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Abstract - The use of nonresponse calibration weighting is considered in a complete design-based 
frameworkto account for the cases in which nonresponse is a fixed characteristic of the units, just like 
the interest variable. Approximate expressions of design-based bias and variance of the calibration 
estimator are derived and some estimators of the sampling variance are proposed. The choice of 
auxiliary variables is discussed from theoretical and practical point of view. The results of an extensive 
simulation study demonstrate how the reliability of the procedure is mainly determined by the 
capability of selecting auxiliary variables in such a way that their relationship with the interest variable 
is similar for both the respondent and nonrespondent sub-populations. 
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1. Introduction  

Unit nonresponse is often a problem in sample surveys, arising when the values of the survey 

variable cannot be recorded for some sampled units. 

Widely applied methods to account for unit nonresponse, recently referred to as nonresponse 

propensity weighting (e.g. Haziza et al., 2010), view the respondent set as the result of a two-phase 

sampling: in the first phase a sample is selected from the population by means of the established 

sampling scheme while, in the second phase, the respondent set is realized as a subset of the first-

phase sample, assuming the existence of a response mechanism for which every population unit has 

its own (invariably positive) response probability. Then, a realistic model is formulated in which the 

unknown response probabilities depend on some auxiliary variables and as such they are 

subsequently estimated on the basis of the auxiliary information available at sample or at population 

level (the so called Info S and Info U, in the parlance of Särndal and Lundström, 2005). The 

estimation theory built around the idea that units are equipped with design-based inclusion 

probabilities and model-based response probabilities has been termed quasi-randomization theory 

by Oh and Scheuren (1983). As pointed out by Kott (1994), the procedure requires that all the 

response probabilities were strictly positive, while this requirement is often unrealistic because most 

populations contain units that do not respond under any circumstances. Moreover, Särndal and 

Lundström (2005, p.52) point out that the knowledge about response behaviour is usually limited, 

so it is difficult to defend any proposed model adopted to estimate the response probabilities as 

being more realistic than any alternative.  

Apart from these two (relevant) drawbacks, in some surveys unit responses cannot be viewed as 

outcomes of dichotomous experiments with unknown probabilities (just as tosses of unfair coins). 

Indeed, there exist situations in which the response pattern is fixed, in the sense that the population 

is strictly partitioned into respondent and nonrespondent units and responses are fixed 

characteristics of the units, just like the values of the interest variable. In these cases, it seems 
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natural to perform estimation in a complete design-based framework. It is worth noting that the non 

random nature of responses is quite common in environmental surveys such as forest inventories, 

when a population of sites scattered over the study area is sampled. In some circumstances, it may 

occur that some selected sites are located in difficult terrains and cannot be reached. Thus, the 

values of the interest variable corresponding to such sites are missed. Obviously, in this situation no 

random experiment can be claimed, since the sites can be reached or not.  

When nonresponse is a fixed characteristic, the quasi-randomization approach cannot be adopted 

and imputation or nonresponse calibration weighting (Haziza et al., 2010) should be used. 

Imputation is a procedure in which missing values are replaced by substitutes and estimation is 

performed on the completed data, thus achieving the so called imputed estimator. As pointed out by 

Särndal and Lundström (2005, p.52), imputed values are artificial and as such affected by errors. 

Accordingly, imputation errors may be treated as measurement errors, as when an erroneous value 

is recorded for a sampled unit. Commonly used techniques of imputation are regression imputation, 

nearest neighbour imputation, hot deck imputation and multiple imputation (for a review see e.g. 

Little and Rubin, 2002 and Durrant, 2005). Without entering on these techniques, it should be once 

again pointed out that, since knowledge about response behaviour is usually limited, it is difficult to 

defend any proposed method/model of imputation as being more realistic than others.  

As an alternative to imputation, the nonresponse calibration weighting (henceforth NCW) may be 

adopted: in order to compensate the reduction in the estimate value due to nonresponse, the weights 

originally attached to each respondent observation are changed into new weights able to estimate 

the total of a set of auxiliary variables without error (in the case of Info U) or as if the complete 

sample were available (in the case of Info S). The rationale behind the approach is quite obvious: if 

the calibrated weights guess the total of the auxiliary variables or their complete sample estimates 

without errors, then they should be suitable also for estimating the total of the interest variable, 

providing that a close relationship exists between the interest and the auxiliary variables.  
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Even if no superiority of NCW with respect to imputation can be generally claimed, NCW seems to 

be more convincing than imputation because even at its best, i.e. when all the imputed values are 

guessed without errors, imputation cannot improve upon the performance of the complete-sample 

estimator. On the other hand, in the case of Info U and if a perfect linear relationship exists between 

interest and auxiliary variables, the NCW approach estimates the total without error (Särndal and 

Lundström, 2005, p.61). Accordingly, NCW is likely to perform well for suitable choices of 

auxiliary variables, accomplishing both the goal of reducing nonresponse bias and increasing the 

accuracy of estimates. Moreover, the NCW approach does not refer explicitly to any model, 

allowing for a straightforward design-based treatment.  

The present paper deals with the application of the NCW approach in a complete design-based 

framework, i.e. viewing population values and nonresponse as fixed characteristics. To this 

purpose, in section 2 some preliminaries and notations are given, while in section 3 the approximate 

expressions of the design-based bias and variance of the calibrated Horvitz-Tompson (HT) 

estimator are considered and some variance estimators are proposed. Subsequently, in section 4, the 

choice of the auxiliary variables adopted to perform calibration is discussed from both theoretical 

and practical point of view. In section 5, the performance of the calibrated HT estimator and of 

some variance estimators are checked by means of a simulation study. Concluding remarks are 

contained in section 6. 

 

2. Preliminaries and notations 

Let U be a population of N units, let jy  be the value of a positive survey variable Y for the j-th unit 

and suppose that the population total, say 



Uj

jy yT be the interest quantity to be estimated on the 

basis of a sample US   of size n. Suppose S be selected from the population by means of a fixed-

size scheme inducing first- and second-order inclusion probabilities j  and jh  ( Njh ,,1 ). 
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Suppose also that 0jh  for any Njh ,,1 . If the jy s are recorded for each Sj  (complete 

response), then the HT estimator 



Sj j

j
HT

y
T


ˆ  is design-unbiased with design-based variance which 

can be unbiasedly estimated by means of the well-known Sen-Yates-Grundy (SYG) or HT variance 

estimators. On the other hand, if the jy s are recorded only for SR j  (partial response), then 

the R-based HT estimator 

 



Rj j

j
R

y
T


ˆ       (1) 

turns out to be invariably smaller than HTT̂  and hence negatively biased. In order to compensate the 

decrease of RT̂  due to nonresponse, the weights j/1  attached to each jy  should be suitably 

modified. As already mentioned, consider situations in which the response pattern is fixed, in the 

sense that the population is partitioned into two strata: the respondent stratum, say RU  of size RN  

and the nonrespondent stratum RUU  of size RNN  .  

In order to perform the NCW approach, auxiliary information is necessary. Denote by jkx  the value 

of an auxiliary variable kX  for the j-th unit in the population. Now, suppose that the values of L 

auxiliary variables, say 
LXX ,,1 , are known for each unit of the population (info U), i.e. the L-

vectors  T,,   jLjj xx 1x  are known for each Nj ,,1 . Accordingly, the vector of population 

totals for the L variables, say 


 
Uj

jxT  is also known. Moreover, suppose that the values of M 

auxiliary variables, say   MXX ,,1 , are known for each unit in the sample (info S), i.e. the M-

vectors  T,,   jMjj xx 1x  are known for each Sj . In this case, the vector of the HT estimates of 

the population totals computed on S, say 



Sj j

j




 x

T̂  is known. Obviously T̂  constitutes an 
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unbiased estimator of the vector of population totals of the M variables, say 



Uj

j
 xT . Now, for 

simplicity of notation, the two sets of variables can be joined into a unique set of MLK   

variables simply by using the K-vector 
















j

j
j x

x
x  as well as the K-vector 












T
T

T ˆ
ˆ . In the parlance 

of Särndal and Lundström (2005, Table 6.1), the joined information is referred to as the InfoUS 

while the vector T̂  is referred to as the information input owing to its basic role in the subsequent 

calibration. It is worth noting that while the first L components of T̂  are known constants, the 

remaining M components are random variables depending on S. Obviously the design-based 

expectation of T̂  turns out to be TT )ˆ(E  where 











T
T

T .  

In order to compensate the reduction of RT̂  due to non response, the weights j/1  in (1) are 

changed into new weights, say jw , in such a way to satisfy the so called calibration equation 





Rj

jjw Tx ˆ . Rewriting the jw s as modifications of the HT weights, i.e. jjj vw / , and from the 

fact that (even if it is not mandatory for all the j s in R) the jw s should constitute enlargements of 

the j s, a suitable structure for the jv s as enlargement factors (i.e. 1jv ) may be of type 

jjv xcT1 (Särndal and Lundström, 2005, Chapter 6). Then, solving the calibration equation with 

respect to c, the resulting estimator, henceforth referred to as the calibration estimator, turns out to 

be  

 Tb ˆˆˆ T
RCALT  ,      (2) 

where 

















RR j j

jj

j j

jj
R

y

xxx

b
T 1

ˆ  providing that the matrix to be inverted is positive definite and 

that an auxiliary variable (say the first without loss of generality) is invariably equal to 1, 
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i.e.  T2 ,,,1 jKjj xx x  for any Nj ,,1  (Särndal and Lundström, 2005, section 6.8). 

Henceforth, the auxiliary variable invariably equal to 1 will be tacitly included in the set of the K 

auxiliary variables, in such a way that the calibration weights reproduce the population size without 

error, i.e.



Rj

j Nw . As previously emphasized, from (2) it can be easily proven that under Info U 

and if jjy xbT for all Nj ,,1 , then yCAL TT ˆ . 

 

3 Design-based bias and variance. 

In order to treat nonresponse as a fixed characteristic a dummy variable, say R, is considered such 

that 1jr  for Rj U  while 0jr  for Rj UU . Hence, the vector Rb̂  in (2) can be rewritten as 



















SS j j

jjj

j j

jjj
R

yrr


xxx
b

1T

 ˆ  in such a way that CALT̂  depends on the sole sample S while 

nonresponse is accounted for in the jr s ( Sj ). Now, denote by 



Sj j

jjj
R

r


T
ˆ xx
A  and 





Sj j

jjj
R

yr


x
â  the two HT-like estimators in Rb̂ . Obviously, 





Rj

Rjj
j

jjjR r
UU

AxxxxA TT )ˆE( and R
j

jj
j

jjjR
R

yyr axxa  
 UU

)ˆE( . Thus, keeping in mind 

that T̂  may be viewed as the HT estimator of T and as such TT )ˆ(E , CALT̂  can be rewritten as a 

function of the three HT estimators RÂ , Râ  and T̂ . Accordingly, the first-order Taylor series 

approximation of CALT̂  gives rise to   

 TbTAAbTAa ˆˆˆˆ T1T-1
RRRRR

T
RCALT   ,      (3) 
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where RRR aAb 1  is the coefficient vector of the least-square hyperplane fitted from the respondent 

population scatter  Rjj jy U),,(x . In this sense, Rb̂  may be viewed as an approximately unbiased 

estimator of Rb , obtained from the respondent sample R.  

 

3.1 Design-based nonresponse bias  

Särndal and Lundström (2005, equation 9.14) derive a general expression for the approximate bias 

of CALT̂  under the so called nonresponse model approach (NMA), from which inference is made 

with respect to the joint distribution induced by the sampling design and the nonresponse 

mechanism, if a response probability j  is supposed for each unit and it is also supposed that units 

respond independently of one another. If the j s are set equal to 1 for Rj U  and 0 otherwise, then 

the Särndal-Lundström approximate bias expression under NMA reduces to  

 



RR j

j
j

jRCAL yT
UUUU

xbT)ˆ(AB      (4) 

which constitutes the approximate design-based bias of CALT̂ . As pointed out by Särndal and 

Lundström (2005, p.99) the approximate bias does not depend from the design.  

In order to obtain more insights, expression (4) can be suitably rewritten as 

 



RRR j

jNRR
j

NRjjNR
j

jRCAL eT
UUUUUU

xbbxbxb TTT )()()ˆ(AB ,   (5) 

where the NRje  denotes the 0-sum residuals from the regression performed on the nonrespondent 

population scatter  Rjj jy UU),,(x , i.e. j
T
NRjNRj ye xb  for Rj UU  and 

















RR j
jj

j
jjNR y

UUUU
xxxb T

1

is the coefficient vector of the least-square hyperplane fitted from the 

nonrespondent population.  
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It is at once apparent from (5) that the design-based approximate bias of CALT̂  strictly depends on 

the difference between the least-squares hyperplanes fitted from the respondent and nonrespondent 

population scatters. Approximate unbiasedness is achieved when the two hyperplanes are identical, 

i.e. the linear relationship among interest and auxiliary variables is similar for respondent and 

nonrespondent units.   

 

3.2 Design-based nonresponse variance 

In order to derive an approximate expression for the design-based variance of CALT̂  and the 

corresponding estimators, it does not seem convenient to quote from the general results achieved 

under the NMA (Särndal and Lundström, Chapter 11, Haziza et al., 2010). Indeed in the NMA the 

complexity of the problem is inflated by the fact that nonresponse, working like a sort of second-

phase selection, provides an additional variance component to be estimated. Such a component is 

obviously absent when nonresponse is a fixed characteristic. In this case the approximate variance 

can be straightforwardly achieved using the standard linearization approach (e.g. Sarndal et al., 

1992 , section 5.5) and the resulting expression is straightforwardly interpretable. 

To this purpose, it should be noticed that an additive constant is present in the first-order 

approximation (3) owing to the fact that the first L components of T̂  are the true population totals 

of 
LXX ,,1  (info U). Accordingly, (3) can be more suitably expressed as 

   TbTbTAAAaTAa ˆˆˆˆ TTTT
RRRRRRRRCALT 111  

































 











const
ryr

j j

j
RR

j j

jjj
RRR

j j

jjj

SSS 


 x

bTA
xx

AaTA
x T

T11T1

T

 









const
yr

j j

jRRjjRRRjjj

S 

 xbTAxxAaTAx T1T1T1T )(
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 const
u

const
eyer

j j

j

j j

RjjRjRjj 


 




SS 
TAx 1T

,   (6) 

where for any Uj ,   RjjRjRjjj eyeru TAx 1T  are the so called influence values (e.g. Davison 

and Hinkley, 1997), Rje  denotes the 0-sum residuals from the least-square fitting performed on the 

respondent population scatter, i.e. j
T
RjRj ye xb  for Rj U  and 0Rje  otherwise, 

Rb  denotes the 

last M components of Rb  and 
jRjRj ye xb T  are the non-0-sum residuals obtained neglecting the 

Info-U-variable coefficients of Rb . 

Up to a constant term, the approximation (6) to CALT̂  may be viewed as the HT estimator of the total 

of the ju s over U . Accordingly, the approximate variance of CALT̂  turns out to be  

 














Ujh h

h

j

j
jhhjCAL π

u
π
u

)ππ(πT
2

)ˆ(AV .     (7) 

From the previous expressions it readily follows that the design-based approximate variability of 

CALT̂  jointly depends on: i) the ability of the whole set of K auxiliary variables to predict the interest 

variable in the respondent population; ii) the ability of the M Info-S variables to predict the interest 

variable in the whole population neglecting the contribution of the L Info-U variables; iii) the 

estimation of the total of the interest variable.  

 

3.3 Variance estimation. 

Standard variance estimator can be straightforwardly achieved from expression (7). The Sen-Yates-

Grundy (SYG) variance estimator is given by  

 

















Sjh h

h

j

j

jh

jhhj
SYG π

u
π
u

π
πππ

V
2

2 ˆˆ
,     (8) 
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where for each Sj , 
jRRjRjjj eru xbTAx T1T ˆˆˆˆˆ   are the empirical influence values, Rjê  are the 

residual achieved from the least-square fitting performed on the respondent point scatter 

 Rjy jj ),,(x , i.e. j
T
RjRj ye xb̂ˆ   for  Rj   and 0ˆ Rje  if RS-j  and 

Rb̂  denotes the last M 

components of Rb̂ .  

Alternatively, the HT variance estimator is given by 

 





SS jh
hj

jhhj

hjjh

j
j

j

j
HT uu

πππ
πππ

u
π
-π

V ˆˆ2ˆ
1 2

2
2 .    (9)                      

Finally, the jackknife variance estimator by Berger and Skinner (2005) can be used. The jackknife 

estimator is analogous to (9) but with the empirical influence values which are numerically 

approximated instead of being obtained by analytic differentiation. Quoting from Berger and 

Skinner (2005), denote by  )()(
ˆˆ

ˆ
11 jCALCAL

j
j TT

N
v 













 where 




Sj j

N

1ˆ , )(

T
)()(
ˆˆˆ

jjRjCALT Tb , 



















-j-j h h

hhh

h h

hhh
jR

yrr
SS 

xxxb
1

T

)(
ˆ ,  T)()()(

ˆ,,ˆ,,,ˆ   jMjLj TTTT 11
T , 




-jh h

kh
jk

x
N
NT

S 


 ,

)( ˆ
ˆ for 

Mk ,,1  and finally jS  consists of the sample S with the j-th unit deleted. Accordingly, the 

jackknife estimator for the variance of CALT̂  turns out to be   

 





SS jh
hj

jh

hjjh

j
jjjack vvvV )()(

2
)(

2 2)1(



 .    (10) 

 

4. Selecting effective auxiliary information 

Särndal and Lundström (2005, p. 98) point out as the bias of any nonresponse-adjusted estimator 

should be the main concern. The authors emphasize that variance is of minor importance since “if 

an estimator is greatly biased, it is poor consolation that its variance is low”.  
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At least in the case of Info U, CALT̂  estimates yT  without error in presence of a perfect linear 

relationship between interest and auxiliary variables. Thus, the search for auxiliary information 

should be guided by the following criterion, referred to as Principle 2 in the parlance of Särndal and 

Lundström (2005, p. 110): the auxiliary vector should explain the interest variable. In this 

framework, a good indicator of the capacity of the jx s to predict the jy s should be obviously given 

by the fraction of the Y-variance explained by the selected variables KXX ,,1  , i.e. 

 












U

U

j
j

j
jj

Yy

y

2

2T

2

)(

)(
1

xb
 ,     (11) 

where 















UU j
jj

j
jj y xxxb T

1

is now the coefficient vector of the least-square hyperplane fitted 

from the whole population scatter  Ujy jj ),,(x  and NTY y /  is the population mean. 

Unfortunately, Principle 2 does not seem a suitable solution, at least in a complete design-based 

setting. Indeed, 2  is unknown and consequently we are forced to estimate it by means of  

 













R

R

j
Rj

j

j
jRj

j
R

Yy

y

2

2T

2

)ˆ(1

)ˆ(1

1ˆ






xb
,     (12) 

where RRR NTY ˆ/ˆˆ   and 



Rj j

RN

1ˆ . In order to derive the design-based properties of (12) as an 

estimator of (11), it is convenient to rewrite (12) in a more suitable form. After trivial algebra we 

have   

 

R

R
R

RRRR
R

N
TQ

Q

ˆ
ˆˆ

ˆˆˆˆ
1ˆ

2

-1T
2






aAa ,      (13) 
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where 



Sj j

jj
R

yr
Q



2
ˆ  and RT̂  and RN̂  are suitably expressed in term of S as 




Sj j

jj
R

yr
T


ˆ  and 





Sj j

j
R

r
N


ˆ . Obviously, it is at once apparent that 




Rj

Rj
j

jjR QyyrQ
UU

22)ˆ(E  as well as 





Rj

Rj
j

jjR TyyrT
UU

)ˆ(E  and 



Uj

RjR NrN )ˆ(E . Thus, 2ˆR  is a function of the five HT 

estimators RRRR TQ ˆ,ˆ,ˆ,ˆ Aa  and RN̂ . Then, from the first-order Taylor series approximation of 2
R̂  , it 

follows that   

2
2

2T

2

1-T
2

)(

)(
11)ˆ(E R

j
Rj

j
jRj

R

R
R

RRRR
R

R

R

Yy

y

N
TQ

Q  

















U

U
xb

aAa  

where RRR NTY / . Practically speaking 2ˆR  provides an approximately unbiased estimator of the Y-

variance portion explained by the selected variables, not in the whole population U but only in the 

respondent population RU . Paradoxically, the procedure based on 2ˆR  may provide reliable choices 

of the auxiliary variables only if the linear relationship among interest and auxiliary variables is 

similar for respondent and nonrespondent units, a situation which alone ensure approximate 

unbiasedness. 

In order to search for auxiliary variables which behave similarly for respondent and nonrespondent 

units, a promising, even if trivial, procedure should be based on the comparison of ranges in 

respondent and nonrespondent populations (Info U) or samples (Info S). Indeed, if the values of an 

auxiliary variable in the respondent population (sample) tend to be much greater or lower than the 

values of the same variable in the nonresponse counterpart, then it is quite difficult that the same 

linear relationship may hold for both cases. As a very simple example, consider the slope of terrain 

as an auxiliary variable adopted to predict the timber volume in forest inventories. Slopes (in 

degrees) in sites/plots which can be easily surveyed by foresters (respondent population) usually 



13 

 

range from 0 to 40 degrees while they range from about 40 to 60 degrees (with some values 

reaching 80 degrees) for those plots which cannot be surveyed (nonrespondent population). Thus, it 

is quite unlike that the same linear relationship might be valid to predict timber volume as linear 

function of slope in the whole range 0-80. 

From these considerations, it seems that the choice of auxiliary information in design-based NCW 

approach should be guided by practical considerations about the nature of the variables and their 

relationship with the interest variable rather than by rigid quantitative indicators which, being 

necessarily computed from the respondent sample, can reflect the actual situation only for the 

respondent population. 

Finally, even if obvious, it is also worth noting that the selection of highly correlated auxiliary 

variables should be avoided and only one of them should be used. Indeed, the use of highly 

correlated variables deteriorates the estimation of the regression coefficients without providing 

relevant additional information. 

 

5. Simulation study. 

Empirical investigations were used to throw light in: a) the capability of the approximate 

expressions for the bias and the variance to guess the actual values; b) the design-based accuracy of 

the calibration estimator in terms of amount of nonresponse, effectiveness of the auxiliary variables 

to predict the interest variable, differences in the behaviour of the auxiliary variable between 

respondent and nonrespondent units and multicollinearity among auxiliary variables; c) the 

capability of variance estimators to evaluate the accuracy of the calibration estimator and to give 

confidence interval with coverage near to the nominal level. 

To this purpose a population of 000,1N  individuals was considered, partitioned into respondent 

and nonrespondent stratum. The size of respondent stratum was presumed to be 900,600,300RN  

corresponding to respondent percentages (say RP) of %90%,60%,30 . Then, two auxiliary variables 
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
1X  and 

2X  were supposed to be known for each population unit (Info U). For each unit Uj , the 

values 
1jx  and 

2jx  were generated from a bivariate normal distribution with expectations 

121    and variances 12
2

2
1  . Moreover, in order to take into account different degrees of 

multicollinearity (MC), a correlation of 0, 0.5 and 0.9 was presumed between 
1X  and 

2X . Then, 

for each unit of the respondent stratum the interest variable Y was achieved from the relation  

 jjjj xxy  
21 5.05.01 ,     (14) 

where j  was an error term generated from a centred normal distribution. On the other hand, as to 

nonrespondent stratum, three similarity levels (SL) with relation (14) were considered: a first 

situation (say SL1) in which the jy s were generated by the same relation adopted in respondent 

stratum, a second situation (say SL2) in which the coefficients attached to 
1jx  and 

2jx  were two 

times those adopted in respondent stratum, a third situation (say SL3) in which the coefficients were 

four times those adopted in respondent stratum. Finally, the variances of the error terms in 

respondent and nonrespondent stratum, say 2
R  and 2

NR , were chosen in such a way to achieve a 

fraction of explained variance (say FEV) equal to 0.3, 0.6 and 0.9 for both the respondent and 

nonrespondent population point scatters. Then, from the possible combinations of RP, SL, FEV and 

MC, a final set of 81 populations was achieved.  

In each population, 10,000 samples of size 50n  (corresponding to sampling fraction of 5%) were 

selected by means of simple random sampling without replacement (SRSWOR). For each selected 

sample the following quantities were computed: CALT̂ , 2
SYGV  and 2

jackV  (note that 2
SYGV  and 

2
HTV coincide under SRSWR). From the variance estimates the corresponding estimates of the 

relative standard error CALSYGSYG TVRSE ˆ/  and CALjackjack TVRSE ˆ/  were also computed together 

with the confidence intervals SYGCAL VT 96.1ˆ   and jackCAL VT 96.1ˆ  . Then, from the resulting Monte 
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Carlo distributions, the relative bias, coefficient of variation and relative root mean squared error of 

CALT̂ , say RB-CAL, CV-CAL and RRMSE-CAL were empirically evaluated together with the 

expectations of SYGRSE  and jackRSE , say ERSE-SYG and ERSE-JACK and the coverage of the 

confidence intervals, say CVRG-SYG and CVRG-JACK, achieved as the percentage of times the 

intervals included the true total. Moreover, for each population the approximate bias and variance of 

CALT̂ , say ARB-CAL and ACV-CAL were analytically computed by means of equations (4) and (7), 

together with the coefficient of variation which would be achieved by the HT estimator in the case 

of complete response, say CV-HT. This quantity was included as a bench-mark with which the 

accuracy of CALT̂ can be compared. 

For each population, Tables 1-5 reports the percent values of ARB-CAL, RB-CAL, ACV-CAL, 

CV-CAL, RRMSE-CAL, CV-HT, ERSE-SYG, ERSE-JACK, CVRG-SYG and CVRG-JACK. The 

simulation results motivates the following comments: 

- when the relationship among interest and auxiliary variables is similar in respondent and 

nonrespondent sub-populations (SL1), underestimation due to nonresponse turns out to be 

negligible but it markedly increases as differences in the relationships are present (SL2 and SL3); 

downward bias also increases with the amount of nonresponse but it seems to be poorly influenced 

by FEV and MC factors (see Table 1); 

- the approximate bias expression (4) turns out to be quite accurate; for RP equal to 30%, the 

approximate relative bias shows differences with the actual relative bias always smaller than 5 

percentage points except for FEV equal to 0.3 and MC equal to 0.9, when the differences are of 

about 10 percentage points; the accuracy of the approximation quickly increases as RP increases 

with differences which become negligible when RP reaches 90% (see Table 1); 

- even if the approximate variance expression (7) invariably provides underestimation of the actual 

variance, it turns out to be satisfactory: the differences between the approximate and actual 
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coefficient of variations are always smaller then 3 percentage points for RP equal to 30% and 

become negligible as RP increases (see Table 2); 

- when the relationship among interest and auxiliary variables is similar in respondent and 

nonrespondent sub-populations (SL1), calibration estimation is worse than the complete-sample HT 

estimator only in presence of a massive amount of nonresponse (RP=30%), while for smaller 

amounts the calibration procedure even provides improvement with respect to the complete-sample 

performance; on the other hand, when the difference between the relationships in respondent and 

nonrespondent sub-populations become marked, the presence of substantial bias deteriorates the 

performance of calibration estimator with relative errors 3-5 times greater that those achieved with 

complete samples (see Table 3); 

- the SYG/HT variance estimator always provides underestimation of the relative standard error as 

opposite to jackknife estimator which proves to be invariably conservative; both downward and 

upward bias tend to reduce as RP and FEV increase: for RP equal to 90% and FEV equal to 0.9 

both the estimators are approximately unbiased (see Table 4);  

- the coverage of confidence intervals well approximate the nominal level only when the 

relationship among interest and auxiliary variable is similar in respondent and nonrespondent sub-

populations (SL1) and for respondent percentages of 60 and 90%; in the other cases (SL2 and SL3), 

the presence of bias skews the confidence intervals entailing disastrous coverage losses; intervals 

achieved using the jackknife variance estimator invariably perform better than those achieved using 

SYG/HT estimator (see Table 5). 

 

6 . Final remarks 

The design-properties of the calibration estimation are approximated considering the unit 

nonresponse as a fixed characteristic, just like the values of interest and auxiliary variables, a 

situation which is likely to occur in enviromnental surveys. On the basis of the approximate 
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expression of the variance of calibration estimator, three variance estimators were attempted using 

the SYG, HT and jackknife criteria. Obviously all these estimators are likely to provide reliable 

accuracy evaluations and confidence intervals only when nonresponse bias is small. The results of 

simulation study largely confirm these considerations. In presence of a large bias, which is mainly 

generated when different relationships among interest and auxiliary variables hold in respondent 

and nonrespondent sub-populations, any inference (estimation, estimation of accuracy and 

confidence interval construction) turns out to be completely unreliable. Thus, attention should be 

paid in the selection of auxiliary variables which should be chosen not on the basis of their 

capability to explain the interest variable (which can only be checked on the respondent population) 

but rather on the basis of the stability of their relationship with the interest variable in respondent 

and non-respondent sub-populations. In this framework, the choice of auxiliary variables should 

then be mainly guided by practical considerations and previous experiences. Under small bias and 

small amount of nonresponse, simulation results prove the effectiveness of NCW: the calibration 

estimator compares well with (and in some situations even improves over) the complete-sample HT 

estimator while the jackknife variance estimator is moderately conservative providing confidence 

intervals with good coverage. Then, conditional to small biases, NCW approach seems to be 

especially appealing in environmental surveys, where nonresponse percentages are usually be 

smaller than 5%.   
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Table 1. Percentage values of approximate relative bias of calibration estimator compared with the 

actual values for samples of size 50n  selected from 81 populations of 1,000 obtained from each 

combination of RP, SL, FEV and MC.  

 

   RP = 30% RP = 60% RP = 90% 

SL FEV MC ARB-CAL RB-CAL ARB-CAL RB-CAL ARB-CAL RB-CAL 
         

0 0 -2 0 3 0 0 
0.5 0 3 0 4 0 1 

0.3 

0.9 0 -7 0 1 0 1 
0 0 -2 0 1 0 0 

0.5 0 -2 0 -1 0 0 
0.6 

0.9 0 1 0 1 0 0 
0 0 1 0 0 0 0 

0.5 0 0 0 0 0 0 

SL1 
 

 

0.9 

0.9 0 1 0 0 0 0 
         

0 -26 -26 -17 -19 -5 -4 
0.5 -24 -30 -17 -20 -4 -2 

0.3 

0.9 -25 -28 -16 -17 -5 -3 
0 -27 -27 -16 -15 -4 -5 

0.5 -27 -26 -16 -17 -5 -4 
0.6 

0.9 -26 -27 -16 -16 -6 -5 
0 -26 -26 -16 -17 -5 -5 

0.5 -24 -25 -17 -17 -5 -5 

SL2 

0.9 

0.9 -24 -24 -17 -17 -4 -5 
         

0 -49 -50 -36 -39 -14 -14 
0.5 -50 -50 -37 -37 -14 -12 

0.3 

0.9 -57 -46 -37 -41 -14 -14 
0 -50 -51 -37 -38 -12 -12 

0.5 -51 -50 -37 -37 -12 -14 
0.6 

0.9 -50 -55 -41 -39 -13 -15 
0 -51 -50 -38 -39 -13 -13 

0.5 -51 -51 -37 -37 -12 -12 

SL3 

0.9 

0.9 -51 -52 -40 -39 -13 -13 

 


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Table 2. Percentage values of approximate coefficient of variation of calibration estimator 

compared with the actual values for samples of size 50n  selected from 81 populations of 1,000 

obtained from each combination of RP, SL, FEV and MC.  

 

   RP = 30% RP = 60% RP = 90% 

SL FEV MC ACV-CAL CV-CAL ACV-CAL CV-CAL ACV-CAL CV-CAL 
         

0 12 14 10 10 8 8 
0.5 16 19 12 13 9 10 

0.3 

0.9 18 21 13 14 10 11 
0 7 8 5 5 4 4 

0.5 9 10 6 7 5 5 
0.6 

0.9 10 12 7 8 6 6 
0 3 3 2 2 2 2 

0.5 3 4 3 3 2 2 

SL1 
 

 

0.9 

0.9 4 5 3 3 2 2 
         

0 10 11 8 8 7 8 
0.5 13 15 10 11 10 10 

0.3 

0.9 14 15 11 11 9 10 
0 5 6 5 5 4 4 

0.5 7 8 5 6 5 5 
0.6 

0.9 7 8 6 6 5 5 
0 2 2 2 2 2 2 

0.5 3 3 2 2 2 2 

SL2 

0.9 

0.9 3 4 2 3 2 2 
         

0 6 7 6 6 6 7 
0.5 7 8 7 7 9 9 

0.3 

0.9 10 12 8 8 9 9 
0 4 4 3 3 4 4 

0.5 5 5 4 4 5 5 
0.6 

0.9 5 5 4 5 5 5 
0 2 2 1 1 2 2 

0.5 2 2 2 2 2 2 

SL3 

0.9 

0.9 2 2 2 2 2 2 

 


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Table 3. Percentage values of relative root mean squared error of calibration estimator compared 

with the coefficient of variation of the complete-sample Horvitz-Thompson estimator for samples of 

size 50n  selected from 81 populations of 1,000 obtained from each combination of RP, SL, FEV 

and MC.  

 

   RP = 30% RP = 60% RP = 90% 
SL FEV MC RRMSE-CAL CV-HT RRMSE-CAL CV-HT RRMSE-CAL CV-HT 

         
0 14 9 10 9 8 9 

0.5 19 11 14 11 10 11 
0.3 

0.9 22 13 14 12 11 12 
0 8 6 5 6 4 6 

0.5 10 8 7 8 5 8 
0.6 

0.9 12 9 8 9 6 9 
0 3 5 2 5 2 5 

0.5 4 6 3 6 2 6 

SL1 
 

 

0.9 

0.9 5 7 3 7 2 7 
         

0 28 11 21 11 9 10 
0.5 34 14 23 14 10 13 

0.3 

0.9 32 16 21 15 10 12 
0 27 9 16 8 7 7 

0.5 27 10 18 10 7 9 
0.6 

0.9 28 12 17 12 7 10 
0 26 7 17 7 5 6 

0.5 25 9 18 8 5 7 

SL2 

0.9 

0.9 24 10 17 10 5 8 
         

0 51 15 40 16 16 13 
0.5 51 18 38 18 15 16 

0.3 

0.9 47 22 42 21 17 18 
0 51 12 38 12 13 9 

0.5 51 13 37 14 15 11 
0.6 

0.9 56 14 39 16 16 13 
0 50 10 39 11 13 9 

0.5 51 12 37 13 12 10 

SL3 

0.9 

0.9 52 13 39 13 13 11 


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Table 4. Percentage values of the expectations of Sen-Yates-Grundy and jackknife estimator of 

relative standard error of calibration estimator compared with the actual values of relative root mean 

squared error (in parenthesis) for samples of size 50n  selected from 81 populations of 1,000 

obtained from each combination of RP, SL, FEV and MC.  

 

   RP = 30% RP = 60% RP = 90% 

SL FEV MC ERSE-SYG  ERSE-JACK ERSE-SYG  ERSE-JACK ERSE-SYG  ERSE-JACK 
            

0 12 (14) 16 9 (10) 10 8 (8) 9 
0.5 16 (19) 20 12 (13) 13 9 (10) 10 

0.3 

0.9 20 (21) 26 13 (14) 14 10 (11) 11 
0 7 (8) 9 5 (5) 5 4 (4) 4 

0.5 9 (10) 12 6 (7) 7 5 (5) 5 
0.6 

0.9 10 (12) 13 7 (8) 8 6 (6) 6 
0 3 (3) 4 2 (2) 2 2 (2) 2 

0.5 3 (4) 4 3 (3) 3 2 (2) 2 

SL1 
 

 

0.9 

0.9 4 (5) 5 3 (3) 3 2 (2) 2 
            

0 13 (11) 17 10 (8) 11 8 (8) 8 
0.5 18 (15) 24 13 (11) 14 10 (10) 10 

0.3 

0.9 18 (15) 24 13 (11) 14 10 (10) 10 
0 7 (6) 9 5 (5) 6 4 (4) 4 

0.5 9 (8) 11 6 (6) 7 5 (5) 6 
0.6 

0.9 9 (8) 12 7 (6) 8 5 (5) 6 
0 3 (2) 4 2 (2) 2 2 (2) 2 

0.5 3 (3) 4 3 (2) 3 2 (2) 2 

SL2 

0.9 

0.9 4 (4) 5 3 (3) 3 2 (2) 2 
            

0 12 (7) 16 10 (6) 11 8 (7) 8 
0.5 15 (8) 20 11 (7) 12 10 (9) 10 

0.3 

0.9 19 (12) 24 13 (8) 14 11 (9) 11 
0 7 (4) 9 5 (3) 6 4 (4) 4 

0.5 9 (5) 12 6 (4) 7 5 (5) 6 
0.6 

0.9 10 (5) 13 7 (5) 8 6 (5) 6 
0 3 (2) 4 2 (1) 2 2 (2) 2 

0.5 4 (2) 5 3 (2) 3 2 (2) 2 

SL3 

0.9 

0.9 4 (2) 5 3 (2) 3 2 (2) 2 


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Table 5. Percentage values of the actual coverage of Sen-Yates-Grundy and jackknife confidence 

intervals with nominal coverage of 95% for samples of size 50n  selected from 81 populations of 

1,000 obtained from each combination of RP, SL, FEV and MC.  

 

   RP = 30% RP = 60% RP = 90% 
SL FEV MC CVRG-SYG CVRG-JACK CVRG-SYG CVRG-JACK CVRG-SYG CVRG-JACK 

         
0 88 95 92 94 93 94 

0.5 88 94 92 94 93 95 
0.3 

0.9 86 93 93 95 94 95 
0 88 94 92 94 93 95 

0.5 88 94 92 94 94 95 
0.6 

0.9 88 94 92 94 94 95 
0 89 95 93 95 93 95 

0.5 88 94 92 94 94 95 

SL1 
 

 

0.9 

0.9 87 94 93 95 94 95 
         

0 25 39 34 41 90 92 
0.5 33 51 47 55 93 95 

0.3 

0.9 40 56 62 68 92 93 
0 2 6 9 13 72 76 

0.5 4 11 11 15 85 87 
0.6 

0.9 6 15 25 32 82 84 
0 0 0 0 0 18 21 

0.5 0 0 0 0 31 35 

SL2 

0.9 

0.9 0 0 0 0 40 44 
         

0 0 0 0 0 39 43 
0.5 0 1 0 0 69 72 

0.3 

0.9 2 7 0 0 65 69 
0 0 0 0 0 8 10 

0.5 0 0 0 0 14 16 
0.6 

0.9 0 0 0 0 16 18 
0 0 0 0 0 0 0 

0.5 0 0 0 0 0 0 

SL3 

0.9 

0.9 0 0 0 0 0 0 

 

 






