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Abstract - This article discusses some modifications to non arbitrage models described by an Ornstein-
Uhlenbeck latent process and an affine dynamic system. The empirical analysis refers to Euribor rates, due to the 
leading role they have in financial markets, but also to help the replicability of the results due to their 
accessibility and gratuitous nature. The benchmark model belongs to the class of Affine Term Structure Models 
(ATSM), whom owe their popularity to the success of Duffie and Kan (1996). Nodes have been calculated 
recursively through the use of the Kalman filter, and hence have the corresponding bayesian interpretation. The 
proposals differ from traditional models on some constraints posed on certain model specifications that allow to 
identify different aspects of the term structure. Through a clear identification of the type of contribution that each 
factor can undertake, it is possible to define probabilistic structures with minimal residuals purified from the 
dominant systematic residues visible in classic model residuals. Term Structure properties seem to be be 
identified with greater precision, which in the authors opinion justifies the relaxation of the hypothesis due to the 
additional constraints. The empirical analysis tries to convey such findings, and reminds of possible evolving 
paths of this line of work, such as a different specification of the transition process or the relaxation of linear and 
gaussian nature.  
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1 Introduction

The necessity to extract information from the ever growing amount of finan-
cial data has generated one of the most prosperous literatures within econometrics.
New tools have been developed, some objectives have been reached, but difficul-
ties persist whom require the evolution of models to higher levels of detail and
complexity, in order to allow the comprehension of links between different inter-
est rates, hence confirm or exclude the behaviour of agents in this sector. Interest
rates are crucially important as they are often considered a barometer of the cor-
rect functioning of an economy, as they describe the intertemporal evaluation of
investments through the monetization of the presents opportunity cost with re-
spect to the future. Hence it is unrefusable that interest rates have an impact on
the economy globally and indiscriminately.

The study of interest rates consists in the longitudinal analysis of various time-
series, each determined by a specific maturity date. If the time-series were unre-
lated, the best instrument to analyse the variation of interest rates would probably
be some model similar to aVAR1, however this is clearly unrealistic as it would
imply that the variation of a three month interest rate would not be taken into
the economic decision making of financial agents concerned with a four month
interest rate. The VAR model does not incorporate a priori information that is a
known component of the logical framework, and the theory necessary to analyse
interest rates is concerned and has as primary objective to correctly model such
information. The correct probabilistic model is hence the one that is most restric-
tive, hence that excludes results incongruous with the theory, but is simultaneously
sufficiently flexible to recognize all the complexities of a term structure, adapting
to a variety of empirical observations. To understand which solutions must be
excluded it is mandatory to comprehend why financial markets may be seen as
efficient, and how this may exclude profits in absence of risk. The exclusion of
these solutions defines non-arbitrage models2, that integrate the notion of efficient
markets3.

Interest rates however are not only constrained to market efficiency, but also
have a plausible interval of reference, which defines extreme values that are in-
compatible with the functioning of the economic system as we know it to be. The
limits of this interval are unclear, and a subject of research in their own right,

1 Vector Auto Regression (see [30]).
2 see [5]
3 see [13]
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as periods of hyperinflation have reported very high interest rates due to the fact
that purchasing power is the leading force behind utility maximization. However,
these periods were highly dysfunctional, as double digits interest rates strain the
economic functioning in various ways, hence do not last for long. What is gener-
ally recognized is that there are “common interests”, promoted in primis by central
banks, that require a stable interest rate and possibly an optimal long term value.
This is the conceptual basis that justifies the hypothesis that the interest rate is a
process subject to mean reversion. This means that although the process is dis-
rupted by shocks of various nature, it is controlled by powers that restore its value
to the optimal one for the economic system. A model that does not account for
this additional information, would not exploit the a priori information, and con-
sequently would not allow a credible probabilistic structure as one reaches values
where these forces act, setting positive probabilities to the impossible states.

As it will be shown, the hypothesis underlying the classical model that de-
scribe the a priori properties of the economic system have been tested4 as is indi-
cated by the greater than average residuals during the last period. The information
that we can extract from the past will necessarily be predictive of future economic
developments, and can be useful to inform operators or identify in advance eco-
nomic malfunctioning. The empirical analysis explored in the thesis of which
this article presents the main results5, compares different ATSM and evaluates the
compromise between the adaptation to the available data and the complexity of
the model. First varying the number of latent factors, which has not been here
reported, and in second place through the proposal of original measures to iden-
tify the known different components of the term structure such as the level the
gradient and the curvature.

The connection between the flexibility of the model to the empirical data will
give a measure of the credibility of the working hypothesis and the role of the
variations of the interest rates. In these models we assume that a known num-
ber of latent factors evolves through a specified relationship (transition equation)
contaminated by gaussian disturbances. From such latent factor we can determine
a new functional relationship that will provide estimates of the observed factor
which are then compared to the observations. In other words we are estimating
the signal in the data, which has been successfully developed in engineering under
the name of Optimal Filtering.6 However, as we have said interest rates require the

4 especially during the financial crisis when liquidity was not guaranteed
5 see [31]
6 see [18]
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incorporation of all the limitations expressed by financial mathematics, excluding
the possibility of arbitrage within the process. This determines a relationship be-
tween the term structure and the latent variable. Through such hypothesis we are
enriching the informative context regarding the nature of the underlying process,
introducing the notion of efficient financial markets, as the necessary hypothesis7

seem plausible at least for a first approximation of the phenomenon. ATSM are
an extremely flexible class of models, subject to restrictive working hypothesis.
The parametric space allows us to capture nearly all the variation of the evolution
of the term structure, which is a critical requirement in order to appear realistic
and consequently able to simulate alternative scenarios. Parameters tend to have
a clear mathematical interpretation, which often becomes a clear economic inter-
pretation. It allows us to incorporate or test economic theories, such as a long term
mean attraction point or the limited interval of variation. Multifactor extensions
extend the number of latent variables, hence allowing for a greater degree of un-
certainty that guides the evolution of the data, seem substantially more realistic.
The mathematics are slightly more complicated, but conceptually the extension is
straightforward and intuitive, and suggests important guidelines for future devel-
opments.

7 hypothesis such as negligible transaction costs or perfect information
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2 The underlying logic

When we refer to a specific statistical model, we refer to a set of rules that specify
the probabilistic context. The observations can be seen as the input from which
we estimate the parameters that are most likely to have determined such data,
given the probabilistic structure. This can be obtained through the minimization
of a loss function that weights appropriately the discrepancies between the theo-
retical model and the dataset. What follows is a brief description of the working
assumptions necessary to the class of ATSM.

Graphical interpretation: the markovian process

The first step necessary in the definition of ATSM is the specification of the dy-
namics of the term structure through one or more factors. These generic factors
reflect the underlying uncertainty that constructs the yield curve, hence the term
structure. The factors can be deterministic (known functions of time), adaptive
processes (as GDP or CPI) or latent variables. In this analysis we will limit the
scope to latent variables, excluding the interaction of other variables which can
be later introduced8. The independence relations between these variables can be
described by a diagram, in which we postulate the relation of causality by limiting
the analysis to Direct Acyclical Graphs (DAGs). The simplest one factor model
can be described by a Hidden Markov Model (HMM) with a single uncertainty
factor, from which spawns at each temporal instant a single node of observed
variables9. This node has the dimension of the number of observed time-series,
and the latent factor can be extended to multiple dimensions with vector nota-
tion. Once we have specified the independence structure, such as to mirror the the
complexity of the latent structure that generated the data, it is necessary to spec-
ify the infinitesimal dynamics of transition which determine how the data evolves
through time. The terms “state”, “node” and “variable” are used interchangeably.

Local dynamics: the latent variable

Within the family of ATSM there are many possible specifications, many of which
have as defining characteristic the formulation of local dynamics postulated over
the latent variable that defines the interest rate. These variables are often identified
with the notation {x(t)}.

8 see [2]
9 see figure 1
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The dynamics can be expressed as Stochastic Differential Equations (SDE)
whom describe the asymptotic and conditional probability distribution, hence the
probabilistic path. The basic idea is extendable to independent multifactor models,
and all that is needed to take into account multidimensional latent factor spaces is
a change in notation. The fundamental working hypothesis can be expressed as:

1. The stochastic process of the interest rate is markovian10.

2. The interest rate is guided by a latent variable through a known function.

3. The latent variable process is describe by a SDE as follows:

dx(t) = αdt︸︷︷︸
dri f t

+βdW (t)︸ ︷︷ ︸
di f f usion

(1)

In this case {α,β} are generic functions {α(r(t), t),β (r(t), t)} and dW (t) is
the first derivative in t of a Wiener process defined on a generic probability space
(Ω, F , P). The relationship between these two infinitesimal quantities identifies
the functional form of {α,β} and how such components influence the drift and
the diffusion of the stochastic process.

Through such specification we can evaluate an expected value and a variance
which can be expressed by parameters. We can choose functional forms that sim-
plify calculations and that are able to bind the probabilistic structure to properties
derived from economic theory. We can guarantee that the interest rate will have
an attractor point, whom will maintain the evolution of the process within credible
intervals and that does not allow impossible realisations. One important property
is a limited asymptotic variation, as in real life there are powers that monitor and
guarantee a the functioning of the economic system through monetary policies.

A�ne transformation: the observed variable

As we try to model the term structure, we limit our analysis to models whom are
affine in nature11 due to the important computational simplifications. Such lim-
itation allows us to obtain an explicit solution, and hence focus on the issue of
estimating correctly the parameters. When dealing with models as large as twelve

10 This is justified by the efficient market hypothesis, which states that all past information is
irrelevant to future forecasting given the present state

11 Affine Transformation: F : ℜn→ℜ : ∃
{

f (x) = a+b>x
}
∀x ∈ℜn;∀a ∈ℜ;∀b ∈ℜn
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dimensions likelihood computation becomes increasingly complex, and may re-
quire Markov-Chain Monte-Carlo (MCMC) tools that however are not discussed
here.

ATSM are completely specified by the instantaneous interest rate. This is pos-
sible through no-arbitrage reasoning, which is in some way similar to the deriva-
tion of the Black-Scholes equation, as it obtains a Partial Differential Equation
(PDE) from a SDE through the use of Ito’s lemma. The PDE solution expresses
the function that determines the price of Zero Coupon Bond, hence links the latent
variable to the term structure.

ATSMs are non-arbitrage models such that the spot interest rate is an affine
function of the vector of latent variables12:

rτ
t = a(τ)+b(τ)>xt (2)

rt = a+B>xt (3)

Data interpretation

However the latent variable is not directly visible from data, i.e. it is not empiri-
cally recorded, hence we must compare the data with the observed variable {y(t)}
and link such variable to {x(t)} through a specific functional form. This functional
form is the crucial node through which we introduce all the non-arbitrage hypoth-
esis, and trough which we filter data through a scheme that takes into account the
impossibility of solutions excluded by non-arbitrage boundaries.

We must extract the information pertinent to latent variables from the real-
ization of observed variables, a field of research intensely developed in a very
different context, where algorithms have been studied in order to optimize the ex-
traction of information sent through a disturbed channel. The use of the Kalman
Filter (KF)13 to estimate the expected path of latent variables allows the use of
state space notation, under which gaussian simplifying assumptions guarantee im-
portant asymptotic results and explicit solutions.

From a statistical point of view, the use of the KF is of great importance as it
corresponds to a specific recursive bayesian estimator, hence it provvides a com-
plete description of prior, likelihood and posterior distribution from which we can
conduct a bayesian analysis. From a theoretical stand the gaussian framework

12 τ = T − t
13 see [4]
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gives optimal estimates from more then one point of view. The updated observed
variable estimates are Maximum A Posteriori (MAP) estimates and also Maximum
Mean Square Error (MMSE) as we are dealing with a symmetric distribution.

This model hopes to shed light on the first steps towards the development of
models that are able to relax gaussianity assumptions through the substitution of
the KF with the Particle Filter14 (PF). However the PF does not have the elegance
of an explicit solution, and needs Monte Carlo (MC) simulations which are com-
putationally demanding and aggraviate parameter estimation difficulties. Through
the use of market efficiency to specify the transition equation, and non-arbitrage
theoretical fundamentals to define the measurement equation, all that is left to es-
timate the parameters is to arbitrary initialize the maximization of the likelihood
function.

3 The classic model

The exclusion of arbitrage possibilities justifies the use of a PDE in substitution
of the SDE that defines the evolution of the latent variable, by constructing a
deterministic portfolio, hence risk-less, obtained through the investment of bonds
with different maturities.

A risk-less portfolio will necessarily return a risk-less interest rate, to avoid
risk-less profit strategies. Returns above the risk-less rate must then be justified
by a constant value that relates the return proportionally to the amount of risk
undergone. This constant is the market price of risk, and can be interpreted as
the Radon-Nikodym derivative that allows the change in measure from the real
measure to the risk neutral measure.

The instantaneous spot rate can be specified by the following SDE:

dxt = a(x, t)dt +b(x, t)dWt (4)

Applying Ito’s lemma we obtain the following results:

dP(t,T,rt) = [Pt +
1
2

Prrb(x, t)2 +Pra(x, t)]dt +[b(x, t)Pr]dWt (5)

This is a SDE with drift parameter Pt +
1
2Prrb(x, t)2+Pr +a(x, t) and diffusion

coefficient b(x, t)Pr. The revolutionary contribution of Vasicek transforms this
SDE into a PDE that is independent of the stochastic component expressed by the

14 see [8]
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Wiener process. Similarly to the Black-Scholes model, one can have a portfolio
of bonds able to replicate the return of a deterministic portfolio.

The deterministic portfolio

Let {V} be the value of a bond portfolio whose underlying assets have maturities
and current prices as follows {T1;T2} {P1(t,T1);P2(t,T2)}. If the weights that
specify the composition are {u1,u2}. The instantaneous return is then expressed
as:

dVt

dt
= u1

dP1(t,T1)

P1(t,T1)
+u2

dP2(t,T2)

P2(t,T2)
(6)

By selecting appropriate weights we can annihilate the stochastic component,
and once we substitute such weights in the above equation, we obtain the follow-
ing risk-less portfolio1516:

dVt

dt
= (µ2

σ1

σ1−σ2
−µ1

σ2

σ1−σ2
)dt (7)

Through non-arbitrage logic and mathematical substitutions we can obtain the
following equation that links the market price of risk17 to the instantaneous drift,
diffusion coefficient and risk-less interest rate:

µ− rt = σλt (8)

This notation highlights how the market price of risk is proportional to the
return in excess of the risk free rate, for all underlying maturities, and the mul-
tiplicative constant is given by the measure of risk. Similarities with the Capital
Asset Pricing Model are noticeable18, where the expected return is linked to the
risk of a share.

15 µi =
Pi,t+

1
2 Pi,rrb(x,t)2+Pi,ra(x,t)

Pi(t,Ti)
∀i ∈ [1,2]

16 σi =
b(x,t)Pi,r
Pi(t,Ti)

∀i ∈ [1,2]
17 λt ,

(µ1−rt )
σ1

= (µ2−rt )
σ2

= (µ−rt )
σ

18 see [25]
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The a�ne model

In this analysis we are concerned exclusively with ATSM, and in particular with
a generalization of the Vasicek model19, although it could be extended to the al-
ternative Cox, Ingersol and Ross (CIR) model20, hence we will proceed with a
generic specification and introduce the Vasicek specification later. ATSM rely on
restrictive hypothesis, that are however increasingly flexible as we allow the num-
ber of factors to grow. The class of affine model includes all models that can be
expressed as follows:

P(τ) = eA(τ)−B(τ)r (9)

We can identify many different specifications, many of which share various
desirable analytical properties, that simplify the solution of the PDE and often
allow an explicit solution. This solution will link the state variable to the price of
the asset, in a way that the term structure is completely specified by the interest
rates through the exclusive use of the present state variable.

Having specified equation(9) it is now possible to compute the necessary par-
tial derivatives to resolve the PDE:

(−A′(τ)+B′(τ)r)P(τ)−(a(x, t)−b(x, t)λt)B(τ)P(τ)+
b(x, t)2

2
B2(τ)P(τ)−rtP(τ)

.
= 0

(10)

−A′(τ)− (1−B′(τ))r− (a(x, t)−b(x, t)λt)B(τ)+
b(x, t)2

2
B2(τ)− rt = 0 (11)

From which we can obtain through the introduction of generic affine specifi-
cations21:

(
−A′(τ)−α1B(τ)+

1
2

β1B2(τ)

)
−
(

1−B′(τ)+α0B(τ)− 1
2

β0B2(τ)

)
rt = 0

(12)
From (12) we can verify that the only non contradictory solution for all values

of rt and τ is the case in which the following system of ODE is coherent:

19 see [32]
20 see [9]
21 µ̃ , (a(x, t)−b(x, t)λt) = α0r+α1; σ̃ , b(x, t) =

√
β0r+β1
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−A′(τ)−α1B(τ)+
1
2

β1B2(τ)
.
= 0 (13)

−B′(τ)+α0B(τ)− 1
2

β0B2(τ)
.
=−1 (14)

We must also introduce the boundary value, as we know that the underlying
argument is a ZCB and that the value at maturity is by definition unitary.

P(T,T ) = eA(0)−B(0)r = 1⇒ A(0) = B(0) = 0 (15)

The Vasicek model

At this point it is convenient to specify the explicit functional form of µ̃ and σ̃ .
Following the Ornstein-Uhlenbeck specification:

µ̃ , k
(
θ − rt

)
; σ̃ , σ (16)

θ = θ − σλ

k
(17)

Such that the underlying process is defined as:

drt = k(θ − r)dt +σdWt (18)

In this case, after some tedious mathematics, the term structure is completely
defined as:

P(τ,r) = expA(τ)−B(τ)r (19)

A(τ) =
γ (B(τ)− τ)

k2 − σ2B2(τ)

4k
(20)

B(τ) =
1
k

(
1− exp−kτ

)
(21)

γ , k2
(

θ − σλ

k

)
− σ2

2
(22)
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The Vasicek model is a model in which the instantaneous interest rate follows
the continuous version of the autoregressive process. This link can be shown by
using an alternative notation for which4t = 1 identifies an autoregressive model.

4rt = k (θ − rt−1)4t +σ4zt (23)

rt = kθ − (1− k)rt−1 + εt (24)

The time interval need not be discrete as in the difference notation above. We
can interpret the equation in continuous terms by letting the time interval tend to
an infinitesimal amount. Under the notation or which 4zt ∼ N(0,4t) we have
the following already mentioned equation:

drt = k (θ − rt)dt +σdWt (25)

The θ parameter identifies the value to which the process converges in the
long term, k identifies the speed of convergence to such value and σ is a measure
of the instantaneous volatility. The only parameter not specified in the transition
equation is the market price of risk λ , as it models the link across maturities.

Similarly to the autoregressive process, k = 0 identifies a random walk process
which is memoryless and does not converge, low values identify strong persis-
tence in the process, and high values a rapid return to the asymptotic distribution.
The main limitations of this model are given by the fact that it does not exclude
negative interest rates and volatility is independent of the value of the interest rate.
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4 The original contribution

Additivity

The main contribution is in the specification of some constrained models that take
into account previous thoughts and considerations, and attempt to correct certain
aspects which are not treated in the traditional model. In particular:

1. A latent factor is most useful if it identifies a certain aspect of reality, hence
it is a synthetic measure of a certain type of information. In order to differ-
entiate and specialize they must be defined in different ways. Constrained
factor models contribute with an original specification of such definition.

2. Affine models are fundamental blocks to many successive models, how-
ever the affine characteristic is inherently a limitation to the identification
of non linear characteristics such as the curvature. The models here pre-
sented allow a partial relaxation of this hypothesis, in order to identify the
third factor.

Additivity -through factors- in affine models is one of the most intuitive and use-
ful properties. It allows the decomposition of any observed factor in the sum what
we will call “contributions”, hence we can observe it at any time t as the sum of
individual parts. These contributions can be either a constant benchmark or the
product between a latent factor and the corresponding multiplicative systematic
component. The additive component can be seen as the constant contribute over
which each factor manifests its additive effects. There could be a further decom-
position of the additive effect, although it has no macroscopic meaning of interest.

The latent factor has a direct impact on the corresponding contribution. If we
artificially half the first latent factor it will ceteris paribus half the effect of the first
contribution on the observed factor. Clearly the same is true for the multiplicative
component. We can then invert the reasoning and consider the argument of main
interest the contribution, not the latent factor or the multiplicative component, as
it is the sum of the contributes that constructs the observed factor, and conse-
quently directs the choice of parameters depending on the discrepancies with the
observations.

If we multiply the multiplicative component by a some value and the latent
factor by it’s inverse, the effects will cancel out and we will obtain the same resid-
uals. We must then comprehend that the scale of reference of a factor can be
counterbalanced by a flat multiplicative component. The optimal choice of pa-
rameters is composed of two parts, the discrepancies between the observations

12



and sum of the contributions and the specification of the properties of the theoret-
ical process. The first is the argument of evaluation and the second is the method
of evaluation. The constrained models want to artificially separate these parts, in
order to better comprehend these aspects by constraining each factor to a single
effect form a contribution stand, even if it is left free from a distribution property
point of view.

The idea proposed to constrain the multiplicative components is basic. In the
two factor model the multiplicative component of the second factor is constrained
by translation to have mean zero. With such procedure any choice of parameters
will uniquely specify “zero mean effects”. In the three factor model the curvature
is accentuated through a second degree function compensated for level and slope.
The third factor will then have a comparative advantage to describe the curva-
ture in the term structure. These modifications not only clarify the identity and
the importance of the latent factors, but also yield lower residuals which means
that the structures seem to be significantly present in the data generating struc-
ture. This new specification allows the latent factors to keep the same transition
equation, hence have the same asymptotic and conditioned properties. The first
fifty days are reported22, and visualise the decomposition of the observed factor
in first contribution, second contribution, third contribution, additive contribution
(or component), observed factor and observation.

One can also see the evolution of the four contributions23 (respectively addi-
tive, level, slope and curvature) on the whole period of study, while underneath
the same information is depicted deprived of the temporal dimension in order to
evaluate the magnitude and interval of variation of each contribution. The color
gradation allows to identify the temporal dimension more clearly, while in the cor-
responding collapsed graph it is in rotation through time, hence does not identify
any particularly useful information.

Latent factors

Having clarified the aim of the constrained models we report the results obtained.
A complete comparative analysis of the three traditional models (one, two and
three factors) with the two constrained models (two and three factors) is fully dis-
closed in the original thesis. In such analysis the interest rate “level” identification
is evident in all models, but while in the traditional models the remaining varia-
tion is divided through the factors, in the constrained models the factor specificity

22 see figure 5
23 see figure 6
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allows each one to identify the optimal parameters that describe each type of vari-
ation. The effects of such a modification on the non-arbitrage assumptions are not
trivial, as the contribution of the second factor adapts to a second sub-problem
unresolved by the first factor, in which the original assumptions may not apply.
Hence we tend to evaluate the interpretation of the results and the minimization of
the residual discrepancies over the importance of the underlying assumptions of
which these models are an extension and possibly a violation. The factors can rep-
resent a measure of the underlying causes that motivate financial agents decision
making, which can themselves have a trend or represent a process with intrinsic
scientific interest.

Residuals

Residuals in constrained models are significantly reduced with respect to previous
models24. This reduction is less evident once one incorporates present observa-
tion information, i.e. once the latent factor is updated with the present informa-
tion, however the minimization of residuals once present information is available
has clearly a different interpretation, and has not been pursued. In the two fac-
tor model residuals are small and zero-centered25. This reduction could have a
negative impact on the thick tail problem, typical of financial data, by endanger-
ing the gaussian hypothesis. However in this case it is of no major concern, as
the residuals are zero-centered and the error persistence in the one factor model
has been eliminated26. The mean residual across maturities is not correlated with
the adjacent time intervals. However, as the third factor has not been introduced
yet, one can notice that the minimum and maximum interest rates maturity tend
to simultaneously have lower (o higher) values then the intermediate maturities,
which would suggest a certain curvature of the residuals across maturities.

In the constrained three factor model the residuals have substantially improved
with respect to all other models27. The residuals are smaller and one cannot
identify any systematic pattern. The third pattern -responsible for the change in
curvature- seems to be sufficient to describe all other aspects that could have been
covered by other additional factors, such as change in symmetry or bimodal struc-
tures. The variability is proportional to maturity except for particularly informa-
tive time periods during which the short term rate shows unusual variation. The

24 most fitting traditional model in figure 2
25 see figure 3
26 here not shown
27 see figure 4
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residual error is not constant through time, as specified in the model, which was
foreseeable as various monetary policies have been implemented during the time
frame. An extention could model dynamical parameters in order to measure the
dynamics of a shock on the monetary system.

The fit of a model is evaluated by weighing the residuals with respect to
the generating probabilistic structure, hence lower residuals contribute caeteris
paribus to support the evidence in favour of a certain model. Of equal importance
to a correct specification of a model is the complete extraction of systematic vari-
ation from the observations and hence residuals with no recognizable structure.
Probabilistically linked residuals through a systematic distortion clearly violate
one or more working hypothesis.

However in this specific case the evidence of the model not perfectly adapting
to the model in the last time frame is actually a element of support to the model,
as the time interval coincides with the housing bubble burst and the financial crisis
which is recognized as an anomaly, during which markets were no longer efficient
due to liquidity shortage in inter-banking loans. The model in this case is an
indicator of the system’s correct functioning, hence the heavy tailed residuals are
of more interest then coherent data that does not show or take into account this
anomaly.

Another particularly interesting time interval is given by the first fifty days
from the birth of the Euribor. One can immagine that the creation of a compli-
cated system as the inter-banking market on a common european currency -which
did not physically exist yet- would not perfectly adapt to a theoretical model. In
these days the yield curve appears inverted, which is rare as the interest rate on
long maturities are lower then on short maturities. Due to the uniqueness of this
period, which presents extreme characteristics that can be modeled with difficulty,
a comparison between the five different models has been focused on this particu-
lar aspect. The single factor model shows all its limits, not being flexible enough
to incorporate the information. Two and three factor models also find difficulties
on this time frame. On the other hand, the flexibility of the “constrained” models
allows to adapt to the unusual nature of the data separating such occurrence from
temporary, fluctuating, short lived shocks, as one would expect from a correctly
specified model.

Likelihoods

Discussing likelihoods in traditional models presents numerous difficulties, due
to the possible factor interactions and compensations, and the unclear effects of
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parameter variation. Contrary to traditional models, constrained models generally
have a simple interpretation through the recognition of the contribution to the
model. It is necessary to develop an in-depth study, on the parametr space and
how the likelihood varies through time, to identify the representation of a specified
factor by the choice of parameters, but also the choice of parameters that identify
a similar process. Then one could establish a clear parameter identification that
takes into account the implications on asymptotic and conditional properties of the
generating probabilistic process. Here we present a relatively convincing choice
of parameters, knowing that they are not conclusive and are only the tip of the
iceberg. It is also important to highlight that constrained models perform better
then traditional models not due to an ad hoc choice of parameters, but because
the increased flexibility caused by the relaxation of the underlying hypothesis,
allows to recognize the three distinct aspects of the dataset. To each of these
aspects correspond distinct economic behaviour. Parameters have been analysed
by observing contour-likelihoods in key parameter sets, however this is left as a
suggested future development. In tables 1 and 2 we report the chosen parameters
to allow a replication of the results, and a verification of likelihood calculations or
squared discrepancies.
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5 Conclusion

The comparison between the different models has animated many thoughts on
the nature of the data, but the author has chosen to give a coherent practical de-
scription instead of an a-priori theory on the properties that markets should have.
Regarding hypothesis coherence, graphic and a numeric measures are computed
throughout the time frame.

The traditional model with a single factor has appeared strongly inadequate,
mainly due to the systematic component left in the residuals. New uncertainty
sources are introduced with additional latent factors, which have immediately
showed a significant improvement, by reducing and in part eliminating the sys-
tematic component in the residuals. By allowing to synthesize the information of
the yield curve in two distinct values, these move inversely in such a way to pro-
duce a combined optimal description of the yield curve. In the traditional model
the third factor does not contribute substantially to the residual reduction, and
the meaning or utility of this new factor is not evident. The parameter overlap
make a unique identification of the process components very difficult, difficulty
that jointly with the parameter space search casts serious doubts on the effective
optimality of the results obtained.

The addition of constraints on the multiplicative components of the model re-
strain the contribution of each latent factor to a identifiable characteristic type of
the dataset. The factors are then able to find the uncertainty proportion of the
process that most reflects their comparative advantage on the others, hence con-
tributing in different ways on different parametric spaces. As the model is additive
each contribution is separable from the resulting observed factor, and can be used
as a measurement of the behaviour or preferences of the market agent. The spec-
ification of the contribution is then also a useful tool to steer optimal parameter
search. The optimality of the additive and multiplicative components on the resid-
uals -as discrepancies from the observations- must however be distinguished from
the probabilistic optimality of the underlying process -as asymptotic and condi-
tional process properties.

There is a clear relationship between the non-arbitrage hypothesis constrains
that limit the flexibility of what can be modeled, and the complexity of strategic
behaviour within financial markets. The affine structure allows to identify two
different aspects: the first is given by the specification of the additive and mul-
tiplicative components, the second is given by the probabilistic properties of the
underlying process described by the optimal parameter set. This decomposition
is presented as a useful tool for the understanding of interest rate interaction and
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yield curve dynamics.
Concluding, through the introduction of constrained factors one can allow ex-

tra flexibility to the model, however this implies a cost in the relationship between
the original processes and the model hypothesis. A radical specification of the
multiplicative component allows to constrain the contributions and better com-
prehend the dynamic evolution of the cross-section properties such as level, slope
and curvature.

18



6 Appendix
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Fig. 1: Space state in the linear gaussian case

Fig. 2: Traditional three-factor model residuals
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Fig. 3: Constrained two-factor model residuals

Fig. 4: Constrained three-factor model residuals
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Fig. 5: Observed factor decomposition
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Fig. 6: Contribution variation through time
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Parameters 1st factor 2nd factor

k 9.237048e-02 1.088308290
θ 6.799117e-02 -2.382250e-01
σ -4.105327e-03 -5.178111e-03
λ -5.014241e-02 2.085541110

∝−`(x|k,θ ,σ ,λ ) -232659.0
T

∑
t=1

(yt − ŷt)
2 0.009489443

Tab. 1: Optimized parameters: two factors

Parameters 1st factor 2nd factor 3rd facto

k 4.632832e-04 9.427588e-02 1.682986e-01
θ -2.503774e-01 3.813946e-01 -1.884196e-03
σ 3.948297e-03 -1.844981e-02 9.408281e-04
λ -2.569966e-02 3.285493e-01 -1.9680491752

∝−`(x|k,θ ,σ ,λ ) -234550.5
T

∑
t=1

(yt − ŷt)
2 0.005028747

Tab. 2: Optimized parameters: three factors
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