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1. Introduction*

As a branch of Social Statistics the epidemic theory of news, rumours
and ideas is very much developed; indeed quite a few books and reviews
have dedicated space and attention to it and in[2 ]Jcan be found a full account
of the results achieved so far. Being a topic involving dynamic realizations
of certain processes (growth of the number of hearers in a given population)
often the analytical side of this subject faces difficulties when encountering
very complicated differential equations.

This mainly occurs in the stochastic version of the models (the more
realistic one) because of the presence of differential-difference equations
almost always impossible to solve; research then tends to deal with more
treatable formalizations of the process such as the deterministic approxima-
tion.

This work generalizes some known models, mostly considering the
deterministic side of them, since otherwise we would have to handle a sto-
chastic birth and death process whose general solution does not exist. Fur-

thermore we will not consider numerical results and only the qualitative

behaviour of the systems will be explored.

(*) This work has been inspired by the project permormed for the
MSc' Statistics at the London School of Economics; the first version of this
paper was written in 1986. I would like to thank Prof. D.J. Bartholomew

for the fruitful discussions ! had with him.
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Because of the standardized terminology and notation used in the

topic, we will refer to [ 2 Jas far as symbols and their meanings are concerned.

2. A model with interactive forgetting

In this paragraph we consider a generalization of a model formerly
proposed by Bartholomew [ 1 | which, in turn, was a development of a work
done by Kermack-McKendrick (K.M.) much earlier [ 2].

The two papers above both admitted the possibility of "forgetting"
the item spread; the basic difference was that in the latter once a knower
stopped the spreading he could not become a hearer any longer, which was
allowed instead by the former.

The equation ruling the deterministic version of Bartholomew's model
is

dn(T)

(1) = (a+8n(T)) (N-n(T)) -pn(T)

whereas for the K.M.'s we have

dn(T
20 - (a+gn(T) (N-n(T) - un(D)
T
@ D (argntT) (N-n(T)

éld(_'P = wn(T)

In (2).nis not a "forgetting" coefficient but expresses the propensity
for a knower-spreader to become a knower who stopped spreading. Infact,
once people have ceased communicating they don't become ignorants but
"stiflers"”.

The characteristic bounding together (1) and (2) is the linearity of
the "oss of interest" part; in other words people can only forget individually.
What we do here is to generalize (1) by considering a quadratic expression
in n(T) as far as the forgetting side of the model is concerned.

The justification to this is given by the observation that also interac-
ting between themselves, and not only individually, people could make the

spreading of the item "problematic".

In this framework the number of contacts, for the "loss of interest"

section, is then going to be n(T)z, and (1) becomes

@ D - (@ gam) (D) _an(m)?

The stochastic version is still a birth and death process as happens

in (1). Transition probabilities are now the following: if we are at state n

P(n - n+l in (T,T+ 0T)) = }‘n 8T + o( 0T) =
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=(a+8n(T)) (N-n(T) 6T + o(4T)
P(n ~n-1in (T,T+ 6T = K 4T + o(6T) =
= yfn(T)2 0T + o(0T)
and so

P'(T) = -[(as Ba(TN-n(T) +un(T)21Pn(T) .
+ [(a+ B(n(T)-1)) (N-n(T)+1)] Pn-l(T) +

+ p@m? P (D
n+l

is the differential-difference equation of the process.

Solution to (3) can easily be found and is given by

Ao
3=3, [CAsAn(OI/C Ayvaniop] e "2 AT

(37 n(D=-
A [1-(C 2 +An(ON/(2 +Anome' “27* I

where

/2

3y 5 = [(BN-a)s(( N- 028 +u)an?] /2

?

and

A =Af+n)

Obviously

1/2

n(eo) = [(N-@)+{(N-)? + 4(1+0)aN) /2] / 2 (1+0)

where

w=a/f, e=u/B, d=N/e

One important feature to check is if, when w=0 or ¢=0, a threshold
effect exists, that is whether there is a critical value for d which makes
the epidemics impossible or not.

In (1) this value is d=! or N=03; in our model, if t » o and w =0 (clearly

n{0)>0) we have

(4) nloo) = N/ (1+0)

which is always bigger than zero unless pu = or =0, of course having N>0.
To have u = c means that the epidemics will never take off because the
"forgetting” is so high that the interaction is pointless; f=0 instead means
that there are no chances for the individuals to communicate and so the
transmission will not occur.

On the other hand rewriting (#) as



n(eo) = Nd / (N+d)

we can see that if d=1, we get

n(=) = N/(N+1)<1

Evidently, also in our model, d=1 represents a critical value (when
w=0) for the development of the epidemics.

Considering d=2, a comparison with K.M. and Bartholomew's models
shows that the ultimate proportion of people knowing the item is much lowers:
indeed while for the first two we have respectively n{e)=0.8N and n{c0)=0.5N
in our case n{o0)=N/(N/2+1)<0.5N for any N > l.

With =1, i.e. #=8, here we have n(w«)=0.5N whereas Bartholomew
has, for instance, n(e)=N-l. The conclusion which can be drawn is that the
number of hearers grows much slower for us than for the other two, and
the asymptotic proportion of knowers is always lower than the others.

This is obviously due to the presence of the quadratic in the forgetting
coefficient.

Although it is impossible to give a complete picture of the probability
transition functions at each instant of time, we are in any case capable
of writing down and solve the equilibrium equation for the steady-state density.

In a birth and death process, it is well known that as t - cowe have

”n “’n = nn-l )'n-l

which in our case is
@) @pn’ = (asBlel) (NneD

leading to the following distribution

(r{!)'«l (ﬁ) QN-nI‘(nHo)

T n=0,1,...,N

(o n =
i (nl)-l (N) QN-n I'(n+w)
‘n=0’ n

Equation (#) indicates that we have a situation where the deterministic

analysis overestimates the stochastic mean, while it is reasonable to expect

them 10 be the same. This occurs also in (1).

From the balance equation we have infact that

and so

uinel)? m = @) (N0 B




summing both sides we get analysis, when e =0, as it can be seen from (4).

We approach now the discussion on the nature of the stationary solu-

N-1 N
,ll'}_; (n+1)2 L B}:_ (w+n) (N-n)nn tions of our system [ 5] in terms of local stability.
The analysis considers only the case when w =0 so that the pair of
thus ] equations we concern with is
2 dn(T) 2
WE(M?) = BNE()+ BNe - BE( -0 BE() (6 == gaM yM - unM® = ND)
. . 2
which gives (69 ngT—Tz = -Bn(T) Y (T) + un(T)" = Y(T)
2 E(n) (N- ) wN S \ .
E = Linearizing (6) and (6') we obtain
Sl tvry el vy 8
dn(T) - -
since )] T = 21 nT) + a, ¥(T)
Var(n) = E(nz) - E(n)2 =
dv(T) - -
(7' —— =
7Y dT 3y M) + 2y, YT

E(n)(N-0) oN 2
(Tvr2) " {T+0) - EM)7> 0

where
n(T) = (n(T) - ng i y(T) = (y(T-y J
then
2 1/2 and
(N-w) 1 [N-o 4N @
G)  Em < g +'2‘( ( 1+@) * 1+9)

dN(T) | _dN(T)
(M 2 " dy(T)

Y
The right hand side of (5) corresponds to n(w) of the deterministic o0




dY(T)
a =] dv(T) and 322 = m‘ Ny
21~ dn(T) no.)’o 0o

being n, and y, the stationary solutions for (6). In this context we only have
0 0

one pair of steady-state solutions
(i) (n=0, y=N)

and

(i) (n

It is straightforward to obtain, for (i), all=BN, a =0, 321=-BN,
. 2
a__=0 which leads to the characteristic equation A -fNA =0 whose roots
22

are Al=o and }.2= BN, implying that (i) is unstable.

Considering now (ii) we have instead

_ N | . BN
1= " Teo ¥ 2" 00 !
Nao . __ BN
1 FTee P %227 T 10

giving the following characteristic equation

/12 + [NCB +#) / (1+2)]1 = 0 that solved furnishes ll=0,,1.2 z -N(.B*-pl)

/ (l+¢) saying that (ii) is Ljapunov stable.

Summarizing we can assess how a small perturbation around (i) will

be such that the system escapes from it whereas if (ii) is left the system

will always gravitate around it.
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3. Generalization of Rushton-Mautner model

We take into consideration now the case of a segmented population
where only one of these segments can receive the item from the source.
Our aim is the generalization of a system proposed by Rushton-Mautner
who also gave the solution for the situation of homogenous mixing rates
between segments.

They started from a deterministic equation given by

dn.(T)

(3 T

(N (T +8.0(T) + (N.-n(T)) )Z}l M sl 2es

where a and Bi have the usual meaning while yij expresses the contact

rate between knowers of the jth subpopulation and ignorants of the ith.

A possible extension of (8) could be

dn, (T)
) ar = (e+8n (TUN -n (T)- pn (T) +

S
o3 D e oy
- J Il
j=2

dn, (T)

O ——

pini(T)(Ni-ni(T))-Mini(T) +




.

S 0
. 22 o LIl e on )
2 ) 1 1
J 1
i=2,3,...,s

The rates 7, in this context, mean that the strenght of the interaction
depends on the "distance" between the subpopulations.
Solution to (9) and (9') can be derived from the general one, provided

by Rushton and Mautner (6], for (8).

What instead we are going to do is the discussion of a particular

case.
Let $=2, Bl=32= 8, W=y = 0 and }'l:B, (9) and (9') then become
dnl (M
(10) 9T = (a+Bn1(T)) (Nl'nl(T»
dn, (m
(10 —Z5— = n(M (N, (M) n=n 4,
(on 9D (augn (DUN -0 (T)) +Ba(DIN-N )a(D-n (T)]
dT ~ 1 1l 1 1
Clearly, ultimately, all the elements of the population will possess
the item.

(10) can be solved to give

13

M = [Ny e T PNIT) L gerlar B
where

Ko = Bny©@+a]/ [N -n (0]

Solution to (10") is: thus the following

A= Ay (02 +An(ON/( 2 san(on] & 27 *0)T
2
n(T) = -
A 1 1-[CA+ARON/(A +An(O)) ] e ;'2' ;'1)1'
where ‘
= [(N-N +n )B+((N-N +n )} §)%+4 B(ar gn XN -n N?1/ 2
"1,2 - 1 e= 171 ar B AN Y
and
A=-8
! .
As t-oo we have n(e) = -4 nd since n ()N we get
Ng+ NB
n(e0) = —— = N
28

This shows that in the simple epidemics ultimately everybody will
know. Let us consider now the case where those inside the closed population

can forget: we consequently have
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dn, (7
azy 9D (aegn (AN -n (T -pn (T (TN
o | 11 #n (T+8 n(T) +n1(T)-N1-n(T))
In this particular case solution to (12) was given by Bartholomew [ 1]
namely
2a8T
(13) nl(T) =% (Nl-g-m) +a be !
beza BT + 1
where

- 1 2.1/2
a= (N1w+-5(N1-e-w) y'" and

1
b = [a+n (0) -5 (N -0 -@)] / [a-n (0) +%(Nl-o-w)]

1
As t—- oo we have

(13) 0 (o) = 5 (N -0-0)(Np + (N -0 aHf?

Solution to (12') is still given in [ 2] where now the roots are

/2

A =[(N-Nlonl)Bi(((N-Nlml)ﬁ)2+QB((a+Bnl)(Nl-nl)-pn1))l 1/ 2

and A = -8

In (13) we can observe the well known threshold-effect, i.e. if @ =0
(obviously n(0) > 0) to have nl(OO)>O we need N1> ¢ implying d>1.

As usual-nl(w) = - Tl- s now we can have either

i) N1 =@ SO nl(oo) =0
or

i) N> e

In the first case nobody of the closed population ultimately know
the new but a portion of the entire population will know in the end; in parti-
cular this will be formed by those who don't forget.

Indeed

n{e) = N-N

1

The threshold effect has only a partial influence since part of the

population hears anyway.
In the second case we have n1(°°)=N1- ¢ and
1/2

n(es) = [(N-0)8 4(((1\1-9)3)2 + 4Bu(N -0) - 4Bu (N -0)) 1/ 28 =N-¢

which is the same value obtained by Bartholomew in his model. So if N>2@

the final number of knowers does not depend any longer crucially only upon
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the size of the closed population but also on g .

Suppose now that only those outside the closed population can forget:

we then obtain

are

SO

dn (T)
(14) T ¢ (a+Bnl(T))(Nl-n1(T))
(e’ 94D (aegn (DN

dT - a ﬁn.l l-nl(T))+

+ gn(T) [(N-Nl)-(n(T)-nl(T))] -Mv(n(T)-nl(T))

N . .
ow we get nl(oo)-N | and ).1, A , to be put into the general solution

U9 A, = BONN 0] 2 (NN o ) - T

pVz,

+ 4B(a+gn AN -0 Jeun )

A=-8

n(eo) = [(N-2)/2] +[(N-Q)2/4+9N1] 1/2

hi . . "
which depends upon both Nl ande. In this particular instance, provided that

when a=0 is n(0)>0, the number of final hearers (if the knowers belong

to the closed population) will be exactly the same as above.

If the initial knowers belong to the second population then n(oo)z(N-Nl)-Q.

Finally suppose that both the populations can forget, in other terms

that we have

(15"

(15"

= (a+8 nl(T))(Nl-nl(T))-# nl(T)

(a+gn l(T))(N L l(T))- ﬂn(T)(N-Nl-n(T)+nl(T))- un(T)

Solution to (15" is still (13) with the same nl(oo) (see (13")) but for

(15" ;'1 2 to be substituted inside the general expression,,are now
H

and

+ 4Bla+ ﬁnl)(Nl-nl))l

= [(N-N +n -#)8  ((N-N +n -B)B T

/2]/2

As far as n(eo) is concernad two cases are possible (when ¢ =0)

i) Nl =0

N >0
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= N ——

It N =g, n (00)=0 and we have, if the knowers belong to N
Tamale |

(o) = (N-Nl-#)ﬂ+[((N-Nl-#)ﬂ)2] vz (N-N )-p

When Nl > @ instead it is
=N, -0
nl(oo) =N,
)

[(N-0-#)8 +((N-¢ -1) )% +

n(oo)

1/2
e ug o] 2
4. Switching population and multiple sources model

We briefly propose here a model which could represent a possible
real life situation: a population of size N is informed by more than one exter-
nal source broadcasting items of different nature.

The elements don't forget but only change "their minds" so that they
are always active whatever is the population they belong to; the number
of ignorants will thus eventually be zero.

Analysis will merely concern the deterministic approximation of the
system and the local stability properties of the stationary solutions.

The system is consequently described by

19

dni (m
(le) aT

= (ai+ Bini(T))(N-ni(T)) -

—yini(T) +§ /Ljnj(T) i=1,240005

where S is the number of subpopulations.

This is a general situation where the different suffices of the parame-

ters mean possibly different values.

Let instead consider

S=2, =B, p =0y py=p, ;=0 i=1,2

so that (16) is now
(17 d—n;T(T—) = B0 (D (Non (T + pny(T)
(7" dn(ij(T) = gD (N-n(T) - un (D

. . . d
Though (16) can be solved explicitly (being a system of first order

i i ici are going
on linear differential equations with variable coefficients) we going

n
that is the roots

to explore the nature of the stationary solutions of (17),

of this system




20 21

(18)  Bn(N-n )+ un_ =0 = - = - = 8N-
TR 2 3 =BNya, =3y 20,8, = gN-4

The characteristic equation for the two states are
(18" n, (N-n ) - un, = 0

(@ A% - @BN-# + BN(BN-p) = 0
Evidently we must have either nl(0)>0 or n2(0)>0 (or both) since (b) }.2 + ud - BN(BN-u) =0

no outside impulse is operating.
. . . N
The “physically" acceptable stationary states are the pairs (i) (n1=0, Solutions to (a) are

n2=0) and (ii) (nl=N’ n2=0). Infact, from equation (18') we would have another

solution N-@, but it is unacceptable. @ BN-u
Indeed if N>e@ the first relation, having as roots ;'1,2 ) BN
and to (b)
(18" n:’z = [N+ (N2+49N-4‘02)1/2]/ 2 l(b) E - 8N

1,2 (BN-g)

will furnish solutions either bigger than N or negative, which are obviously
meaningless. If d>1 then (i) is unstable, as well as if the threshold effect were

On the other hand, if N<e, from (18") it is easy to see that putting operating (i.e. d<l). Whereas (ii) is asymptotically stable iff. d<l; when

f(N)=N2+4 QN—#QZ, with OKN<e, we have f(N)<0 which would imply a com- equality holds (ii) is stable only in the sense of Ljapunov, while if d>1 is

plex stationary solution. The only meaningful value for N, when considering unstable.

(18"), is then N=0, which leads to the two pairs already found.

Evaluating the coefficients of the linearized system we get, for (i)

a“=BN,alz=y.,a =0, a

21 2 = BN-4

2

and for (ii)
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5. Generalization of Kermack - Mc Kendrick and Bartholomew models

It could be interesting to generalize the two extreme and main models, .

with only one population, including forgetting, that appeared in the literature
so far: that is the Kermack-McKendrick and the Bartholomew one.

We already said that the former assumes how once an element has
lost interest in the information it will not ever come back again to the state
of potential spreader, causing the epidemics to stop when the last knower
forgets. The latter allows the possibility that, after forgetting, elements
can come back to the state of ignorants and potential spreaders.

What we propose is a "middle way" process and the only analytical
effort will be to write down the deterministic mode! and the equations for
the mean time of absorption relating the stochastic version.

Ths starting hypothesis is that once we have forgotten we can either
become ignorants, with probability 4T, or stop spreading forever with
probability 447, all the other assumptions remaining the same.

Following Bartholomew's notation the deterministic system of equations

is

C’_':;TT_’ = (@ +Bn(THN-n{T)-pn(T)-#n(T)

dm(T)
dT

(19) -(a + Bn{TH(N-n(T))+ gn(T)

di(T)

T - un(T)

where n(T) is the number of spreaders at time T,m(T) the number of ignorants
and I(T) the number of those who stopped spreading but know.

As long as transition probability functions are concerned it is enough
to consider two states (n,m) for describing all the possible movements.

Indeed we have in (T, T+ 6T)

P{ (n,m) = (n+1,m-1)] = (a+gn} m 6T+o( 4T)

dn OT + o &T)

P[ (n,m) — (n-1,m+1) ]
P[ (n,m) — (n-1,m) ] = wn 6T + o(oT)

P (n,m) = (nym)] = {1- [(@+Bn) H +neun] | §T+ols T)

The differential-difference equation for the transition probability

function of the process is then

P - [(a+8n) m +dn+un] Pn,m(t) +

+

(a+B(n-1))(m+1) Pn- m+l(t)+’0(n+l)Pn+1’m+l(t) +

L

+ u{n+1)P ()
n+l,m
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The expected time to absorption will be given by solving
w = [(a+fn) M +Fn+pun ]-1 +
n,m
+ ﬂn+l,m-1[(a+B n) M /((e+Bn) m +gn+un) +
* T m {nu a+gn) A +3n+un) +
* T Lmel [nd /((e+gn) M +gnepn)
Summary

In this paper we saw a number of generalizations for models related
to epidemic theory. The work was only analytical and the effort mostly

regarded the deterministic approximations of the stochastic systems.

Riassunto

In questo articolo si sono considerate alcune generalizzazioni di modelli

epidemici. Il lavoro, di carattere esclusivamente analitico, riguarda essen-

zialmente l'approssimazione deterministica della versione stocastica di tali

modelli.
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