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Summary. The Monte Carlo integration of a suitable function by means of systematic

sampling is required in many settings, such as in stereological and environmental designs.

The properties of the corresponding standard Monte Carlo estimator are well-established

when the integrand function satisfies some regularity conditions. However, these assumptions

may not hold even for quite simple cases. Hence, some general results are given when the

integrand function is defined in the Sobolev space.
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1. Introduction. The use of systematic sampling is popular among field scientists in order to

analyze geometrical structures embedded in  or . For example, in stereology the target‘ ‘# $

object is often sampled by means of a set of equally spaced probes (such as test points, lines

or planes) with a random start (for an introduction to stereology see  Baddeley ande.g.

Jensen, 2004). Indeed, systematic sampling is a convenient way of introducing replications

owing to physical reasons, since the probes must be often placed at a minimum distance

apart. Similarly, in environmental studies the region of interest is commonly surveyed by

using randomly placed systematic grids of points or transects (see  e.g. U.S. EPA QA/G-5S

Guidance, 2002, and Thompson, 2002). In turn, ecological scientists judge systematic

sampling as a practical replicated strategy to collect data on the field.
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In this setting, the key parameter is often the integral of a suitable function defined on a

compact support contained in . For example, in stereology the parameter is frequently given‘

by the volume of the target object, which may be obviously represented as the integral of the

so-called measurement function on the basis of the Cavalieri principle. Since in this case the

object is sectioned by using of a set of parallel planes with a random start, the volume is

estimated on the basis of the corresponding plane-section areas (Cruz-Orive, 1999). As a

further example, in environmental designs such as the line-intercept sampling (see e.g.

Thompson, 2002) the parameter is usually represented by the total of an attribute scattered on

the population units. Moreover, it can be shown that the parameter may expressed as the

integral of the Horvitz-Thompson estimating function or, more generally, of linearthe 

homogeneous estimating function (Barabesi, 2003). Since the total is estimated by replicating

the design, field researchers often adopt systematic sampling of transects. However, it should

be remarked that non-aligned systematic sampling may be theoretically preferable to aligned

systematic sampling in this context as remarked by Barabesi (2003), Barabesi and

Marcheselli (2003, 2005).

The properties of the Monte Carlo estimator of the integral under systematic sampling

obviously rely on the characteristic of the integrand function. It is at once apparent that the

estimator displays an increasing accuracy as the integrand becomes more regular, as clearly

shown by Kiêu, Souchet and Istas (1999). However, since in stereology a less regular

integrand is likely to appear in practice, García-Fiñana and Cruz-Orive (2000, 2004) have

considered less stringent assumptions on the integrand class. Nevertheless, even in this case

the class is not large enough to encompass even quite simple functions, as pointed out by

García-Fiñana and Cruz-Orive (2004). Accordingly, the aim of this paper is to assess the

property of the Monte Carlo estimator when the integrand function is defined in a Sobolev

space, which may contain functions displaying very irregular patterns.

2. Preliminaries. Let  be a bounded integrable function (usually referred to as0 À È‘ ‘

the measurement function in stereology). Moreover, let  be the finite support of .Ò+ß ,Ó 0

Hence, the target parameter is given by
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U œ .B(
_

_

0ÐBÑ  . (1)

The estimation of (1) is performed by means of systematic sampling with a random start

based on a sampling period  ( . In order to avoid triviality, X X  !Ñ it is supposed that

X Ÿ Y Ò!ß "Ó U,  +. Thus, if  is a uniform random variable on , the Monte Carlo estimator of 

is given by

U œ X 0 Y  5ÑÑs
X

5−

"
m

ÐX Ð  . (2)

It is straightforward to prove that (2) is an unbiased estimator of . However, in order toU

assess the behavior of VarÒU Ó œ 0s
X 5X

#  some regularity conditions on  must be assumed.

First, êu, Souchet and Istas (1999) have introduced a general class of measurementKi

functions. Subsequently, García-Fiñana and Cruz-Orive (2000, 2004) have considered an

extension of the same class, -smooth functions. More specifically, if i.e. the so-called ; H0Ð5Ñ

represents the set for which  is not continuous, then  is defined to be a -smooth0 0 ;Ð5Ñ

function if:

i) H0 œ g 5 œ !ß "ßá ß Ü;Ý  "Ð5Ñ  ( );

ii) H0 œ Ö- ß 3 œ "ßá ßR× . ß . −ÐÜ;ÝÑ 
3 3 3

 is a finite set and there exist constants ,‘

! !3


3
ß − Ò!ß "Ñ such that

0 ÐBÑ œ
. lB  - l  9Ð"Ñ B − Ò-  ß - Ñ

. lB  - l  9Ð"Ñ B − Ð- ß -  Ó
ÐÜ;ÝÑ 3

 
3 3 3

3


3 3 3
œ !

!

3


3


$

$

where . In the previous expressions,  denotes the smallest integer greater than (or$  ! Ü;Ý

equal to) . Moreover, the quantity  with  is; ; œ Ü;Ý  œ Ð ß ßá ß ß Ñ! ! ! ! ! !max " R
 

"
 

R

called the fractional smoothness constant of . In this case, García-Fiñana and Cruz-Orive0

(2000, 2004) prove that

5X
#

Iœ ÒVar U Ó  ^ÐX Ñ  9ÐX Ñs
X

#;#  .

The so-called extension term  explains the overall trend of theVarIÒU Ó œ SÐX Ñs
X

#;#

variance, while  is the ^ÐX Ñ Zitterbewegung i.e. term,  an oscillating function about zero.

However, as remarked by García-Fiñana and Cruz-Orive (2004), even simple measurement
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functions such as I  are not -smooth. Hence, a suitable functional0 ÐBÑ œ  B ÐBÑ ÐBÑ ;" Ò!ß"Ólog

space must be considered to exploit the properties of  in a more general setting.5X
#

Let us suppose that  with , 0 − [ Ð Ñ"ß: ‘ : − Ò"ß_Ñ i.e. the measurement function is

required to be a member of a Sobolev space. This space contains the functions 0 − P:Ð Ñ‘

such that it exists  (the so-called weak derivative of order ) for which1 − P ::Ð Ñ‘

( (
‘ ‘

0ÐBÑ .B œ  .B: :wÐBÑ 1ÐBÑ ÐBÑ

for each test function (see  . Equivalently, it may be proven that: − G"Ð Ñ‘  e.g. Brézis, 1983)

0 − [ Ð Ñ 0 Ð Ñ"ß: ‘ ‘ if and only if  is almost everywhere differentiable and  in such a0 − Pw :

way that for each  it holdsBß C − ‘

0ÐBÑ  œ .>0ÐCÑ 0 Ð>Ñ(
C

B
w  .

Owing to the boundedness of the support of , it can be proven that 0 [ § ["ß: "ß:" #Ð Ñ Ð Ñ‘ ‘  if

:   : [" #
"ß" and therefore it is at once apparent that the Sobolev space Ð Ñ‘  may contain

function with rather irregular behavior. Indeed, ["ß"Ð Ñ‘  actually coincides with the space of

the absolutely continuous functions.  is given by the Sobolev spaceAn extension of [ Ð Ñ"ß: ‘

[ Ð Ñ =   # [ Ð Ñ=ß: =ß:‘ ‘ where  is an integer. The space  may be defined by recurrence, i.e. the

members of  are such that , the members of  are such that[ Ð Ñ 0ß 0 − [ Ð Ñ [ Ð Ñ#ß: w "ß: $ß:‘ ‘ ‘

0ß 0 ß 0 − [ Ð Ñw ww ß:1 ‘ , etc. (see  . In turn, it is at once apparent thate.g. Brézis, 1983)

[ § [ :   :=ß: =ß:
" #

" #Ð Ñ Ð Ñ‘ ‘  if .

It is worth noting that a -smooth measurement function belongs to  with ; [ Ð Ñ = œ Ü;Ý=ß: ‘

and for each . Obviously, the converse is not true since Sobolev spaces contain:  "Î!

continuous functions which may be not differentiable on dense sets. As a further example, it

should be emphasized that the function  is “quite” regular since it is a member of 0 [ Ð Ñ"
"ß: ‘

for each , : i.e. it may be considered a “nearly” Lipschitz function. Indeed, a Lipschitz

function is equivalent to a [ Ð Ñ"ß_ ‘  function.

3. Estimator variance properties. First, it is convenient to introduce some notation,  leti.e.

us assume that
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U ÐBÑ œ X 0 B  5ÑÑs
X

Ð=Ñ

5−

Ð=Ñ"
m

ÐX Ð  .

In order to analyze the behaviour of  when , the followingthe variance of (2) 0 − [ Ð Ñ=ß: ‘

preliminary result produces a suitable alternative expression of 5X
# , as well as a tigth

inequality of .5X

Lemma 1. For each , it turns out that0 − [ Ð"ß" ‘Ñ

5X
# œ X ÐBß CÑU ÐBÑU ÐCÑs s#

Ò!ß"Ó
X X

Ð"Ñ Ð"Ñ(
#

9 .B.C ,

where In particular, it follows that9ÐBß CÑ œ B • C  BC. 

5X Ÿ U ÐYÑlÓ
X

#
sEÒl X

Ð"Ñ
 . (3)

Moreover, if 0 − [ Ð=ß" ‘Ñ =   # with , then

5X Ÿ U ÐYÑlÓ
X

#
s

=

= X

Ð=Ñ
EÒl  . (4)

Proof. Since for 0 − [ Ð"ß" ‘Ñ

0 Y  5ÑÑ  0Ð 5Ñ œ ÐX Ð .BÐX Ð X X 0 B  5ÑÑ(
!

Y
w

and

EÒ X T ÐY  BÑ0 B  5ÑÑ0 Y  5ÑÑÓ  0Ð 5Ñ œ ÐX Ð .BÐX Ð X (
!

"
w  ,

it follows that

U U œ X ^s
X

#

5−

5"
m

 ,

where

^ œ Ò  TÐB  YÑÓ0 B  5ÑÑ5
!

"

ÖBY×
w( I ÐX Ð .B .

Moreover, since
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^ ^ œ Ò  TÐB  YÑÓÒ  T ÐC  YÑÓ0 B  5ÑÑ0 C  5ÑÑ5 2
Ò!ß"Ó

ÖBY× ÖCY×
w w(

#

I I ÐX Ð ÐX Ð .B.C

and

EÒ ÐX Ð ÐX Ð .B.C

œ ÐX Ð ÐX Ð .B.C

^ ^ Ó œ Ð"  B ” C  Ð"  BÑÐ"  CÑÑ0 B  5ÑÑ0 C  5ÑÑ

ÐB • C  BCÑ0 B  5ÑÑ0 C  5ÑÑ

5 2
Ò!ß"Ó

w w

Ò!ß"Ó

w w

(
(

#

#

 ,

it turns out that

5X
# œ X ÐBß CÑ0 B  5ÑÑ0 C  5ÑÑ% w w

5ß2− Ò!ß"Ó

" (
m

#

9 ÐX Ð ÐX Ð .B.C .

Hence, the first part follows. Expression (3) holds since  and9ÐBß CÑ Ò!ß "ÓŸ "Î% Bß C − for 

( (
Ò!ß"Ó Ò!ß"Ó

X X X X X

Ð"Ñ Ð"Ñ Ð"Ñ Ð"Ñ Ð"Ñ #

# #

U ÐBÑU ÐCÑ lU ÐBÑllU ÐCÑl U ÐY ÑlÓs s s s s.B.C Ÿ .B.C œ ÒlE  .

Expression (4) may be proven recursively. Indeed, since

E E VarÒl Ò ÒU ÐY ÑlÓ Ÿ U ÐYÑ Ó œ U ÐYÑÓs s s
X X X

Ð"Ñ Ð"Ñ Ð"Ñ# #  ,

from (3) it turns out that

Var EÒ ÒlU ÐY ÑÓ Ÿ U ÐYÑlÓs sX

#X X

Ð"Ñ Ð#Ñ
 ,

and hence by iterating expression (4) follows.

Obviously, since the previous results hold for each 0 − [ Ð=ß" ‘Ñ, in turn they hold for a

general . The following result gives rise to a more accurate inequality for 0 − [ Ð=ß:
X‘Ñ 5

when it is assumed a further mild requirement on ,   for each0 Ò-ß .ÓÑi.e. 0 − [ Ðw "ß"

Ò-ß .Ó § Ð+ß ,Ñ.

Lemma 2. Let us assume that 0 − [ Ð 0 − [ Ð"ß" w "ß"‘Ñ Ò-ß .ÓÑ in such a way that  for each

Ò-ß .Ó § Ð+ß ,Ñ ÐBÑ œ +  XB ÐBÑ œ ,  XÐB  "Ñ B − Ð!ß "Ñ and that  and  with . If! "X X

Ð,  +ÑÎX œ 7 " 7 − with  , it follows thatm
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U ÐBÑ œ Ò0Ð 0 Ðs
X

Ð"Ñ w" ! " !X X X X X
wÐBÑÑ  0Ð ÐBÑÑÓ  Ò ÐBÑÑ  0 Ð ÐBÑÑÓ  1 ÐBÑ

X

#
 ,

where

1 ÐBÑ œ XX
#

ÐBÑ

ÐBÑ( (
!

7
ww ww:Ð?Ñ0 ÐX Ð?  BÑÑ .? œ X :ÐÐ?  +ÑÎX  BÑ0 Ð?Ñ .?

!

"

X

X

and . In particular, if the sign of  is constant in  and  for: ?  Ú?Û  "Î# 0 Ð+ß -Ñ Ð.ß ,ÑÀ ? È ww

a fixed , it exists a constant , such that for each , it turns out thatÐ-ß .Ñ P   ! B − Ð!ß "Ñ

lU ÐBÑ  Ò0Ð 0 Ðs
X

Ð"Ñ w" ! " !X X X X
wÐBÑÑ  0Ð ÐBÑÑÓl Ÿ X Òl ÐBÑÑl  l0 Ð ÐBÑÑl  PÓ

( [ ])if  is a concave function,  may be taken equal  for a suitable interval . 0 P ! -ß . Hence, if

X Ÿ Ð-  +Ñ • Ð,  .Ñ, it finally holds

5X Ÿ 0ÐX Òl ,  X Ñl  l0Ð+  XÑlÓ 
PX

#

#

 . (5)

Proof. For sake of simplicity, it is assumed  without loss of generality. Since the family+ œ !

G Ð Ñ [ Ð Ñ# #ß"‘ ‘ is dense in  it suffices to consider functions in this class. Moreover, it should

be remarked that the Euler-McLaurin expansion implies that for each 0 − G"

"
5œ!

7

0Ð5Ñ œ ( (
! !

7 7
w0ÐBÑ .B  Ð0Ð!Ñ  0Ð7ÑÑ  :ÐBÑ0 ÐBÑ .B

"

#
 .

By applying the previous expansion to  on  the first resultJ À ? È X0 ÐX Ð?  BÑÑ Ò!ß7Ów

follows. Indeed, it turns out that JÐ!Ñ œ X0 Ð ÐBÑÑ JÐ7Ñ œ X0 Ð ÐBÑÑw w
X X! ",  and

'
!
7
JÐ?Ñ.? œ 0Ð" !X XÐBÑÑ  0Ð ÐBÑÑ.

In particular, if  has a constant sign on 0 ww Ð!ß -Ñ Ð.ß ,Ñ Ð-ß .Ñ and   for a fixed , in order to

obtain (5) it should be remarked that  is bounded by  and let: "Î#

P   Ðl -Ñl  l0 Ð.Ñl  Ñ
"

#
0 Ð l0 Ð?Ñl .?w ww

-

.
w (  .

Moreover, if X Ÿ - • Ð,  .Ñ 0 Ð!ß X Ñ the function  has in turn a constant sign on  andw

Ð,  X ß X Ñ, from which

(
!

"

X X
wÐl ÐBÑÑl  l0 Ð ÐBÑÑlÑ.B œ Ðl ,  XÑl  l0ÐX ÑlÑ

"

X
0 Ð 0Ðw " !  .
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Finally, on the basis of (4) and since  is increasing and  isB È 0 Ð B È 0 Ðl ÐBÑÑl l ÐBÑÑlw w" !X X

decreasing on , inequality (5) follows. Ð!ß "Ñ

In order to give more insigth into the previous results, it is worthwhile to consider a

simple example by considering again the function . It is at once apparent that0"

0 − [ Ð"
w "ß" Ò-ß .ÓÑ Ò-ß .Ó § Ð!ß "Ñ for each  and that Hence from Lemma 2 it0" is concave. 

follows that for X "Î/Ÿ

5X Ÿ X Ò  Ð"  XÑ Ð"  XÑ  X X Ó Ÿ X  X Xlog log log# #  ,

from which 5X
# Ÿ X Ð"  XÑ% #log .

Lemma 2 gives rises to the following Corollary.

Corollary 3. Let 0 − [ Ð 0 − [ Ð=ß" Ð=Ñ "ß"‘Ñ Ò-ß .ÓÑ Ò-ß .Ó § Ð+ß ,Ñ in such a way that  for each .

If the sign of  is constant in  and  for a fixed , it exists a constant0 Ð+ß - Ñ Ð. ß ,Ñ Ð- ß . ÑÐ="Ñ
! ! ! !

P   ! • Ð,  . Ñ, such that for each , it holdsX Ÿ Ð-  +Ñ! !

5X Ÿ 0 Ð
X PX

# #
Òl ,  X Ñl  l0 Ð+  XÑlÓ 

= ="

=" =
Ð="ÑÐ="Ñ  .

Remark 1. If in Corollary 30Ð="Ñ is supposed to be a Hölderian function with parameter  ,"

it follows that

5X Ÿ G
X PX

# #


= ="

=# =

"

 ,

for a suitable . It should be remarked that G   ! 0 − [ Ð 0Ð="Ñ "ß: Ð="Ñ‘Ñ, then  is a Hölderian

function with parameter . For "  "  "Î: a -smooth measurement function  and; = œ Ü;Ý

" œ "  !.

Remark 2. In an anagolous way, the previous results hold even if  is a finite sum of0

functions with singularities for in the points  and  in , where  and  are not0 w + , Ò+ß ,Ó + ,w w w w

necessarily equal to the support endpoints.
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As to the estimation of 5X
# , from the representation in Lemma 1 an estimator may be given

by

5s œ XX
# #9ÐY ß Z Ñ Ò0Ð Ñ  0ÐX Ð5  YÑÓÒ0Ð Ñ  0ÐX Ð5  Z ÑÓ"

5ß2−m

X Ð5  "  YÑ X Ð5  "  Z Ñ

where  and  are independent uniform random variables on . However, this estimatorY Z Ð!ß "Ñ

obviously requires two independent sets of systematic observations and this may be not

practically feasible in stereological applications. In contrast, inequality (5) may give rise to a

conservative estimator of 5X
# , which may be obtained as

5s œ
X

%X
#

#

9ÐY ß Z ÑÐ"  YÑÐ"  Z Ñ Ò  ÓÒ  Ó
0Ð Ñ 0Ð Ñ 0Ð Ñ 0Ð Ñ

Y "  Y Z "  Z

! " ! "X X X XÐY Ñ ÐY Ñ ÐZ Ñ ÐZ Ñ
 ,

where in turn  and  are independent uniform random variables on . Even if thisY Z Ð!ß "Ñ

estimator is obviously based on a second replication of the systematic sampling, it is at once

apparent that the measurements corresponding to the second replication are solely carried out

in the interval  and [  and hence the extra sampling effort could beÒ+ß +  X Ó ,  X ß ,Ó

trascurable.

4. Some applications. In this Section, we emphasize the application of the systematic

sampling in stereology and in some environmental designs. As to the stereology setting, as

previously remarked in the introduction, 0  usually represents the area section of an object

along a given axis and hence  turns out to be a volume. Thus, U UsX  reduces to the well-

known Cavalieri estimator (Cruz-Orive, 1993). The sections may be physical or obtained by

means of non-invasive methods such as the magnetic risonance imaging (Garcia-Fiñana et

al., 2003).

When a quantitative ecological study is carried out, the target parameter is usually the

total of the variable under study in a delineated region, which may be assumed to be the unit

square for sake of . Accordingly, let us consider a population of  units scatteredsimplicity R

at fixed locations in the region. In addition, let  be the values of the variable; ßá ß ;" R

corresponding to each unit. Hence, the target parameter is given by
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U œ ;"
6œ"

R

6 .

In thi setting, a large family of practical environmental designs are carried out by throwing a

point on the baseline,  the projection of the region on a line of fixed or random directioni.e.

( Barabesi and Pisani, 2002). Thus, Barabesi, 2003, let  be the coordinate of the selectedB

point on the baseline which may be identified with the interval  without loss ofÒ+ß ,Ó

generality. In this setting, a suitable interval containedthe inclusion set  of the -th unit is c6 l

with -th unit is selected and  is measured if in the baseline. Hence, the . Asl ; B −6 c6  an

example, let us consider a population of plants in a delineated forest and let ;6 be the canopy

coverage of the -th plant. Therefore, l the target parameter is the total canopy coverage

biomass in the forest. If the line intercept design is adopted, a transect perpendicular to the

baseline at  is thrown across the study region B (see e.g. the recent paper of Affleck, Gregoire,

and Valentine). Subsequently, the plants intersected by the transect are included in the

sample. Obviously  are the canopy projections on the baseline. Hence, a, the inclusion sets

plant is selected if B is located in the corresponding inclusion set.

In this framework, it is worthwhile to consider a general class of estimates of the total.

The  at the point  is given by (see Kaiser, 1983)linear homogeneous estimate B e.g. 

0ÐBÑ œ ÐBÑ
;

A
"
6œ"

R
6

6
6<  ,

where  and  is a suitable function . However, it is atA œ ÐBÑ.B6 6 6 6+
,' < < cvanishing if B Â

once apparent that

( ( " "
+ +

, ,

6œ" 6œ"

R R
6

6
6 60ÐBÑ .B œ ÐBÑ .B œ ; œ U

;

A
<  ,

i.e. an integral representation is achieved for  and hence U its estimation reduces to an

integration problem. Obviously, estimator (2) must be considered when a replicated

systematic sampling is adopted. In this case, the properties of (2) obviously depend on the

structure of the components s of . As an example, if  represents the coverage, the usual<6 0 U

adopted linear homogeneous estimate  is the assumes that  <6ÐBÑ length of the intersection
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between the -th plant and the transect. If the plants are assumed to be l connected compact

sets with a "smooth" boundary, sit is at once apparent that the  are generally <6 [ Ð Ñ"ß: ‘

functions and hence  is in turn a  function (see Barabesi and Marcheselli, 2006).0 [ Ð Ñ"ß: ‘

Other examples of estimator that are likely to produce  are contained<6 functions in [ Ð Ñ"ß: ‘

in Kaiser (1983).
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