.
Also, if A C B C X then the following cases may be distinguished: (a)
{r.y} C A (b) {29} € A and {25} C B; (¢) {w,y} & B. If {a,y} C A
then ¢,y (B) N A = A~ {z,y} = cpy(A); if {x,y} € A and {z,y} C B then
Cry(B)NA = (B~A{z,y}) N A=A A{z,y} T A=c,y(A);if {z,y} € B
then c¢;,(B) N A = A = ¢,,(A): thus in any case CC holds. Next, let
2 & cyy(AU B): then by definition 2z € {z,y} and {z,y} C AU B. Assume
without loss of generality that z = y, and suppose that y € c,,(A4) N ¢l (B).
Then, {z,y} € A and {z,y} € B whiley € AN B. It follows that = ¢ AUB,
a contradiction. Thus, CO is also satisfied by c,,.

Furthermore, let z € ¢, (AU{z}) and v € ¢,y (A). If v ¢ ¢ (AU{z}) then
by construction and definition of ¢,,, {z,v} = {x, y}: thus z ¢ ¢, (AU{z}), a
contradiction. It follows that c,, satisfies CGA as well. Therefore, Theorem
6 applies, and ¢, € C¥.

Moreover, by definition ¢, < ¢ i.e. ¢z, < ¢ and ¢,y # .

Next, let ¢ € ¥ be such that ¢, < ¢ < ¢ and assume that there exists
A" C X such that ¢,y(A") C ¢(A") C A’. By definition of ¢,,, it must be the
case that A’ D {z,y} and ¢, (A") = A’ ~ {x,y} C ¢(A"). Clearly, if ¢ = ¢
there is nothing to prove, so suppose that there also exists B C X such that
coy(B) C ¢(B) C B. By definition of ¢;y, B O {,y} and ¢,y (B) = B~A{x,y}
ie. BN {x,y} C ¢(B) C B. Therefore, x ¢ ¢(B) or y ¢ ¢(B) (or both).
Suppose then without loss of generality that y ¢ c¢(B): since ¢ € C¥ there
exists a symmetric irreflexive A C X x X such that ¢(A) = C(A, A,) for any
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A C X, hence there exists z € B, z # y such that zAy and yAz. It follows
that z ¢ ¢(B) hence z = x and therefore {x,y} N¢(A’) = &, a contradiction
since ¢,y (A') = A"\ A{x,y} C e(4).

Thus, either ¢ = ¢ or ¢ = ¢, i.e. ¢,y is indeed a coatom of (C5, <).

Conversely, let ¢ be a coatom of (C%, <) and suppose ¢ ¢ C%. Then,
for any pair of distinct z,y € X, neither ¢;, < ¢ nor ¢ < ¢,y i.e. there
exist A, B C X such that c(A) C ¢, (A) and ¢,y (B) C ¢(B). Since ¢ € C¥
there exists a symmetric irreflexive A such that ¢ = C(.,A). Thus, from
c(A) C czy(A) it follows that there exist two distinct u, v € A such uAv and
vAu whence ¢(Y) C Y \ {u,v} for any Y C X such that {u,v} C Y. But
then, by definition ¢ < ¢,,, a contradiction. Thus, it must be the case that
ce (.
To check that each cj, € C¥ is an atom of (C¥, <), first notice that
€ C¥. Indeed, c;, satisfies ND by construction. Also, if A C B then
(B) N A # & entails that either A = B = {z} for some z € X, or
A C B C {z,y} i.e. either A is a singleton or A = B. Thus, in any case,
if A C B then by definition c;, (B) N A C c;,(A) hence c;, satisfies CC.
Moreover, for any A, B C X, if z € ¢, (A) N¢;, (B) then by definition of ¢},
either A= B = {2z} or (AU B € {A,B} and AU B = {z,y}): thus, in any
case, v € ¢, (AU B) and CO is also satisfied by c;,. Finally, suppose that
v €y (AU{r}) and 2 € ¢;, (A). Then it must be the case that A C {r,y}
whence z € AN{x,y} : if z = z there is nothing to prove, and if z = y then
AU {x} = {z,y} hence by definition 2z € ¢; (AU {z}). It follows that c;,
also satisfies CGA, as required. Next, observe that ¢}, (A) = cl(A) for any

A#{z,y}, and ¢;, ({z,y}) = {z,y} while c({z,y}) = @. Thus, ! Coy>
clll £ ¢, and by construction for any ¢ € C% (indeed, for any ¢ € Cx) if
A<eg cgy then either ¢ = ¢V or ¢ = cgy.

Conversely, assume that c is an atom of (C%, <) and ¢ ¢ C¥. Then, by
definition of C%, ¢(A) = @ for any A such that #A = 2, and there exists
B C X such that #B > 3 and ¢(B) # @. It follows that, for any = € ¢(B)
and any y € B~ {z}, ¢(B) N {x,y} # @ while c({z,y}) = &, therefore
violating CC, a contradiction by Theorem 6.

To check that (C5f, <) is not a sub-join-semilattice of (C'x, <), just take
z,y,z € X, v #y # z # x, and consider ¢y, c,, € C% and ¢,y U ¢y, (the
least upper bound of {c,y,¢,.} in (Cx,<)). Let be A’ C X, {x,y,2} C A"
clearly, (cyy U cy.)(A") = (A"~ A{z,y}) U (A" ~A{y, z}) = A"~ {y}. Now, if
Coy U ¢y, € OF then there exists a symmetric irreflexive digraph (X, A) such
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that (cgy U cy,)(A") = C(A’, Ay) hence there exists u € A"\ {y} with uAy
and yAu. It follows that u ¢ (¢4 U cy2)(A'), a contradiction. m

Remark 16 Notice that finiteness of X has been used in the proof above in
order to show that the set of coatoms of (C%,<) is contained in CT. The
latter statement clearly holds for an infinite X as well provided CO is replaced
with the following stronger version of ‘Concordance’

CO*: for any family {A;},.,; of subsets of X, ﬂc(Ai) - C(U A;).

el el

Let us now move to the analysis of the poset (C¥*, <) of all symmetric
revealed pseudocores on X. In order to proceed, let us first introduce two
more special classes of choice functions. For any x € X and A C X such
that x € A, c_, € Cx and ¢, 4 € Cx are defined as follows: for all B C X,
c_(B) =B~ Az}, cza(B) = {x,y} if B={z,y} and ¢, 4(B) = @ other-
wise. Moreover, denote Cx_ = {c_, : € X'}, and @X ={ca:x€ ACX}
(see also Monjardet and Raderanirina (2004) for an earlier introduction -and
use- of the class Cy in a related context). We are now ready to state the
following result on (CY, <).

Theorem 17 The poset (C¥°,<) of symmetric revealed pseudocores is a
sub-meet-semilattice of (Cx, <) with ¢ itself as its top element, but not a
sub-join-semilattice of (Cx,<). The bottom element of (C¥°, <) is the empty
choice function ¢®. Moreover, the set of coatoms of (C%°,<) is C%x U Cx_,
and the set of its atoms is GX .

Proof. Let ¢, € C¥*, and consider ¢ N ¢. By Theorem 8 above ¢ and ¢
satisfy CC, CO and CGA.

The proof of the previous Theorem also establishes that ¢cN¢’ also satisfies
CC, CO and CGA.

It follows that, by Theorem 8 again, ¢ N ¢ € CY°, whence (C5,<) is a
sub-meet-semilattice of (Cx, <).

Clearly, ¢ and ¢? do trivially satisfy CC, CO and CGA hence ¢¢,c? €
C%° and are therefore the top and bottom element of (CY*, <), respectively.

Now, take any c,, € C%: the proof of the previous theorem already
establishes that ¢, is indeed a coatom of (C%°, <). Next, take any c_, €
Cx_: it is immediately checked that, by definition, it trivially satisfies CC,
CO and CGA hence by Theorem 8 it belongs to C¥°. Moreover, let ¢ € C¥*
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be such that c_, < ¢ < ¢, and assume that there exists A’ C X such that
c_(A") C e(A") C A'. By definition of ¢_,, it must be the case that x € A’
and c_,(A") = A’ {z} C ¢(A’). Clearly, if ¢ = ¢ there is nothing to prove,
so suppose that there also exists B C X such that c_,(B) C ¢(B) C B. By
definition of ¢_,, v € B and c_,(B) = B~ {z} ie. B~ {z} C ¢(B) C B.
Therefore, © ¢ ¢(B): since ¢ € CY there exists a symmetric A C X x X
such that ¢(A) = C(A, A4) for any A C X, hence there exists z € B, such
that zAz and xAz. It follows that z ¢ ¢(B) hence z = z and therefore
{z} N¢(A") = @, a contradiction since ¢_,(A") = A’ {x} C ¢(A).

Conversely, let ¢ be a coatom of (C¥, <) and suppose ¢ ¢ C% U Cx_.
Then, for any pair of distinct =,y € X, not ¢ < c_, and neither ¢;, < ¢ nor
¢ < gy .. there exist A, B C X such that ¢(A) C ¢,y (A) and ¢, (B) C ¢(B).
Since ¢ € C%° there exists a symmetric (possibly not irreflexive) A such that
c = C(.,A). Thus, from c¢(A) C cuy(A) it follows that there exist u,v € A
such uAv and vAu whence ¢(Y) C Y \ {u,v} for any Y C X such that
{u,v} C Y. But then, if v = v then ¢ < c_,, a contradiction, and if
u # v then ¢ < ¢, a contradiction again. Thus, it must be the case that
cE C;} UCx_.

To check that each ¢, 4 € Oy is an atom of (C%°, <), first notice that
4 € CF°. Indeed, if A C B then ¢, 4(B)NA # @ entails that A = B hence
cz.4 trivially satisfies CC. Also, for any A', B’ C X, if & € ¢, 4(A") Ny a(B)
then by definition of ¢, 4 A = A’ = B hence © € ¢, 4(A U B) and CO is
also trivially satisfied by ¢, 4. Finally, suppose that € ¢, 4(B U {z}) and
2 € ¢y a(B). Then it must be the case that BU{z} =A,z=zand B=A
whence obviously z € ¢, 4(B U {x} and CGA is satisfied as well.

On the other hand, it is straightforward to check that for each c, 4 € 6X,
@ < epa, @ # cpa and for any ¢ € CF° (indeed, for any ¢ € Cy), if
c? < ¢ < ¢y 4 then either ¢ = ¢” or ¢ = ¢, 4. Thus, each ¢, 4 € 6X is indeed
an atom of (C%°, ).

Conversely, assume that ¢ is an atom of (C%°, <) and ¢ ¢ Cx. Then,
by definition of Cy, either #c(A) > 2 for some A C X, or there exist
two distinct A, B C X such that ¢(A) # @ and ¢(B) # &. In any case,
there clearly exists some ¢, 4 € 6X such that by construction ¢, 4+ # ¢ and
¢z < ¢, a contradiction since ¢ is an atom of (C¥°, <).

To check that (C%°, <) is not a sub-join-semilattice of (Cx, <), take
X = {a:,y,z} withz #y # 2 # 2, A= {(:U,y), (y,m)}, Al = {<$7'Z>7 (va }7
A ={x,z}, B={x,y}. Then, define ¢, € Cx as follows: for any ¥ C X,
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c(Y) = C(Y,Ay) and (V) = C(Y,A}). By construction, {c,} C C¥ C
C%°. Next, notice that

(cud)(A)N(cud)(B) =

= {2} n{z,y} = {«}.

(cUd)(AUB) = C(AUB, A 4u5)UC(AUB, Ay 5) ={y, 2}
Thus, cU¢ fails to satisfy CO: it follows, by Theorem 8, that cUc’ ¢ C¥°.

However,

Remark 18 Notice that, since (C3,<) and (C%°, <) are meet-semilattices
with a top element (and finite ones since X is assumed to be finite), it follows
that both of them are lattices with meet= N and join of a pair given by the
meet of the (nonempty) set of upper bounds of that pair (see e.g. Davey
and Priestley (1990), Monjardet and Raderanirina (2004)). By the previous
theorems, however, such lattices are not sublattices of (Cx,<).

5 Concluding remarks

Choice functions which may be regarded as cores or pseudocores of an under-
lying symmetric digraph (X, A) have been characterized. Symmetric pseudo-
cores have been shown to be precisely the order duals of Lawvere-Tierney
closure operators. The characterizations provided have also been shown to
be helpful for a simple analysis of the basic order-theoretic structure of sym-
metric revealed cores and pseudocores. Moreover, the duality between sym-
metric revealed pseudocores and Lawvere-Tierney closure operators pointed
out above sheds also some light on the order-theoretic structure of the latter.
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