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1. Introduction

It is well-known that majority-like social choice rules as de�ned on unimodal preference do-

mains on a line are both median-representable and coalitionally strategy-proof. Some authors

have also provided median-based characterizations of some large class of strategy-proof social

choice rules on suitably de�ned unimodal domains, including Moulin (1980), Border and Jordan

(1983), Barberà, Gul and Stacchetti (1993), Danilov (1994), Chichilnisky and Heal (1997), Ching

(1997), Barberà, Massò and Neme (1997), Peremans, Peters, van der Stel and Storcken (1997),

Schummer and Vohra (2002), Nehring and Puppe (2007(a), 2007(b)). Most of those contribu-

tions de�ne unimodality with reference to a (bounded) linear order on the set of alternatives

(see e.g. Moulin (1980)), or to a pro�le of metric-induced total preorders on a multidimen-

sional Euclidean space (see e.g. Border and Jordan (1983), Barberà, Gul and Stacchetti (1993),

Chichilnisky and Heal (1997)). Danilov (1994) provides a similar median-based characteriza-

tion of strategy-proof social choice rules on unimodal domains of linear orders in undirected

trees. Moreover, most of those works also establish equivalence of individual and coalitional

strategy-proofness on the relevant unimodal domains.

Now, (bounded) linear orders are a quite special subclass of (bounded) distributive lattices.

But then, what about strategy-proof social social choice rules on unimodal domains in arbitrary

bounded distributive lattices? Are they median-representable? Do they also enjoy equivalence of

individual and coalitional strategy-proofness as well?

The relevance of such a further extension of the study of strategy-proofness properties on

unimodal domains in bounded distributive lattices is apparent, and can be easily motivated

with a few signi�cant examples including the following:

(i) the alternatives consist of thresholds or systems of thresholds in a partially ordered set

e.g. poverty thresholds for a partially ordered population, a pro�le of which is to be aggregated

into a unique consensus threshold;

(ii) the alternatives amount to judgments consisting of deductively closed sets of statements,

a pro�le of which is to be aggregated to produce a unique deductively closed set of acceptable

statements;

(iii) the alternatives consist of several distinct dissimilarity relations -or dually of several

tolerance (or similarity) relations- a pro�le of which is to be somehow amalgamated into a

unique relation of the same type;

(iv) the alternatives consist of arbitrary choice functions on a �xed space a pro�le of which

is to be suitably aggregated into a unique choice function;
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(v) the alternatives consist of graded evaluations of objects of a �xed population, a pro�le of

which is to be aggregated into a unique evaluation (that is the salient kind of exercise recently

addressed in Balinski and Laraki (2010)).

Unfortunately, a study of strategy-proof social choice rules on unimodal domains in general

bounded distributive lattices is still missing in the literature. To be sure, there is some valuable

work by Nehring and Puppe (2007 (a), (b)) on strict unimodality and strategy-proofness in

�nite median spaces, and (�nite) distributive lattices are a prominent instance of (�nite) median

spaces. However, due to their choice of linear preference domains as combined with their strict

notion of unimodality, it turns out that their results do not in fact address anyway the case of

�nite distributive lattices except for �nite linear orders as explained in Section 3 below.

The present paper purports to �ll this signi�cant gap in the literature and provide a study of

strategy-proofness and unimodality in bounded distributive lattices. A median-based character-

ization of strategy-proof social choice rules on unimodal domains in bounded distributive lattices

is established. It is also proved that the equivalence between strategy-proofness and coalitional

strategy-proofness -that is known to hold in standard, more restricted unimodal domains- fails

in general bounded distributive lattices.

2. Model and results

Let N = f1; ::; ng denote the �nite population of voters, and X =(X;6) the partially ordered
set of alternative outcomes (i.e. 6 is a re�exive, transitive and antisymmetric binary relation

on X). We assume n � 3 in order to avoid tedious quali�cations. Let us also assume that

X = (X;6) is a distributive lattice and denote by _ and ^ the least-upper-bound and greatest-
lower-bound binary operations on X as induced by 6, respectively: hence, for all x; y; z 2 X,
x ^ (y _ z) = (x ^ y) _ (x ^ z) (or, equivalently, x _ (y ^ z) = (x _ y) ^ (x _ z)) holds. For any

x; y 2 X, [x; yj 6] := fz 2 X : x ^ y 6 z 6 x _ yg denotes the interval induced by x and y: we
shall also write [x; y] for [x; yj 6] whenever the underlying order 6 is unambiguously �xed.
The median on X is the ternary operation � : X3 ! X de�ned as follows: for all x; y; z 2 X

�(x; y; z) = (x ^ y) _ (y ^ z) _ (x ^ z)

(see e.g. Birkho¤, Kiss (1947) for an early study of the basic properties of the median in a

distributive lattice).

Moreover, X is said to be bounded i¤ there exist ?,> 2 X such that ? 6 x 6 > for all x 2 X.
Now, consider the set TX of all topped total preorders on X (i.e. connected, re�exive, and

transitive binary relations having a unique maximum in X): for any <2 TX , top(<) denotes the
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unique maximum of < (while � and � denote the asymmetric and symmetric components of

<). A topped total preorder order <2 TX is unimodal (with respect to X =(X;6)) i¤ for each
x; y; z 2 X, z 2 [x; y] implies that either z < x or z < y (or both). We denote by UX � TX the

set of all unimodal total preorders on X , and by UNX the set of all N -pro�les of unimodal total

preorders on X.

A social choice rule for (N;X) is a function f : XN ! X: notice that a social choice rule

may also be regarded as an n-ary aggregation operation on X.

For any pro�le (Yi)i2N (where Yi � X for all i 2 N) a restricted social choice rule for

(N; (Yi)i2N ) is a function f : �i2NYi ! X. A social choice rule f : �i2NYi ! X is monotonic

with respect to X i¤ for all xN = (xj)j2N 2 Y N ; i 2 N and x0i 2 Y : f(xN ) 2 [xi; f(x0i; xNrfig)].

Moreover, for any i 2 N let Di � UX such that top(<) 2 Yi for all <2 Di: then, f :

�i2NYi ! X is (individually) strategy-proof on �i2NDi � UNX i¤ for all xN 2 �i2NYi , i 2 N

and x0 2 Yi, and for all < = (<j)j2N 2 �i2NDi: f(top(<i); xNrfig) <i f(x0; xNrfig). Similarly,
f : �i2NYi ! X is coalitionally strategy-proof on �i2NDi � UNX i¤ for all xN 2 �i2NYi , C � N

and x0C 2 �i2CYi, and for all < = (<j)j2N 2 �i2NDi: there exists i 2 C such that f(xN ) <i
f(x0C ; xNrC). Finally, f : �i2NYi ! X is e¢ cient i¤ for all (<j)j2N 2 �i2NDi � UNX and

y 2 X, y =2 f((top(<j)j2N )) if there exists x 2 X such that x �i y for all j 2 N .

A notable class of strategy-proof social choice rules is provided by the family of projections

(or dictatorial rules) �i : XN ! X, i 2 N where for all xN 2 XN , �i(xN ) = xi, another one is

given by the family of constant rules fx : XN ! X, x 2 X where for all xN 2 XN , fx(xN ) = x.

Is is also easily checked that both dictatorial and constant rules are monotonic (indeed, for

all xN = (xj)j2N 2 Y N ; i 2 N and x0i 2 Y : f(xN ) = xi 2 [xi; f(x0i; xNrfig)] if f is the i-th

projection, and f(xN ) = f(x0i; xNrfig) 2 [xi; f(x0i; xNrfig)] if f is a constant function).

For any x; y 2 X we also denote

�(x; :; y) = fz 2 X : there exists u 2 X such that z = �(x; u; y)g and B�(X ) the ternary be-

tweenness relation induced by �, namely

B�(X ) =
�
(x; y; z) 2 X3 : �(x; y; z) = y

	
.

Let � 2 NN be a permutation of N . The canonical �-sequence with basis (ff(x�)gx�2f?;>gN ;

�) induced by social choice rule f at xN 2 XN is the sequence �(ff(x�)gx�2f?;>gN ; �)(xN ) =

h�i(xN )ii2f1;::::;�ni=12n�ig of median-terms de�ned recursively as follows:

�1(xN ) = �(f(?; xNrf�(1)g); ��(1)(xN ); f(>; xNrf�(1)g));

�2(xN ) = �(f(?;?; xNrf�(1);�(2)g); ��(2)(xN ); f(?;>; xNrf�(1);�(2)g));

�3(xN ) = �(f(>;?; xNrf�(1);�(2)g); ��(2)(xN ); f(>;>; xNrf�(1);�(2)g));
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�4(xN ) = �(�2(xN ); �1(xN ); �3(xN ));

:::::::::::::::::::::::::;

��ni=12n�i(xN ) = �(�
2n�1+2n�2+::+2n�(n�2)+1

(xN ); ��(n)(xN ); �
2n�1+2n�2+::+2n�(n�2)+2

(xN )).

Thus, each term of any sequence �(ff(x�)gx�2f?;>gN ; �)(xN ) is either a median of one

projection and two constants, or a (iterated) median of one projection and two (iterated) medians

involving projections and constants only. A social choice rule f : XN ! X is canonically

median-representable i¤ there exists a permutation � 2 NN such that f = ��ni=12n�i where

��ni=12n�i : X
N ! X is the social choice rule induced by the last terms of the canonical �-

sequences �(ff(x�)gx�2f?;>gN ; �)(xN ) with basis (ff(x�)gx�2f?;>gN ; �) induced by f at xN ,

for each xN 2 XN .

The ensuing analysis shall be mostly focussed on bounded distributive lattices. In order to

fully appreciate the remarkably wide scope and relevance of such a setting let us consider just

a few prominent examples, namely

Example 1: Aggregation of points on a bounded subset of the extended real line.

Let R� = R[f�1;+1g denote the extended real line, ��the extended natural order, Y � R�

and x; y 2 Y with x �� y. Then, take X =(X;6) with X = fz 2 Y : x �� z �� yg and 6=��jX .
This is the standard setting employed in a considerable part of the literature on strategy-

proofness in unimodal domains, including the seminal Moulin (1980) where X =(R�;��).

Example 2: Aggregation of subsets of a �xed set.

Let Y be a set of items, and P(Y ) its power set. Then, take X =(P(Y );�). This kind of

domain obtains in a most natural way whenever a combinatorial social choice problem (i.e. a

social choice problem among mutually compatible objects) or a judgment aggregation problem

(with an unconstrained �atomic�agenda) is under consideration.

Example 3: Aggregation of (arbitrary, full-domain) choice functions on a �xed

set.

Let Y be a set of items, and P(Y ) its power set. A (full-domain) choice function on Y is a

function f : P(Y ) ! P(Y ) such that f(A) � A for each A � Y . Now, denote by CY the set

of all choice functions on Y , and for any f; g 2 CY posit f 60 g i¤ f(A) � g(A) for all A � Y .
Then, take X =(CY ;60).

Example 4: Aggregation of dissimilarity relations on a �xed set.
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Let Y a set of items: a dissimilarity (or orthogonality) relation on Y is an irre�exive and

symmetric binary relation D on Y i.e. D � Y � Y is such that (i) (y; y) =2 D for all y 2 Y

and (ii) (y; z) 2 D implies (z; y) 2 D for all y; z 2 Y . Denote by DY the set of all dissimilarity

relations on Y , and take X =(DY ;�).

Example 5: Aggregation of tolerance relations on a �xed set.

Let Y a set of items: a tolerance (or similarity) relation on Y is a re�exive and symmetric

binary relation D on Y i.e. D � Y �Y is such that (i) (y; y) 2 D for all y 2 Y and (ii) (y; z) 2 D

implies (z; y) 2 D for all y; z 2 Y . Denote by TY the set of all tolerance relations on Y , and

take X =(TY ;�).

Example 6: Aggregation of order �lters over a partially ordered population.

Let Y =(Y;6) denote a �nite partially ordered population. An order �lter of Y is a set

F � Y such that for all y; z 2 Y , z 2 F whenever y 2 F and y 6 z. Denote by FY the set of all
order �lters of Y, and take X =(FY ;�). Order �lters may variously arise in several aggregation

problems, including choice of a (system of) threshold(s) for the analysis of opportunity inequality,

and judgment aggregation problems with implication-constrained agendas.

Example 7: Aggregation of order ideals over a partially ordered population.

Let Y =(Y;6) denote a �nite partially ordered population. An order ideal of Y is a set I � Y
such that for all y; z 2 Y , z 2 I whenever y 2 I and z 6 y. Denote by IY the set of all order
ideals of Y, and take X =(IY ;�). Order ideals are also relevant to several aggregation problems,

including choice of a (system of) threshold(s) in multidimensional poverty analysis.

Example 8: Aggregation of graded evaluations.

Let �=(L;�) denote a (bounded) linearly ordered set of grades, X a (�nite) population of

candidates to be evaluated, and N a (�nite) population of evaluators. Then, denote by LX

the set of all possible gradings of X, by 6 the point-wise partial order induced by �, and take
X =(LX ;6). This is indeed the formal setting recently proposed by Balinski and Laraki (2010)
in order to advance their case for majority judgment.

We are now ready to state the main result of this paper concerning the characterization of

strategy-proof social choice rules on unimodal pro�les. Our characterization result relies on the

following three lemmas.
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The �rst lemma simply establishes the equivalence between monotonicity with respect to

an arbitrary distributive lattice X and strategy-proofness on the corresponding full unimodal

domain UNX .

Lemma 1. Let X = (X;6) be a distributive lattice. A social choice rule f : XN ! X is

strategy-proof on UNX i¤ it is monotonic with respect to X .

Proof. Let us assume that f : XN ! X is not monotonic with respect X : thus, there exist i 2 N ,

x0i 2 X and xN = (xi)i2N 2 XN such that f(xN ) =2 [xi; f(x0i; xNrfig)]. Then, consider the total

preorder <� on X de�ned as follows: xi = top(<�) and for all y; z 2 X r fxig , y <� z i¤ (i)
fy; zg � [xi; f(x0i; xNrfig)]rfxig or (ii) y 2 [xi; f(x0i; xNrfig)]rfxig and z =2 [xi; f(x0i; xNrfig)]

or (iii) y =2 [xi; f(x0i; xNrfig)] and z =2 [xi; f(x0i; xNrfig)]. Clearly, by construction <�consists of
three indi¤erence classes with fxig, [xi; f(x0i; xNrfig)]r fxig and X r [xi; f(x0i; xNrfig)] as top,

medium and bottom indi¤erence classes, respectively. Now, observe that <�2 UX . To check
this statement, take any y; z; v 2 X such that y 6= z and v 2 [y; z] (if y = z then v = y = z

and there is in fact nothing to prove). If fy; zg � [xi; f(x
0
i; xNrfig)] then by construction

xi ^ f(x0i; xNrfig) 6 y ^ z 6 v 6 y _ z 6 xi _ f(x0i; xNrfig) i.e. v 2 [xi; f(x
0
i; xNrfig)].

Assume without loss of generality that y 6= xi : it follows that v <� y by de�nition of <�.
If on the contrary fy; zg \ (X r [xi; f(x0i; xNrfig)]) 6= ? then clearly by de�nition of <�there
exists w 2 fy; zg such that v <� w. Thus, <�2 UX as claimed. Also, by assumption f(xN ) 2

X r [xi; f(x0i; xNrfig)] whence by construction f(x0i; xNrfig) �� f(xN ). But then, f is not

strategy-proof on UNX .

Conversely, let f be monotonic with respect to X . Now, consider any < = (<j)j2N 2 UNX
and any i 2 N . By de�nition of monotonicity f(top(<i); xNrfig) 2 [top(<i); f(xi; xNrfig)]
for all xNrfig 2 XNrfig and xi 2 X. But then, since clearly top(<i) <i f(top(<i); xNrfig),
either f(top(<i); xNrfig) = top(<i) or f(top(<i); xNrfig) <i f(xi; xNrfig) by unimodality of
<i. Hence, f(top(<i); xNrfig) <i f(xi; xNrfig) in any case. It follows that f is indeed strategy-
proof on UNX . �

Remark 1. Observe that a restricted social choice rule may be strategy-proof on its restricted

unimodal domain while being not monotonic (i.e. the �rst implication of the previous lemma

does not hold in general for restricted social choice rules).
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To see this, consider the following example, adapted from Barberà, Berga and Moreno (2010),

and slightly simpli�ed: consider X = fa; b; c; dg with a; b; c; d mutually distinct, �X = f(x; x) : x 2 Xg,

6�= f(a; b); (a; c); (a; d); (b; c); (b; d); (d; c)g [�X i.e. X � = (X;6�) is the 4-chain.
Then, posit <= f(a; b); (a; c); (a; d); (b; c); (b; d); (c; d); (d; c)g [�X ,
<0= f(d; b); (d; c); (d; a); (b; c); (b; a); (c; a); (a; c)g [�X , Y = fa; dg
and de�ne

f 0 : Y 2�XNrf1;2g ! X by the following rule: for all xNrf1;2g 2 XNrf1;2g, f 0(a; a; xNrf1;2g) =

a,

f 0(d; d; xNrf1;2g) = d, f 0(a; d; xNrf1;2g) = b, f 0(d; a; xNrf1;2g) = c.

First, observe that both < and <0are in UNX i.e. are unimodal: indeed, top(<) = a, top(<0

) = d and it is immediately seen that

B�(X;6�) =

8<: (a; b; c); (a; b; d); (a; d; c); (b; d; c);

(c; b; a); (d; b; a); (c; d; a); (c; d; b)

9=;
[
�
(x; y; z) 2 X3 : x = y or z = y

	
;

But then, since f(b; c); (b; d); (d; c)g[�X is a subrelation of < and f(b; c); (b; a); (d; a); (d; c)g[
�X is a subrelation of <0 , it follows that unimodality of < and <0with respect to X � holds.

Moreover, f 0 is by construction strategy-proof on D2 � UNrf1;2gX : to check this, notice that 1

and 2 are the only nondummy voters, and for all xNrf1;2g 2 XNrf1;2g f 0(a; a; xNrf1;2g) <
f 0(d; a; xNrf1;2g), f 0(a; d; xNrf1;2g) < f 0(d; d; xNrf1;2g), f 0(a; a; xNrf1;2g) < f 0(a; d; xNrf1;2g),
f 0(d; a; xNrf1;2g) < f 0(d; d; xNrf1;2g),
and similarly f 0(d; a; xNrf1;2g) <0 f 0(a; a; xNrf1;2g), f 0(d; d; xNrf1;2g) <0 f 0(a; d; xNrf1;2g),

f 0(a; d; xNrf1;2g) <0 f 0(a; a; xNrf1;2g), f 0(d; d; xNrf1;2g) < f 0(d; a; xNrf1;2g), whence strategy-

proofness of f 0 follows. However, observe that f 0(d; a; xNrf1;2g) = c =2 [d; aj 6�] = [d; f 0(a; a; xNrf1;2g)j 6�

] hence f 0 is not monotonic with respect to (X;6�).

The next lemma ensures that in an arbitrary distributive lattice the median operation as

applied to social choice rules does preserve monotonicity.

Lemma 2. Let X = (X;6) be a distributive lattice, and f : XN ! X, g : XN ! X,

h : XN ! X social choice rules that are monotonic with respect to X . Then �(f; g; h) : XN ! X

(where �(f; g; h)(xN ) = �(f(xN ); g(xN ); h(xN )) for all xN 2 XN ) is also monotonic with respect

to X .

Proof. Take any xN 2 XN . By de�nition of monotonicity with respect to X , it su¢ ces to show

that for any i 2 N and x0i 2 X, �(f; g; h)(xN ) 2 [xi; �(f; g; h)(x0i; xNrfig)].
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Indeed, by monotonicity of f; g; h with respect to X ,

f(xN ) 2 [xi; f(x0i; xNrfig)], g(xN ) 2 [xi; g(x0i; xNrfig)],

and h(xN ) 2 [xi; h(x0i; xNrfig)].

A change of variables is in order here for the sake of convenience, namely

xf = f(xN ), x0f = f(x0i; xNrfig), xg = g(xN ), x0g = g(x0i; xNrfig), xh = h(xN ), x0h =

h(x0i; xNrfig)

whence

�(f; g; h)(xN ) = �(xf ; xg; xh), and �(f; g; h)(x0i; xNrfig) = �(x
0
f ; x

0
g; x

0
h).

Thus, xi ^ x0l 6 xl 6 xi _ x0l, l = f; g; h, by hypothesis, while the thesis amounts to
xi ^ �(x0f ; x0g; x0h) 6 �(xf ; xg; xh) 6 xi _ �(x0f ; x0g; x0h).
Now, �(x0f ; x

0
g; x

0
h) = (x

0
f ^ x0g) _ (x0g ^ x0h) _ (x0f ^ x0h)

hence by distributivity and the basic latticial identities

xi ^ ((x0f ^ x0g) _ (x0g ^ x0h) _ (x0f ^ x0h)) =

(xi ^ (x0f ^ x0g)) _ (xi ^ (x0g ^ x0h)) _ (xi ^ (x0f ^ x0h)) =

((xi ^ x0f ) ^ (xi ^ x0g)) _ ((xi ^ x0g) ^ (xi ^ x0h)) _ ((xi ^ x0f ) ^ (xi ^ x0h)).

However, by hypothesis, distributivity and the basic latticial identities again

((xi ^ x0f ) ^ (xi ^ x0g)) _ ((xi ^ x0g) ^ (xi ^ x0h)) _ ((xi ^ x0f ) ^ (xi ^ x0h)) 6
6 (xf ^ xg) _ (xg ^ xh) _ (xf ^ xh) = �(xf ; xg; xh) 6
6 ((xi _ x0f ) ^ (xi _ x0g)) _ ((xi _ x0g) ^ (xi _ x0h)) _ ((xi _ x0f ) ^ (xi _ x0h)) =
= (xi _ (x0f ^ x0g)) _ (xi _ (x0g ^ x0h)) _ (xi _ (x0f ^ x0h)) =

= xi _ ((x0f ^ x0g) _ (x0g ^ x0h) _ (x0f ^ x0h)) = xi _ �(x0f ; x0g; x0h)

as required. �

Finally, the next lemma -that only concerns bounded distributive lattices- provides a canonical

median-based representation of all monotonic social choice rules hence - in view of Lemma 1

above- of all strategy-proof social choice rules on the corresponding full unimodal domain.

Lemma 3. Let X = (X;6) be a bounded distributive lattice and f : XN ! X a social choice

rule that is monotonic with respect to X . Then, there exists a permutation � 2 NN such that

f = ��ni=12n�i i.e. for all xN 2 XN : f(xN ) = ��ni=12n�i(xN ) where ��ni=12n�i(xN ) is the last

term of the canonical �-sequence with basis (ff(x�)gx�2f?;>gN ; �) induced by f at xN .
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Proof. Take any xNrf1g 2 XNrf1g and consider fxNrf1g : X ! X as de�ned by the rule

fxNrf1g(x1) = f(x1; xNrf1g) for all x1 2 X. Thus, by de�nition fxNrf1g is monotonic with

respect to (X;6) i.e. fxNrf1g(x) 2 [x; fxNrf1g(y)], namely x ^ fxNrf1g(y) 6 fxNrf1g(x) 6
x _ fxNrf1g(y) for any x; y 2 X. In particular, ? = ? ^ fxNrf1g(x1) 6 fxNrf1g(?) 6 ? _

fxNrf1g(x1) = fxNrf1g(x1), fxNrf1g(x1) = >^fxNrf1g(x1) 6 fxNrf1g(>) 6 >_fxNrf1g(x1) = >,

x1 ^ fxNrf1g(?) 6 fxNrf1g(x1) 6 x1 _ fxNrf1g(?), and x ^ fxNrf1g(>) 6 fxNrf1g(x1) 6 x1 _

fxNrf1g(>), for all x1 2 X. Now, take any x1 2 X and consider �(fxNrf1g(?); x1; fxNrf1g(>)).

By de�nition, and distributivity of (X;6), �(fxNrf1g(?); x1; fxNrf1g(>)) = (x1 ^ fxNrf1g(?))_

(x1 ^ fxNrf1g(>)) _ (fxNrf1g(?) ^ fxNrf1g(>)) =

(x1 _ fxNrf1g(?))^ (x1 _ fxNrf1g(>)^ (fxNrf1g(?)_ fxNrf1g(>)). Since by monotonicity -as

observed above- x1^fxNrf1g(?) 6 fxNrf1g(x1), x1^fxNrf1g(>) 6 fxNrf1g(x1), and fxNrf1g(?)^

fxNrf1g(>) = fxNrf1g(?) 6 fxNrf1g(x1), it follows that �(fxNrf1g(?); x1; fxNrf1g(>)) 6 fxNrf1g(x1).

Similarly, fxNrf1g(x1) 6 x1 _ fxNrf1g(?), fxNrf1g(x1) 6 x1 _ fxNrf1g(>), and fxNrf1g(x1) 6
fxNrf1g(>) = fxNrf1g(?) _ fxNrfig(>).

It follows that fxNrf1g(x1) 6 �(fxNrf1g(?); x1; fxNrf1g(>)) as well, whence fxNrf1g(x1) =

�(fxNrf1g(?); x1; fxNrf1g(>)) =

�(fxNrf1g(?); �1(x1); fxNrf1g(>)) = �(f(?; xNrf1g); �1(x1); f(>; xNrf1g));

i.e. fxNrf1g = �(f(?; xNrf1g); �1; f(>; xNrf1g)).

Thus, for all x1 2 X, fxNrf1g(x1) is the �rst term of the canonical �-sequence with a

basis (ff(x�)gx�2f?;>gN ; �) such that �(1) = 1. Next, consider fxNrf1;2g : X
2 ! X as

de�ned by the following rule: for all x1; x2 2 X, fxNrf1;2g(x1; x2) = f(x1; x2; xNrf1;2g) =

�(f(?; xNrf1g); �1(x1); f(>; xNrf1g)) =

�(f(?; x2; xNrf1;2g); �1(x1); f(>; x2; xNrf1;2g)). By repeating the previous argument of this

proof as applied to both f(?; x2; xNrf1;2g) and f(>; x2; xNrf1;2g), it follows that fxNrf1;2g(x1; x2) =

= �(�(f(?;?; xNrf1;2g); �2(x2); f(?;>; xNrf1;2g));

�1(x1); �(f(>;?; xNrf1;2g); �2(x2); f(>;>; xNrf1;2g)))

i.e. fxNrf1;2g is the fourth term of a canonical �-sequence with a basis (ff(x�)gx�2f?;>gN ; ;

�) such that �(1) = 1 and �(2) = 2. Repeated iteration of the very same argument establishes

that, for all xN 2 XN , f(xN ) = ��ni=12n�i(xN ) i.e. f(xN ) is the last term of the canonical �-

sequence �(ff(x�)gx�2f?;>gN ; �)(xN ) = h�i(xN )ii2f1;::::;�ni=12n�ig with basis (
�
xh
	
h2f1;::;2ng ;

�) such that x1 = f(?N ); ::::::; x2n = f(>N ), and �(i) = i for all i 2 N whence the thesis

follows. �
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The main implications of the foregoing lemmas are indeed summarized by the following

Theorem 1. Let X = (X;6) be a bounded distributive lattice. Then, the following statements
on a social choice rule f : XN ! X are equivalent:

(i) f is canonically median-representable;

(ii) f is monotonic with respect to X ;

(iii) f is strategy-proof on UNX .

Proof. (i)=)(ii) It follows immediately from the de�nition of canonical median-representability,

from the observation that projections and constants induce monotonic social choice rules, and

from Lemma 3.

(ii) =)(iii) It follows from Lemma 1.

(iii)=)(i) Immediate from Lemma 1 and Lemma 4. �

Remark 2. Notice that Theorem 5 implies in particular strategy-proofness of the simple majority

social choice rule on unimodal domains (with an odd population of voters), since it can be quite

easily shown that the former is monotonic (see e.g. Monjardet (1990) for a formal de�nition

and study of the simple majority rule in a latticial framework). Therefore, in an arbitrary

bounded distributive lattice there exist social choice rules -such as e.g. the simple majority rule-

that jointly satisfy anonymity (i.e. symmetric treatment of voters), neutrality (i.e. symmetric

treatment of outcomes), unanimity (i.e. faithful respect of unanimity of votes) and strategy-

proofness on the full unimodal domain. It turns out, however, that in an arbitrary bounded

distributive lattice-as further discussed below and in Section 3- strategy-proof social choice rules

that satisfy unanimity (including in fact the simple majority rule) may fail to satisfy coalitional

strategy-proofness or even e¢ ciency on the full unimodal domain.

Indeed, it can also be established that strategy-proofness and coalitional strategy-proofness

of a social choice rule are not equivalent on unimodal domains in bounded distributive lattices.

This is made precise by the following

Proposition 1. Let X = (X;6) be a bounded distributive lattice. Then the following holds:
(i) if f : XN ! X is strategy-proof on UNX and jXj � 3 then f is also coalitionally strategy-

proof on UNX ;
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(ii) if jXj � 4 then there exists a sublattice Y = (Y;6Y ) of X (with jY j � 4), a subdomain

D � UX and a restricted social choice rule f 0 : Y 2 �XNrf1;2g ! X that is strategy-proof but

not coalitionally strategy-proof on D2 � UNrf1;2gX ;

(iii) if jXj � 4 and X is not a linear order then there exists a sublattice Y = (Y;6Y ) of X
(with jY j � 4) and a social choice rule f 0 : Y N ! Y that is strategy-proof but not coalitionally

strategy-proof on UNY .

Proof. (i) It follows from a straightforward adaptation of the proof of Theorem 1 of Barberà,

Berga and Moreno (2010) to social choice rules as combined with Proposition 1 of the same

paper;

(ii) Take restricted social choice rule f 0 as introduced in Remark 2 above, where it was also

shown that f 0 is strategy-proof.

Now, consider any preference pro�le (<i)i2N such that <1=<0 and <2=< hence top(<1) = d,
top(<2) = a. Then, for any xNrf1;2g 2 XNrf1;2g, both f 0(a; d; xNrf1;2g) �1 f 0(top(<1); top(<2
); xNrf1;2g) and f 0(a; d; xNrf1;2g) �2 f 0(top(<1); top(<2); xNrf1;2g): it follows that coalition
f1; 2g can manipulate the outcome at (<i)i2N namely f 0 is not coalitionally strategy-proof.

(iii) Let us assume without loss of generality that jXj = 4 and let X = fa; b; c; dg and

�X = f(x; x) : x 2 Xg. Next, de�ne

6��= f(a; b); (a; c); (a; d); (b; d); (c; d)g [�X .
It is easily checked that X �� = (X;6��) is the Boolean lattice 22 with a = >, d = ?.
Now, de�ne the family ff(x�)gx�2f?;>gN as follows: for all xNrf1;2g 2 f?;>g

Nrf1;2g

f(a; a; x) = a; f(d; d; x) = d, f(a; d; x) = b, f(d; a; x) = c.

Then, consider the canonical �-sequence with basis (ff(x�)gx�2f?;>gN ; �id) induced by social

choice rule f at xN 2 XN (where �id(i) = i for all i 2 N), namely the sequence

�(ff(x�)gx�2f?;>gN ; �id)(xN ) = h�i(xN )ii2f1;::::;�ni=12n�ig as de�ned above (notice that f

is by construction an extension to the full unimodal domain of f 0 as mentioned above under

part (ii) of the present proof).

A few simple if tedious calculations immediately establish that for all xNrf1;2g 2 XNrf1;2g

f(a; c; x) = f(b; a; x) = f(b; c; x) = a;

f(b; b; x) = f(a; b; x) = f(b; d; x) = b;

f(c; c; x) = f(c; a; x) = f(d; c; x) = c;

f(c; d; x) = f(d; c; x) = f(c; b; x) = d.

By construction, and in view of Lemma 3 above, f is monotonic with respect to X ��. There-

fore, by Lemma 1, f is also strategy-proof on UNX�� .
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Now, take <= f(a; b); (a; c); (a; d); (b; c); (b; d); (c; d); (d; c)g [�X ,
<0= f(d; b); (d; c); (d; a); (b; c); (b; a); (c; a); (a; c)g [�X , as de�ned in Remark 2 above.
First, observe that both < and <0are in UNX�� i.e. are unimodal with respect to X ��: indeed,

top(<) = a, top(<0) = d and it is immediately seen that

B�(X; 6 ��) =

8<: (a; b; d); (a; c; d); (b; a; c); (b; d; c); (d; b; a);

(d; c; a); (c; a; b); (c; d; b)

9=; [
[
�
(x; y; z) 2 X3 : x = y or z = y

	
:

But then, since f(b; d); (c; d); (a; b); (d; c)g[�X is a subrelation of< and f(b; a); (c; a); (a; c); (d; c)g[
�X is a subrelation of <0, it follows that < and <0are also unimodal with respect to X ��. Now,

take any preference pro�le (<i)i2N such that <1=<0 and <2=< hence top(<1) = d, top(<2) = a.
Then, for any xNrf1;2g 2 XNrf1;2g, both f(a; d; xNrf1;2g) �1 f(top(<1); top(<2); xNrf1;2g)
and f(a; d; xNrf1;2g) �2 f(top(<1); top(<2); xNrf1;2g): it follows that, again, coalition f1; 2g
can manipulate the outcome at (<i)i2N namely f is not coalitionally strategy-proof. �

In fact, as a further straightforward consequence of Proposition 7 (and of a few previously

known results), we have the following

Corollary 1. Let X = (X;6) be a bounded distributive lattice. Then the following statements
are equivalent:

(i) for each sublattice Y = (Y;6jY ) of X and each social choice rule f : Y N ! Y , f is

strategy-proof on UNY if and only if it is also coalitionally strategy-proof on UNY ;

(ii) X = (X;6) is a linear order.

Proof. (i)=)(ii) It follows immediately from Proposition 7 (iii) above;

(ii)=)(i) It follows from a straightforward extension and adaptation of the proof of Proposi-

tion 4 of Danilov (1994) concerning social choice rules on unimodal domains of linear orders in

undirected trees (details available upon request), and is indeed already stated without explicit

proof in Moulin (1980). �

Thus, we have here a remarkable characterization of bounded linear orders as the only bounded

distributive lattices where equivalence of individual and coalitional strategy-proofness of social

choice rules on full unimodal domains holds.
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3. Related literature and concluding remarks

The main results of the present paper may be summarized as follows:

(i) Theorem 5 provides an explicit characterization in terms of iterated medians of projec-

tions and constants of the class of strategy-proof social choice rules on full unimodal domains

in bounded distributive lattices [that result extends in a new direction previous results due

to Moulin (1980) for unimodal domains in bounded linear orders, and to Danilov (1994) for

unimodal domains of linear orders in undirected trees];

(ii) Proposition 7 establishes that equivalence between (individual) strategy-proofness and

coalitional strategy-proofness on full unimodal domains holds precisely in bounded linear orders,

and fails in bounded distributive lattices that are not linear orders.

In order to properly appreciate the signi�cance of the foregoing results a detailed discussion

of a few strictly related previous contributions is to be entered here.

The seminal paper by Moulin (see Moulin (1980)) provides an explicit characterization in

terms of �extended medians�of the class of all strategy-proof social choice rules on the domain

of all pro�les of total preorders that are unimodal with respect to a �xed bounded linear order.

Furthermore, Moulin (1980) establishes the equivalence of strategy-proofness and coalitional

strategy-proofness for all social choice rules on such full unimodal domains.

In fact, Moulin�s proof relies heavily on the following property of medians in bounded linear

orders that does not hold for medians in general bounded distributive lattices: given an odd

population of n = 2k + 1 voters, for any (xi)i=1;::;n 2 XN the extended median ��(x1; :::; xn)

i.e. the (iterated) median �(x2k; �(x2(k�1); �(::(�(x1; x2; x3))::); x2k�1); x2k+1) is such that

(�) min(# fi 2 N : xi � ��(x1; :::; xn)g ;# fi 2 N : ��(x1; :::; xn) � xig) � k + 1.

Indeed, in bounded linear orders (extended) medians are sometimes de�ned by the foregoing

property [notice that the extended median on a linear order is invariant with respect to arbitrary

permutations of (xi)i=1;::;n].

However, take n = 3 (hence k+1 = 2) and consider again the Boolean lattice X �� = (X;6��)
with X = fa; b; c; dg, #X = 4, �X = f(x; x) : x 2 Xg,

6��= f(a; b); (a; c); (a; d); (b; d); (c; d)g [�X ,
i.e. X �� = (X;6��) is the Boolean lattice 22 with a = >, d = ?.
Clearly ��(a; b; c) = �(a; b; c) = a, hence at (x1; x2; x3) = (a; b; c),

# fi 2 N : xi � ��(a; b; c)g = 3

but # fi 2 N : ��(a; b; c) � xig = 1, and (�) fails.
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In a similar vein, Danilov (1994) provides a characterization in terms of (iterated) medians

of the class of strategy-proof social choice rules on the domain of all unimodal linear orders

(i.e. antisymmetric total preorders) when X is the vertex set of an undirected (�nite) tree (see

also Danilov and Sotskov (2002) for further discussion of this topic, and Demange (1982) for

an early study of majority-like voting rules on domains of unimodal linear orders in undirected

trees). Moreover, Danilov (1994) also shows that strategy-proofness and coalitional strategy-

proofness of social choice rules on unimodal pro�les of linear preference orders in undirected

trees are equivalent properties. But in fact, it can be shown that Danilov�s proofs can be readily

extended to the wider full domain of unimodal total preference preorders (arguing along the

lines of the �rst part of the proof of Lemma 1 above), and to the case of an underlying bounded

linearly ordered set of alternatives.

The key step of Danilov�s proof relies on the following property shared by intervals of linear

orders and of undirected trees, namely :

(*) for all x; y; v; z 2 X, if x 2 [y; v] and y 2 [x; z] then x 2 [v; z] .

Notice however that (*) does not hold for intervals of arbitrary bounded distributive lattices:

to see this, consider again the four-element Boolean distributive lattice X �� = (X;6��) with
X = fa = >; b; c; d = ?g introduced above in the text, and notice that e.g. b 2 [a; d] , a 2 [b; c]

but b =2 [c; d] (see e.g. Sholander (1952, 1954(a)), Bandelt and Hedlikova (1983) for a thorough

study of intervals in general median algebras, and Isbell (1980) for an even more general approach

that also considers intervals in a larger class of ternary algebras).

Building upon some remarkable earlier contributions such as Barberà, Gul and Stacchetti

(1993) and Barberà, Massò and Neme (1997), and relying on a strict notion of unimodality,

Nehring and Puppe (2007(a)) o¤er a comprehensive study and an �issue-by-issue voting-by-

committees�-based characterization of souvereign (i.e. surjective) strategy-proof social choice

functions on rich domains of strictly unimodal linear orders in certain �nite �median spaces�as

induced by suitably de�ned �property spaces�[it can be shown that such �nite �median spaces�

do essentially correspond to �nite median algebras: see e.g. Sholander (1954(a), 1954(b)) and

Bandelt and Hedlikova (1983)]. In an interesting related paper- Nehring and Puppe (2007(b))- it

is also shown that (under a suitably de�ned notion of �dimension�) even the median of projections

is not e¢ cient in �median spaces�of dimension k � 3, including the Boolean lattice 23, and it

is proved that e¢ ciency and strategy-proofness of a social choice function f on a rich strictly

unimodal domain of linear orders in a �median space� jointly imply that either f is weakly

dictatorial or that the dimension of the �median space� is two at most. While such a paper



15

is not concerned with the equivalence issue of individual and coalitional strategy-proofness, it

should be noticed that the foregoing result has a clear inequivalence implication for souvereign

strategy-proof social choice rules on rich strictly unimodal domains in higher-dimensional �nite

�median spaces�, since coalitional strategy-proofness and souvereignty of a social choice function

or rule jointly imply e¢ ciency of the latter.

However, Nehring and Puppe�s results are entirely silent on the equivalence issue in two-

dimensional �median spaces�. Moreover, and perhaps less obviously, their general results are

strictly speaking irrelevant to the same equivalence issue even for any �nite distributive lat-

tice that is not a linear order. That is so because the strict notion of unimodality they use

is unsuitable for linear preference orders in general distributive lattices, typically resulting in

vacuous -hence a fortiori not rich- domains (to check this, observe that the relevant notion of

�betweenness�used by Nehring and Puppe essentially amounts to saying that y is �between�x

and z precisely when y 2 [x; z]; then, just take the four-element Boolean lattice X �� as de�ned

above in the proof of Proposition 7 (iii) and observe that it admits no strictly unimodal linear

preference orders). Therefore, the main theorems of Nehring and Puppe (2007 (a), (b)) concern

�nite lines and trees and also certain products of lines and trees but not e.g. Boolean distributive

lattices with at least four elements (either �nite or not).

More recently, Barberà, Berga and Moreno (2010) focused on a strict version of unimodality

for total preorders (it should be noticed, however, that strict unimodality in a bounded linear

order reduces to unimodality when total preorders are in fact antisymmetric i.e. linear orders:

details are available from the authors upon request). Relying on a property they newly introduce

and label �sequential inclusion�, Barberà et al.(2010) establish a general su¢ cient condition

ensuring equivalence of individual and coalitional strategy-proofness, and show that strictly

unimodal domains of total preorders as de�ned on a linear order (X;6) do satisfy it. Thus,
prima facie such a result seems to support the widely shared presumption of equivalence between

individual and coalitional strategy-proofness on unimodal domains (see also Le Breton and

Zaporozhets (2009) in that connection).

The argument of Barberà et al.(2010) for such an equivalence result however cannot be ex-

tended to domains of unimodal total preorders since it can be easily checked that pro�les of

unimodal -as opposed to strictly unimodal- total preorders need not satisfy �sequential inclu-

sion� (indeed, take a four-element linear order (fx; y; w; zg ;6) such that x < y < w < z ,

consider total preorders <1;<2 on X such that y �1 w �1 x �1 z and y �2 x �1 w �1 z, and
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observe that <1and <2 are unimodal -though of course not strictly unimodal- and violate the
�sequential inclusion�property: details are available from the authors upon request).

Thus, it is worth contrasting the lack of equivalence between individual and coalitional

strategy-proofness on unimodal domains established by Proposition 7 above with the earlier

equivalence results concerning related unimodal domains. Interestingly enough, and perhaps

somewhat surprisingly, Proposition 7 implies that such equivalence cannot be extended to an ar-

bitrary subdomain of unimodal total preorders if (X;6) is a bounded distributive lattice having
at least four elements, nor to social choice rules on the full domain of total preorders that are

unimodal with respect to a bounded distributive lattice that is not a linear order. As a con-

sequence, the �sincere�outcomes of strategy-proof social choice rules on unimodal domains in

bounded distributive lattices are typically not renegotiation-proof : some supplementary ex-post

bargaining may be required to ensure e¢ ciency or indeed �stability� of outcomes. But then,

whenever voters do take that fact into account, new incentives to manipulate may be brought

about.

Finally, it should also be noticed that some of the results of the present paper -notably,

Lemma 1- can be easily reproduced in a more general setting e.g. in any median algebra (see

Isbell (1980), Bandelt and Hedlikova (1983)). It remains to be seen which of the other results, if

any, can also be lifted to the latter environment. This is however best left as a topic for future

research.
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