A statistical model for success probabilities
dependent on group behavior

Stefania Bartoletti, Daniela S. Monk

Working Paper n. 62, July 2006






A statistical model for success probabilities

dependent on group behavior.

Stefania Bartoletti
Ministero del Lavoro e delle Politiche Sociali

Direzione Provinciale del Lavoro di Siena, via della Sapienza, 29 - 53100 Siena

shartoletti@Qwelfare.gov.it, tel. 0347-8121555, fax: 0577-43448

Daniela S. Monk
Department of Biology & Program in Animal Behavior
Indiana University, Bloomington, IN 47405, USA

dmonk@wsu.edu

Dedicated to the memory of Prof. Bernhard Flury (1951 - 1999).



Abstract

A statistical model is presented to analyze the importance of each of several
attributes characterizing a successful individual over other individuals as subjects
of a ’choice’ situation. The developed model is not a generalized linear model, but
it 1s similar to a polytomous logistic model and treats binary data with covariates.
Maximum likelihood estimates are obtained using the Newton Raphson algorithm.
We present the application of the model to an analysis of parental care in birds.
Specifically we analyze variables related to the successful feeding of one young bird in
a nest. We show which conditions the design matrix must satisfy for the information
matrix to be positive definite, and under what transformation on the design matrix
the model is invariant.

The proposed model is applicable to behavioral studies that analyze the prob-
ability of a dichotomous response variable, when several players may affect the

outcome.

keywords: polytomous logistic regression model, multinomial model, maxi-
mum likelihood estimation, score function, information function, Newton Raphson

algorithm.



1. Introduction

Researchers in behavior frequently are interested in predicting the outcome of
social interactions between individuals. In some of these situations, exactly one
individual succeeds (wins) and the rest of the individuals do not succeed (loose).
Which of the participants turns out to be successful may be a direct consequence of
the interaction, as in competition, or may be indirectly determined by an outside
party (i. e. a RchooserS). Examples of these kinds of situations in animal behavior
include parental care, where parents choose which offspring to feed and mate selec-
tion, where females choose a mate among several rival males (e. g. Andersson and
Iwasa 1996, Kilner and Johnstone 1997). Frequently the goal of empirical studies is
predicting which individuals are succesful, and determining the relative importance
of the various attributes of the interactants that contribute to success. However,
traditional methods of analyzing these kinds of social interactions generally are not
designed to deal with a binary outcome variable, and do not simultaneously account
for the effect of multiple interactants and multiple explanatory variables. Here we
develop a statistical model to evaluate which characteristics are most important in
determining the successful individual among multiple interactants of a group. For
these situations, each individual j participating in the interaction can be described
by a vector of covariates x; which consists of attributes that are relevant to the suc-
cess in the interaction. The outcome of the interaction is dependent not only on the
covariate values associated with the successful individual, but also on the covariate
values associated with the other individuals involved. The specific example we are
analyzing here involves the characteristics of young birds in the nest that determine
which one is chosen to be fed by the parent. When a parent bird arrives at its nest,

it is greeted by several begging nestlings. At that instant the parent is faced with
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the choice of feeding one of many nestlings; this choice depends on the comparison
of characteristics of the nestling that ultimately receives food, with the character-
istics of all the nestlings that do not receive food. In the application of the model
we use a subset of the data obtained from detailed analysis of video tapes from a
long-term study on parental care of Mountain Bluebirds (Sialia currucoides)(Monk,
1999).

The model developed is not a generalized linear model, but it is similar to a
polytomous logistic regression model. The model is based on the comparison of the
"intensity” (see section 2) with which the j-th nestling competes for food, with the
sum of the "intensities” of all the nestlings in the same nest.

In section 2 of this paper we describe the model, followed by the derivation
of maximum likelihood estimation using the Newton Raphson algorithm in section
3. Section 4 presents the application to the analysis of allocation of parental care
among Mountain Bluebirds. In section 5 we show which conditions the design
matrix must satisfy for the information matrix to be positive definite, and under

what transformation on the design matrix the model is invariant.

2. Description of the model

Consider first a single event, that is, one instance of a parent returning to
the nest with food for the nestlings. Suppose there are k nestlings, and only one
receives the food. The j-th nestling has a vector of explanatory variables x; € IR?;
these covariates are the coded trait/character values. Let y = (y1,.....,yx)" be the
response vector of the event, in our case determining which nestling is fed. The
vector y is assumed multinomial, with associated probabilities ©# = (71, .....,7x) ,
with Ele 7; = 1, and exactly one success. That is, we put y; = 1 and y; = 0 for

all 7 # ¢, if nestling ¢ receives food.



With a vector 8 € IRP of unknown parameters and a vector

!

X; = (71,252, ..., 25p) € IR, let X;ﬂ be a linear predictor, and put

A = exp(x; ),

as in a Poisson regression model with canonical link. The parameter A; can be
seen as the "sum stimulus” with which the j-th nestling begs for food. The basic
assumption of our model is
7j = P(nestling j is fed) = k/\ij
h=1 Ah
This is similar to a polytomous logistic regression model. But in contrast to the
logistic model we use the same parameter vector 8 for all categories.

Our model is similar to the Cox’s proportional-hazards model (Cox 1972, also
in McCullagh and Nelder 1983, chap. 9), and its setup is identical with McFadden’s
model (McFadden, 1974), of which we were unaware at the time the research for
this article was done. The McFadden model is a general procedure for formulating
econometric models of population choice behavior from distributions of individual
decision rules. However, our terminology and notation seems clearer than McFad-
den’s, and most importantly, the model appears to be so powerful for biological
applications that the overlap with McFadden seems to be a minor concern.

Let T be the total number of events (feedings), and suppose that in the t-
th event there are k; nestlings ready to be fed. Let y¢ = (y1r,Yats ooves Yket)'
be the response vector for the ¢-th event, and Xi¢,Xo¢, ..., Xg,+ the vectors of co-

variates (or explanatory variables) associated with the k; nestlings, where x;; =

(xjtlvxjt27 ---afl?jtp)/-



Let m¢ = (714, T2ty ooy Tkyt)| be the vector of probabilities associated with the

t-th event. Then, the multinomial model for the ¢-th event is
ke

Pr(Yie = yie, Yoo = Yoty oo Vit = Ybyt) = H T
J=1

where all y;; are 0 or 1 and Ef;l yje = 1. Set \j; = eXp(X;tﬂ), then our model
assumes:

7jt = P(nestling j receives food at time t)

where C; = El,it:l Aht.
In contrast to the usual definition of regressors of generalized linear models,
the vectors xj; of our model do not contain a constant, that is there is no intercept

term in B. To see why, let

Aje = exp(X;tﬂ +a)

for some o € IR, then

/\jt B exp(a) exp(x;tﬂ) B
o N s exp(a) exp(x),8)

Tyt-

That is, a model with intercept would not be identifiable.

3. Maximum likelihood estimation

The contribution of the #-th event to the likelihood function is

ks
Li(B/ye, X4) = H W?ita
=1
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where y; is the response vector at time ¢, and X; is the matrix of the covariates

measured on the nestlings at time ¢. Assuming independence between events, the

likelihood is

T ky

LBy, X) =[5

t=1 j=1

The logarithm of the contribution to the likelihood of the ¢-th event is
ke
LBy Xe) =) yjilnm
j=1
ke
= Z yjt(x;,8 — In(Cy))
j=1

ki kt
= yx;B =Y yiln(Ch).
j=1 j=1

The contribution of the #-th event to the r-th score function is

B N 1ac
a/@r = Zl’]try]t - Ct a/@r

k ’
b Ejtzl exp (thﬂ)xjtr
= Z LytrYst — C,

= > @i (Yt — Tjt),

where z 4, is the r-th entry of x;;. So with respect to the whole parameter vector

B, we obtain the contribution of the ¢-th event to the score function

3lt
St(ﬂ) ZX]t Yit — 7T]t)



and the score function is

T  kt
= Xjulyje — 7).

=1 j=1
The contribution of the ¢-th event to the (r, ¢)-th information function is

kt

8lt(ﬂ) . 677 it
T 95,08, Z  h,

where

k,
aﬂ']‘t
=T | Tjtg — x]‘tqﬁjt )

0B,
and therefore
() _ N’ S
_6/87’6/8(1 = ; LitrTye | Ljtqg — ; LjtqT i

Considering the second derivative with respect to the entire 8 vector, the contribu-

tion of the feeding ¢ to the information function is

2*1,(B A
L(8) = — agtaﬂ ZXJtWJt th_;thﬁft ’

and the information function is

o21(3 AL
I(B) = aﬂ aﬂ szﬁﬂ']t X]‘t_zxjtﬂ'jt
=1

t=1 j=1

It is straightforward to implement an algorithm for parameter estimation. The

algorithm has been implemented in GAUSS (the code may be obtained from the
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authors upon request). An explicit maximum likelihood solution is not possible
because of the complicated dependence of the score function on the parameters; but
numerical maximization of the likelihood function can be done. We use a Newton-
Raphson algorithm, starting with an arbitrary initial parameter vector 5(0) e IR?,

and iterating the equation
BUTY = B0 1B 's(8Y)  i=0,1,2,..

until a suitable convergence criterion is met. Our work with this model has shown
that the Newton Raphson algorithm usually converges very quickly, typically in at
most 6 iterations, starting at 5(0) = 0. This contradicts McFadden (1974) who

claims that the Newton Raphson algorithm for this model is too slow.

4. Statistical inference

To complete the analysis of the data with our model, we compute also standard
errors of the parameters, construct likelihood ratio tests, and perform a residual
analysis.

The standard error of each ., r = 1,2, ...,p, is computed taking the square
root of the corresponding element on the diagonal of the inverse of the information

matrix.
r /B(l) : (1) ’
We test for Ho : B(1) = 0 € IR" where 8 = 3 ) with 8 = (f1, P2, ..., 6+),

B = (Br+1,Br+2,---,0p) and where r is a number between 1 and p. Let § be
the unconstrained parameter space, and w the parameter space constrained by the

hypothesis Hy. The log-likelihood ratio statistic for Hy is

LLRS =2 ma:z;BEWZ(ﬂ) — maxﬂegl(ﬂ) ,
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where [(8) = log(L(8)). If Hp is true, LLRS is distributed like a chi-square with r
degrees of freedom; we accept the null hypothesis if the p-value (that is the area that
LLRS leaves to the right of the chi-squared distribution with r degrees of freedom)
is greater than a fixed significance level.

Standardized residuals are computed as

yjt — ﬁ']t .
. — t:]_ ..... T :1 ..... k
T (1= 7)) - t

see Cox and Snell (1989), or Dobson (1990). A rough check of the adequacy of the

model can be obtained by plotting the residuals and checking for absence of trends.

5. Application

For the purpose of illustrating our method, we chose a subset of the data
collected on Mountain Bluebirds in Colorado, USA. Results obtained using the
entire data set will be reported in Monk (1999). The chosen subset is for parent
bluebirds feeding their 13 to 16 day old offspring. We used a total of T=360 events,
where each event is a feeding by either the male or female parent. The three
covariates we used are also only a subset of all the covariates for which there are
data. They are:

xj: relatiwe position. This variable represents the position of the nestling
relative to the feeding parent: rank 1 for nestlings closest to the parent, rank 2 for
nestlings where the parent must reach over another nestling in order to feed it, rank
3 for nestlings where parent needs to reach over two other nestlings, etc..

Tji2: prior feeding. This indicator variable takes the value 1 when a nestling
received food during the preceding event, ¢ — 1.

zje3: In(wesght). This variable is the natural logarithm of the weight (in grams)

of each nestlings on the day of the event; we use the logarithm of the weight because
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the variable we want to consider is the relative weight among the nestlings in the

same nest;

For example, 4 events from the considered data file are reported in Table n.

Because there are only 4 nestlings in the example we described, each of the
4 events describes the 4 nestlings with respect to 'relative position’, "prior feeding’
and 'In(weight)’. The first four values of the variable "prior feeding’ are all 0 because
there is no preceding feeding for this nest. For details on the entire data set, please

contact the authors.

By running our algorithm for 5 iterations with the chosen data we obtained
maximum likelihood estimates for the parameters vector 8. We also calculated the
standard error for each estimate and the likelihood ratio tests for redundancy of
each variable. Our results are summarized in Table n. 2 where LLRS is computed

for the redundancy of a single variable each time.

The only non-significant likelihood ratio test is for the variable 85; therefore
‘In(weight)’ is considered as redundant. Note that the estimates of 8, and 3, have
very low standard errors, indicating that they are fairly stable. The estimate of
B, obtained by our model for this subset of data indicates that Mountain Bluebird
parents preferentially feed nestlings that are closer to them. Nestlings where parents
have to reach over one or two other chicks receive fewer feedings. The estimate of 3,
suggests that when a nestling has not received food during the previous feeding event
it is more likely to receive food during the subsequent event. This result suggests
that individual feeding events may be dependent on each other, but conditionally
on prior feeding the model assumes they are independent; in fact what we need is

conditional independence of the response variable given the regressors (see Monk
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1999).
To check for the adequacy of the model for this subset of the data we computed
standardized residuals and plotted them (Figure I). The absence of trends indicates

that the model is adequate.

6. Two technical remarks

To confirm the validity of our model it is important to address the two following
questions. 1) Under what groups of transformation on the design matrix X does
the probability remain the same?

Let

7, = AX; + ¢ & x; = A" (z; —¢c)

be the affine transformation on the design matrix X .

The model with x; as a function of z; is

!

o el ¢) (A1 g]
TSN expl(z), — ) (A)1p]

 eaats)
- kt ! ?
D ohey €xp (2, y + 5)

where

Because of the identifiability condition imposed, s is simplified and the probability
remains the same; only the parameter’s vector changes, becoming (A/)_lﬂ.
Therefore, the developed model is invariant under nonsingular affine transfor-

mation of the design matrix X.
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2) What conditions on the design matrix X lead to the information matrix
being positive definite?

For I(8) to be positive definite, for all 8 € IRP, the log-likelihood needs to be
concave and therefore have at most one maximum. As I(3) is simply composed of
the sum of the I;(8), we can consider just one of the contributions to the information
matrix and find the conditions on X; so that I;(3) is positive definite.

After some algebraic manipulations on I;(3), we can write:

kt—l k’t
L(B) = > mhemje(Xne —Xjo) (Xne = Xjt)'
h=1 j=h+1
kt—l k’t

I
= g g ThtTjtUhjtUp jy

h=1 j=h+1
where vy ;¢ = (Xpt — Xj¢). In matrix notation the last formula becomes

L(B) = ViP/Vy,

where
U/
12t
!
Uls¢
Vt —
I
Uk, —1k,
and
Py = dlag(ﬂ'ltﬂ'Zta ----- 77Tkt—177kt)-

Therefore, the information matrix is positive definite if - the matrix P; has

strictly positive diagonal entries (this always holds), - and if the matrix V; has full
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column rank, that is if for every covariate there are at least two nestlings with
different values of that covariate.

As I(f) is the sum of the I;(3), it may have full rank even if some of the I,(3)

are singular.

Conclusions

In this paper we presented a polytomous regression model that relates multi-
ple covariates to a binary response variable. Our model was designed to analyze
the probability of success when several participants are involved in an event and
multiple character variables affect the outcome of that event. The model is based
on a comparison of the "intensity” (see section 2) with which the j-th partecipant
competes and the sum of the "intensities” of all the participants. Consequently, our
model allows us to determine the probability of success depending on the charac-
ter variables both of the winning individual and of each of the other participants
involved in the same event.

Our model is particularly valuable for the analysis of social behavior because
every individual participating in an event likely influences the outcome of that event.
Examples include parent-offspring interactions and mate choice, where participants
interact in an "arena” and each event results in a single success (Monk 1999). Tradi-
tional statistical analysis of social interactions in animal behavior typically are not
designed to deal with individual event data, with a binary outcome variable, or to
simultaneously account for multiple explanatory variables and multiple participants
(Monk and Bartoletti, in prep.).

We developed this model specifically to determine how parent birds make de-
cisions about which offspring to feed. We were interested in predicting the outcome

of parent-offspring interactions during feeding events, as well as in determining the
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relative importance of offspring attributes that influence parental feeding choices.
The model uses character values of all nestlings during each event to calculate
success probability. In addition, our approach is designed to evaluate several char-
acter traits of nestlings simultaneously and allows us to identify important predictor
characters as well as redundant ones. For example, we have shown for Mountain
Bluebird parental care that, in the contest of this 3-variable analysis, the variable
coding for nestling weight had no predictive value, and that the variable describing
the position of the nestling in the nest had the most predictive value .

Our model is similar to the Cox and McFadden models (Cox 1972, McFadden
1974), however our notation and terminology is simpler and clearer and thus makes

the model readily accessible to biological applications.
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Table n. 1

response rel. position prior feeding weight

nestlingl 1 2 0 25.3
nestling2 0 1 0 25.5
nestling3 0 3 0 24.3
nestling4 0 3 0 23.3
nestlingl 1 2 1 25.3
nestling2 0 3 0 25.5
nestling3 0 1 0 24.3
nestling4 0 3 0 23.3
nestlingl 1 2 0 25.3
nestling2 0 2 0 25.5
nestling3 0 3 1 24.3
nestling4 0 2 0 23.3
nestlingl 1 3 0 25.3
nestling2 0 1 0 25.5
nestling3 0 3 0 24.3
nestling4 0 2 1 23.3
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parameter

B
B
Bs

Table n. 2

estimate std. error LLRS
—2.109 0.145 371.3

—0.360 0.164 5.007
0.854 1.358 0.397

17

p-value

0.025
0.529

degree fr.
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