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Abstract - In this work we analyse the resilience of industrial districts to exogenous 

economic shocks. Firstly, we define a basic industrial district through a set of assumptions 

which prove to be critical for systemic risk in the event of a financial shock. In the course of 

the work we progressively relax the assumptions to make room for more complex 

representations. Consequently, depending on two dimensions of complexity (structure of 

economic interactions and the degree of heterogeneity of the industrial population), we 

develop three different models of industrial clusters, employing non-linear ordinary 

differential equations and percolation dynamics in graph theory. A mechanism of financial 

contagion is introduced and a threshold condition is derived in order to study each model’s 

resilience. Eventually, we prove that it is the structure of economic interactions which 

produces a structural change in the threshold characterization. 
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I. Introduction 

In recent years, dynamical processes related to economic agglomeration have been subject to 

intensive research [6].  Generally, scholars addressed their interest in understanding the 

patterns of agglomeration and consequently focused on the process of “market entry” in order 

to explain profitability of agglomeration. Specifically, positive returns engendered by 

agglomeration may be due either to the relation between the intrinsic geographical benefits of 

a market and the number of firms already active in it [1], [6] or to the diffusion of business 

information within a pre-existent economic cluster [7]. 

 In this work we maintain the focus on diffusion processes which take place in pre-existent 

economic districts, yet with a different goal. Our purpose is to investigate the systemic effects 

of an exogenous economic shock which may affect a community of firms organized by means 

of an industrial district. Specifically, we aim to find the analytical conditions which determine 

the ultimate economic outcomes of an initial shock. However, as argued in chapter II, the 

industrial district is a complex and non-univocal form of economic organization subject to 

historical and geographical constraints, hence, we firstly reduce the multiplicity involved with 

actual districts to a tractable set of features which prove to be determining for the spread of a 

financial crisis in the event of an exogenous economic shock1.  Subsequently, we implement in 

the remaining dimensions a characterization for the financial shock diffusion. In this regard, 

the dimensions we ended up with are the structure of economic interactions, which may be 

occasional or long-term specific, and the level of heterogeneity in specialization of the 

industrial population, which can include one homogeneous population or multiple groups. 

The dynamical features of the resulting models are then analytically studied in order to 

inspect the systemic risk of the economic clusters and determine their maximal tolerance to 

exogenous shocks. Hence, we derive a threshold condition which separates the two possible 

general outcomes of the initial shock, that is, whether it bursts forth in the district through a 

default cascade or it remains contained within the economic agents who directly suffered the 

losses of the initial shock.  

Eventually, we demonstrate that different structures of relationships bring very diverse 

results in the resilience of the districts. Technically speaking, we ground the model of the 

                                                           
1 Consider for instance the earthquakes which shook between the 20-29 of May 2012  the highly industrialized area of 
Emilia-Romagna (Italy)[28], where 37.9% of workers (Osservatorio Nazionale Distretti Italiani, 2012) are employed in 
tight networks of small and medium enterprises which are directly involved into the leading national export sectors 
(agroindustry, biomedical, precision machining and textile) 
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second chapter on the analysis of S-I-R (Susceptible, Infected, Removed) model studied by 

[20], which we carefully analyse with simulations and a Lyapunov function which we derive 

to ascertain its stability, explicating the advantages and costs of this modelling approach. The 

third chapter is all about diffusion in models with a graph structure. With regards to the latter, 

we implemented in the methodology of [13] a diffusion process both for a single and a 

composite layer of relationships. Our implementation allowed us to consider the bond 

percolation problem with the consequent critical findings of [22], which we adapted to an 

economic environment.  

II. Financial shock and contagion in industrial districts relations 

The original S-I-R (Susceptible, Infected, Removed) model is focused on deriving the dynamics 

of inter-relations within a generic and wide population composed by three homogeneous 

classes of individuals, and it is aimed to keep track of the overall composition of the aggregate 

population within the progression of a pandemic disease. Although the origin of the model 

traces back to the seminal work of [14], it is still considered a workhorse for its capability to 

provide a stylized yet realistic description of generalized contagions and diffusion processes. 

In fact, in the lapse of sixty years, the basic model characterized by a single homogeneous 

population had been widely expanded in order to account for various heterogeneities in the 

attempt to provide a realistic explanation of complex diffusion processes. However, no matter 

how intricate we construct a deterministic SIR model, it is still constrained to a set of onerous 

assumptions concerning the kind of relations agents will undertake. In fact, as it has been 

explicitly recognized by mathematic-epidemiologists and statistical physicists2, the very 

possibility to construct a set of nonlinear differential equations in the traditional deterministic 

SIR models requires the model population(s) to be “fully mixed”, that is, an individual in any 

group is equally likely to spread the infection to any other member of the population or the 

subpopulations [22].  

This incorporates the two following strict assumptions: 

1. Every member of each (sub)population may be in contact with any other individual 

belonging to the others (sub)populations with equal probability. In our case this means 

that in any instant each company has approximately the same number of business 

contacts.  

                                                           
2 [22] concisely enucleates the issue.  See[9] for a detailed exposition and a comprehensive literature review.  



3 
 

2. Each financial contact between an impaired company and a healthy one may endanger 

(i.e. infection ensues) the latter with a fixed probability which depends on the healthy 

firm group’s resilience to infection.  

Assumptions (1) and (2) are such that traditional models make sense in the context of large 

populations, where we expect to obtain some degree of homogeneity within the groups. 

Chapter III is entirely focused on relaxing both these demanding assumptions: there we 

implement in our models a graph structure in which the financial contagion may propagate 

only through the fixed layer of given relationships (and not just contacts) between specific 

agents3. However, conditional to these two assumptions, I am intended to point out the 

fruitful outcomes of the traditional modeling approach in respect to three general goals: 

1. Characterize in analytical terms a process of diffusion and the ultimate outcomes 

caused by an exogenous shock which affects a part of the population of a given 

economic environment 

2. Determine the possible existence of a threshold which engenders a qualitative 

transformation of the diffusion process 

3. Provide a metric to test the resilience of different economic sets to a given exogenous 

shock [consequent to (1) and (2)] 

2.1. Defining industrial districts within a set of assumptions 

When Charles Perrow in its 1993 celebrated paper discussed the economic organization of 

Small Firm districts4, he accurately wrote: 

Imagine breaking up the integrated firm into units whose average number of 

employees is ten each. For example, instead of 2,000 employees in one firm, there 

would be 200 firms of 10 employees each. […] The firms are usually very small – say ten 

people. They interact with each-other, sharing information, equipment, personnel, 

orders, even as they compete with one another. They are supplied by a smaller number 

of […] financial service firms. […] Three things help account for the success of Small 

Firm Networks: economies of scale through networks (still insufficiently theorized), 

                                                           
3 In the sense that every agent is endowed with a determined number of specific business relations such that it may 
have diverse degree of exposure depending on its partners. 
4 He actually defines “networks” this specific form of productive organization. However, due to the technical 
implications this word has in our discussion, we leave it for chapter third, where we actually deal with mathematical 
graph  structures 
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trust and cooperation coexisting with competition and welfare effects that increase the 

efficiency of the region. (Perrow, 1993)  

The description is coherent with the standard definition produced by Giacomo Becattini, 

I define the industrial district as a socioterritorial entity which is characterized by the 

active presence of both a community of people and a population of firms in one 

naturally and historically bounded area. In the district – and unlike in other 

environments, such as the manufacturing town – the community and the firms tend, as 

it were, to merge (Becattini, 2004)  

We provide a first approximation of a homogeneous horizontal industrial district by means of 

a set of three main assumptions synthetized by [24] and [16] which characterizes the 

production system: 

1) the social cohesion 

2) the homogeneity of skills engendered by the easiness of various local spillovers 

(information, equipment, personnel and even orders) and complete transferability 

3) Uniformity of interactions among producers 

Although virtually no author questions assumption (1) in dealing with industrial districts 

different from the horizontal homogeneous one5, assumptions (2) or (3) prove to be too 

restrictive for a broader framework.  Especially, things get dramatically more complicated 

with relaxation of Assumption (3). In the one hand, uniform (i.e. deterministic) interaction is 

useful to approximate an important feature of several horizontal (or even vertical) small firm 

networks, and is partially coherent with “Long term relationships, but possibly quite 

intermittent contacts” [24], on the other hand it just tells a part of the story. In Chapter 3 we 

will drop point (3) allowing for an evident discrimination between contacts and solid 

relationships by means of a model based on graph theory. Concerning (2), it has been widely 

recognized [25] that vertical and mature industrial districts are characterized by a composite 

physiognomy of non-transferable skills. We will relax this assumption in the second part of 

the third chapter taking into account a first degree of specialization introducing in the district 

a well-developed financial system. 

                                                           
5 Even within a critical standpoint with regards to the Marshallian “standard” model  of district, [16] endogenizes 
Marshallian cooperation and internal cohesion as a central peculiarity for most of the district typologies she identifies. 
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In the current model, stringent social ties which engender uniformity are justified by several 

functional reasons. According to [4] one of the leading  reasons is the capability to hedge 

producers against uncertainty6: agents who are affected by sudden individual shocks (e.g 

technical failures, bad investments) may get temporal relief from other firms, postponing or 

even deflecting the default by means of temporary liabilities easing or asking for favorable 

loans. However, considered the usual limited capitalization of business in industrial districts, 

this relief may constitute a significant cost to the enterprises which grant their help. In fact, 

healthy firms may get impaired by others’ defaults, leading other firms or even the district at 

large to a systemic crisis or even extinction. It is then the objective of the current model to 

provide some insights about the dynamics which characterize a homogeneous industrial 

district in the event of an exogenous economic shock.  Consequently, the identification of the 

critical factors which are responsible for the district’s economic resilience may contribute to 

define an optimal size for the district, thus explaining why such a kind of industrial 

organization is subject to spatial bounds which prevent the diffusion of a single district even 

in the absence of geographical or political constraints.  

2.2 Characterization of a Small-Firm homogeneous horizontal district 

Assumptions (1), (2) and (3) derived in 1.1.2 imply that we take no constraining specificity for 

firms belonging to horizontal districts. This, along with the extreme fragmentation of 

production processes and the easiness of spillovers leads to perfect substitutability for 

economic collaborations. Consequently, a high degree of homogeneity rules in the district. It 

seems reasonable that this thick layer of horizontal relations operates also in the event of 

dramatic shocks: a firm which suffered irreversible losses may rely on any other firm which 

belongs to the district.  Although this relief may temporarily help the impaired firm, in the 

absence of exogenous (e.g. institutional) help it will eventually default given our current 

definition of financial infection (irreversible losses). Moreover, the default may impair the 

firm’s creditors leading to a secondary infection and so on. Hence, the number of competitive 

firms decreases proportionally to the thickness of the district industrial layer. Although the 

capability to tolerate a small chronic number of firms which suffer exogenous shocks defined 

by 𝐼0 ⊆ 𝑁/{0}  is implicit to the very existence of the district, a more precise depiction of the 

dynamics is required to evaluate the drawbacks of a given shock in the set 𝑁 of businesses. In 

fact, it may be the case that in given environments, particularly severe crashes could lead the 
                                                           
6 As they point out, “Organizations participate in networks to reduce uncertainty, while the behavioural environment 
is changing rapidly. Networking can be seen as “relational contracting”.” (p.172) 
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entire district to crisis or even rapid extinction. Hence, we define a parameter 𝛽 >  0 which 

provides a metric for measuring the rate of defaulted (removed) firms.  

Thus, we consider a horizontal industrial district with a large but finite population of 

𝑁 = {𝑖, … ,𝑛} small price taker firms which interact among each other concurring to the 

supply of a common niche good. We define a district 𝐂(t) = (𝑆(𝑡), 𝐼(𝑡),𝑅(𝑡), 𝑡) the following 

set of non-linear differential equations 

 𝑑𝑆
𝑑𝑡

= 𝑆̇ = −𝛼𝑆(𝑡)𝐼(𝑡)          

𝑑𝐼
𝑑𝑡

= 𝐼̇ =  𝛼𝑆(𝑡)𝐼(𝑡) − 𝛽𝐼(𝑡)            t ϵ 𝑅+ 

𝑑𝑅
𝑑𝑡

= 𝑅̇ =  𝛽𝐼(𝑡)             

(1.1) 

 

(1.2) 

 

(1.3) 

 

𝑆 ⊆ 𝑁 represents the number of healthy firms in the district which interact with 𝐼 ⊆ 𝑁 firms 

that had been directly or indirectly impaired by the exogenous shock. With no defaults (i.e 

𝛽 =  0), the number of impaired firms would grow at 𝐼̇ = −𝑆̇. However, the default parameter 

acts in limiting the diffusion of the defaults at a rate proportional to the number of impaired 

firms. Summing all together we get that the aggregate dynamic reveals to be conservative 

with respect to time. The sum implies the upper constraint: 

 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑁 (1.5) 

  

Hence, given the α and β parameters and the vector 𝐕𝟎ϵ 𝑅3 of the initial conditions: 

 𝑅(0) = 0, 𝑆(0) = 𝑆0 > 0, 𝐼(0) = 𝐼0 > 0 (1.6) 

 

We define a district environment 𝐸 =  (𝛼,𝛽,𝑽𝟎). 

2.3 The Qualitative behaviour of homogeneous industrial districts 

In order to study 𝐸, we extend the analysis focusing on the qualitative behaviour implied by 

(1.1) and (1.2) to sketch the first particularity of this non-linear dynamic system. Hence, we 
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linearize7 the system of equations and we obtain the Jacobian Matrix in which the two rows 

are the gradients  ∇İ(𝑿0) and  ∇Ṡ(𝑿0) .  

 𝑱|(𝑆∗,𝑃∗)  = �−𝛼𝐼 −𝛼𝑆
𝛼𝐼 −𝛼𝑆 − 𝛽� (1.7) 

It follows immediately that whatever 𝑠∗ the solution 𝐼∗ = 0 causes an interesting singularity in 

𝑱 (the first column is 0). Singularity implies that one eigenvalue is zero; hence the entire 

dynamics will be “stretched” around the eigendirection defined by the other one.  

Through standard procedures, we find that 𝜆1 = 0 and 𝜆2 = −𝛼𝑆 − 𝛽 =  𝜏(𝐽) , which, due to 

non-negative conditions of (1.6), it implies that:  𝜆2 < 0. Consequently, the solution of the 

linearized system is stable.  The solution 𝐼∗ = 0 is attractive independent of S. Hence, 𝐼∗  =  0 

is a line of singularities and 𝐼(∞) = 0.  However, the stability which we ascertained from the 

linearized system is a necessary but insufficient condition: in fact, in the presence of 𝜆1 = 0 

(i.e. an eigenvalue with zero real part), the Hartman–Grobman theorem does not apply. That is 

to say that we should rely on other instruments to ascertain the stability of the actual non-

linear system. I offer a proof of local asymptotic stability in the domain defined by the N firms 

by means of a Lyapunov Function 𝐿:ℝ𝟐 → ℝ. The L function is such that  

 𝐿(𝑆, 𝐼) > 0   ∀(𝐼, 𝑆) ∈ 𝑁\{0} 

𝑑𝐿
𝑑𝑡

(𝑆, 𝐼) < 0 ∀(𝐼, 𝑆) ∈ 𝑁\{0}  

 

The existence of such a function is a necessary and sufficient condition to ascertain the system 

local stability. Thus, we construct the following  equation: 

 𝐿 = 𝜑𝑆2 + 𝐼2        

Which is a simple quadratic equation (with a parameter 𝜑) which satisfies the first 

requirement. We develop 𝐿̇ in order to ascertain the feasibility of the second requirement 

 𝑑𝐿
𝑑𝑡

(𝑆, 𝐼) = 2𝜑𝑆̇𝑆 + 2𝐼𝐼̇ = 2𝜑𝑆(−𝛼𝑆𝐼) + 2𝐼(𝛼𝑆𝐼 − 𝛽𝐼) 

= 2(𝛼𝑆𝐼(𝐼 − 𝜑𝑆) − 𝛽𝐼2) 

 

Now, notice that both 𝑆(𝑡) and 𝐼(𝑡) must be non-negative and constrained by (1.5). Further, 

we defined 𝛽 > 0. Hence, the second part of the equation is negative. This is also the case for 

the first part if 𝐼 − 𝜑𝑆 < 0. Thus, it suffices to impose 𝜑 = 𝑁 to satisfy both the requirements. 

Further, when 𝐼 = 𝐼∗ = 0 →  𝑑𝐿
𝑑𝑡

(𝑆, 𝐼) = 0 and the system is in equilibrium.  ∎  

                                                           
7 For Linear stability Analysis see, for instance,[26] or [10] 
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2.4 The contagion cascade: definition and threshold derivation 

Given C, we can shed some light on the diffusion process triggered by the initial shock which 

affected the 𝐼0 firms. In order to do so, let’s focus on the behavior of (1.2) at time 𝑡 = 0 

 𝑑𝐼
𝑑𝑡
�
𝑡=0

= 𝐼0(𝛼𝑆0 − 𝛽) (1.8) 

   

It is fair to notice that financial contagion may or not spread across the agents depending on E. 

That is: 

 

�
𝐼�̇
𝑡=0

 > 0 𝑖𝑓 𝑆0 >  
𝛽
𝛼

𝐼�̇
𝑡=0

 < 0 𝑖𝑓 𝑆0 <  
𝛽
𝛼

 

 

(1.9) 

Given our specification of (1.1), it is  𝐼̇ ≤ 0. Hence, in the case of a shock that affect some agent 

(causing  𝐼0 to be positive), (𝑡) < 𝑆0 ∀ 𝑡 ∈ 𝑅+ . This relation is relevant because it allows 

inferring from  𝐼�̇
𝑡=0

 the dynamics of 𝐼 ̇∀ 𝑡 ∈ 𝑅+. If 𝑆0 <  𝛽
𝛼

 : 

 𝑑𝐼
𝑑𝑡

= 𝐼𝑡(𝛼𝑆𝑡 − 𝛽) ≤ 0    ∀ 𝑡 ∈ 𝑅+  (1.10) 

   

Hence,  𝐼0 > 𝐼𝑡 → 0 for t → ∞. The converse applies for some time interval 

 if 𝑆0 >  𝛽
𝛼

 →  𝐼(𝑡)  >  0 increases for some initial time span leading to contagion. Hence, we 

define 

𝛽
𝛼

= 𝜌 = 𝑆𝑐  

the contagion cascade threshold. It offers a measure for the tolerance of C. Now it is relevant 

for the subsequent analysis to develop a metric8 for the secondary contagions generated by 

the primary contagion. Consider the transmission rate: 

 𝑅0 =
𝛼𝑆0
𝛽

=  
𝑆0
𝜌

 (1.11) 

 

 

                                                           
8 See [20] which refers to  Diekman et al. (1990) for thresholds in a heterogeneous population 
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It is easy to see that 𝑅0 > 1 implies 𝛼𝑆0 > 𝛽 ; that is, the first indirect wave of contagions 

overtakes the default rate. Hence, we are back to the conditions derived in (1.9) 

2.5 Financial Contagion dynamics  

Definition 1.1 I define the set of the all the possible firms in the district which will experience 

irreversible losses as 𝑰 = {(𝑛, 𝑡): ∀ 𝑡 ∈ 𝑅+ 𝑛 ∈ [0,𝑁] }  

Definition 1.2 I define a contagion outbreak as the set  𝑶 = {∀(𝑡, 𝑛) ∈ 𝑅+𝑥 𝐼 ∶   𝐼(𝑡) > 𝐼(0)}.  

Apart from the threshold we found in section 1.1.2, the McKendrick model offers other 

interesting insights, which we can derive from the following analytical results. First, we 

construct a differential equation which defines the variation of the precarious firms relative to 

the changes in firms’ population on which these businesses may rely for help. Dividing (1.1) 

by (1.2) we obtain: 

 𝑑𝐼
𝑑𝑆

𝑑𝑡
𝑑𝑡

=  −
𝐼(𝛼𝑆 − 𝛽)

𝛼𝑆𝐼
=  
𝜌
𝑆
− 1 

(1.12) 

 

 

The dynamics of which we can summarize in the following: 

 

 𝑑𝐼
𝑑𝑆

=  � > 0 𝑖𝑓 𝑆 <  𝜌
< 0 𝑖𝑓 𝑆 > 𝜌  (1.13) 

 

 

From (1.13) I notice the existence of a maximum for the single argument real function 

𝑓(𝑆) = 𝑑𝐼
𝑑𝑆

  which implies non-trivial behaviour. Setting 𝑑𝐼
𝑑𝑆

= 0 we consequently obtain that: 

 max𝑠  𝑓(𝑠) = max
𝑠

 (𝜌
𝑆
− 1) produces  𝑆∗ = 𝜌 (1.14) 

Hence, I define: 

  ∀ 𝑡, 𝑆0 ∈ (𝑅+𝑥 𝑁):  𝜌  ≤ 𝑆0 ≤ (𝑁 − 1),∃ 𝐼(𝑡) ∈ 𝑰 𝑠. 𝑡.  {𝐼(𝑡) > 𝐼(0)}  ≠ {∅}  (1.15) 

 

Which equals to say that the contagion outbreak set 𝑶(𝑡) is non-empty. It is then worth to 

derive explicit solutions of (1.12) through separation of variables: 
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 �
𝑑𝐼
𝑑𝑆

𝑑𝑆 = �(
𝜌
𝑆
− 1)𝑑𝑆 + 𝐾 hence�𝑑𝐼 = −�𝑑𝑆 + 𝜌�

1
𝑆
𝑑𝑆 + 𝐾  

 

   

The analytic result immediately follows: 

 𝐼(𝑡) + 𝑆(𝑡) − 𝜌 ln 𝑆(𝑡) = constant (1.16) 

Where we employ the initial conditions for the constant: 𝐾 =  𝑆0 + 𝐼0 − 𝜌 ln 𝑆0.  

We gathered all the elements necessary to determine the financial contagion outbreak. In 

order to do so, we rearrange (1.15) plugging into (1.13). That gives 

 𝐼(𝑡) = 𝑁 − 𝜌 +  𝜌 ln �𝜌
𝑆0
�  (1.17) 

   

Secondarily, differentiating 𝑆 on 𝑅 (i.e.: dividing (1.1) by (1.3)) we bring in place the analytical 

solution for the firms susceptible of financial contagion, that is: 

 𝑑𝑆
𝑑𝑅

=  −
𝑆
𝜌

 (1.18) 

Again, separating the variables: 

 
𝑆(𝑡) =  𝑆0𝑒

− 𝑅(𝑡)
𝜌  >  𝑆0𝑒

− 𝑁𝜌  >  0 
(1.19) 

The asymptotic behaviour of the system is then bounded by (1.5):   

 0 < 𝑆(∞) < 𝑁 𝑎𝑠 t → ∞ (1.20) 

 

Combining (1.20) with the resulting dynamics derived in (1.5) for the set of solutions 

(I∗, S) ∀ S ∈ (0,𝑁], we obtain the number of total defaulted firms after the diffusion triggered 

by the initial chock: 𝑅(∞) = 𝑁 − 𝑆(∞) 

2.6 Simulation of two homogeneous District Environments 

It may be useful to have a graphical perspective of the behaviour of a composite class of 

district environments 𝐸𝑖 𝜖 (𝛼,𝛽,𝑽𝟎) . To understand the mechanics behind the different 

scenarios and observe the diffusion of financial contagion and inspect the possibility for 

default-cascades I compiled with Mathematica𝑇𝑀 a basic SIR model.  Both the districts 𝐶1,𝐶2 

are defined on N = 418 small. They both undergo an initial shock which directly affects a fixed 
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number of 𝐼0 = 24 factories.  For the sake of realism, I will consider a period of three years 

observed in months (i.e. 36 periods). The parameters are 𝛽 = 1 and 𝛼 = 0.000574. Imposing 

𝛽 = 1 we are saying that with no diffusion or default cascades, 𝐼(𝑡) → 0 as 𝑡 → 6 months. As it 

emerges in Figure 2, the initial shock does not produce a default-cascade. This follows from 

the fact that the tolerance offered by the contagion-cascade threshold in the actual context is 

equal to 𝜌1 = 1754.  Now consider a second example of district environment. Everything 

equal, let us consider a district which much lower resilience than 𝐶1. That is, district 𝐶2 is 

calibrated with   𝛼2 = 4,5𝑥10−3 Hence, the tolerance is lower than 𝑆0, that is, 𝜌2 = 218 and 

the infection ensues with dramatic effects, as notable in Figure 3. 

 
Figure 2.1 - Firms which run in trouble (Impaired) 

 
Figure 2.2 - Firms in good financial conditions 

 

  
Figure 2.3 - Firms which incurred in Default 

 

 
Figure 2.4 – The General Picture 
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Figure 3.1 - Firms which run in trouble (Infected) 

 
Figure 3.2 - Firms in good financial conditions 

 

  
Figure 3.3 - Firms which incurred in Default 
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Figure 3 – The District Environment 𝐸2 =  { 𝛼2 = 4,5𝑥10−3,𝛽 = 1, 𝑆𝟎 = 394,  𝐼𝟎 = 24} 
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We can summarize the critical elements of the basic industrial district model through the 

comparison of the two environments’ phase portraits. The condition (1.5) engenders the 

initial condition 𝑆0 + 𝐼0 = 𝑁. In fact, whatever point  𝑥0 = (𝑆0, 𝐼0) we will start from, it will be 

bounded to the N line. Now notice the difference between environments 𝐶1 and 𝐶2.  With 

respect to the former, the tolerance 𝜌1 is far from being put under stress by 𝑆0. Hence, from 

(1.13) and (1.19) it follows that the shock impact is contained into the district and no peak is 

observable in the default dynamics. The maximum number of firms in trouble in a given 

moment is I(0). That is to say, every trajectory which origins in the line N of Figure 4.1 is 

monotonically attracted by the 𝐼 = 0 solution. Conversely, in Figure 4.2 the cascade threshold 

𝜌2 is exactly equal to 218. Hence, given the set of the all the possible firms which may 

experience irreversible losses 𝑰 and N−𝐼0 > 𝜌2 , condition (1.15) applies and the set O 

(Definition 1.2) is non-empty.   

III. Financial shocks and contagion in industrial network relationships – a stochastic 

approach 

So far, one of the leading assumptions which we relied on in dealing with financial infection in 

industrial clusters was homogeneity of contacts among the economic actors of our cluster. 

While this may fairly proxy many features of reality in a stylized fashion, it fails in carving the 

underlining structure of fundamental interactions for economic agents. In fact, the “fully-

mixed” assumption which rules in deterministic equations assumes that economic agents are 

roughly exposed at random to an equal number of business contacts in any instant of time 

([22], [20]). Further, the business district is assumed to be thickly interconnected in a way 

such that any agent is able to potentially cooperate with any other directly. While this may be 

the case in horizontal districts or districts where specificity of investments is low and 

spillovers are eased by a relatively limited degree of specialization9, the definition of an 

underling structure becomes a priority in composite districts in which the externalization of 

functions10 produces a layer of complex solid business relationships wherein technical 

spillovers funnel through [6]. Consequently, as [2] stances: 

The Marshallian ‘industrial district’ (see Bellandi 1989b) is a localized ‘thickening’ (and 

its strengths and weaknesses both lie in its spatial limitation) of inter-industrial 
                                                           
9 [12] discuss and provide empirical findings related to the evolution of industrial districts in Italy and Taiwan. [6] 
identify the category of Horizontally Diversified Agglomerations  
10By means of a detailed empirical investigation, [25] proves that technical development and specialization in 
industrial districts result in a process of “vertical disintegration”.  Subcontracting is one of the possible routes to 
expansion, but definitively not the unique one [6]. 



14 
 

relationships which is reasonably stable over time. Its composite nature, tending 

toward the multisectorial, gives it, even in the midst of intense change, a stability which 

a unit such as a single industry, in the technological sense of the term, lacks (p. 16) 

 

And, in this precise framework, [24] concisely points out that small firm industrial networks 

firstly (but not exclusively) represent an organizational answer to the production process, 

hence the need to study the solid layer which underlies under any apparently casual 

transaction. These remarks lead us to a simple but crucial observation: the implementation of 

an underling graph structure in the next models, far from being a mere sophistication, is 

consequent to the very concept of industrial district. In this very light we eventually introduce 

the last degree of complexity, building a network model with two kinds of economic actors.  

3.1. The Industrial Cluster through the graph theory 

As anticipated, the models which we are going to present in this section are developed within 

the bounds of graph theory. Following [15], [21] and [13] I define a network (𝑁,𝑮) as a finite 

set of 𝑁 = {1, … , 𝑖, … ,𝑛} nodes (agents) and 𝐺 ⊂ 𝑁x𝑁 edges (links) described by means of  

Adjacency matrix  𝑮 𝒏𝒙𝒏 ∈  {0,1}𝑛 , such that 

 𝑖𝑓 ∃(𝑖, 𝑗) ∈ 𝑁x𝑁 𝑠. 𝑡 (𝑖, 𝑗) ∈ 𝐺 → 𝑔(𝑖, 𝑗) = 𝑔𝑖𝑗 ≠ 0   

Hence, the Adjacency matrix describes the set of relations of our network. Two agents are said 

to be neighbours if a relationship between them exists (𝑔𝑖𝑗 +  𝑔𝑖𝑗 ≠ 0 ). For the sake of the 

goal of our models (i.e. explain the contagion dynamics), we apply two important but non-

strictly necessary restrictions to the G matrix: 

1. 𝑮 𝒏𝒙𝒏  is symmetric, and consequently, the graph is undirected  

2. 𝑔𝑖𝑗 =  �  1 𝑖𝑓 (𝑖, 𝑗) ≠ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   that means that the relations are non-weighted  

While these restrictions appear to be compelling in an economic context where relative 

liabilities may exactly be encapsulated by means of the adjacency matrix, they are useful to 

provide a straightforward illustration of the contagion dynamics. We define a component the 

set of vertices that can be reached from any element of the component by paths running along 

edges of the graph [21]. Hence, a component is a non-empty sub-network (𝑁’, 𝒈’) such 

that 𝑁′ ⊂ 𝑁/{∅},𝒈′ ⊂ 𝒈. As we will demonstrate, understanding the size of a component 
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relative to the overall dimension of a network is crucial in our context.  Finally, the degree 𝑑𝑖 

of a node i is such that 𝑑𝑖 = ∑ 𝑔𝑖𝑗∞
𝑗=1  

3.2. Stochastic Graphs modelling with generating functions 

Firstly, we define a random graph as a network in which the agents’ connections are 

described by a probabilistic rule given by a probability distribution 𝑃(𝑑) of the degrees d, that 

is, of the number of connections each agent have.  After having defined the basic concepts on 

which I develop the model, it is fundamental to spend some words justifying the sense of 

random graph employment. As random graphs are defined by means of processes which are 

known ex-ante, it is possible to contrast existent forms of networks (such actual industrial 

districts) with the proprieties distilled from different degree distributions. However, as 

noticed in [13], stochastic graph modelling plays a major role especially when dealing with 

complex diffusion processes which heavily depend on the structure of the graph (i.e. the 

actual distribution of edges among agents). These models identify general rules (boundary 

conditions) and approximate the edge structure of actual networks within a set of known 

proprieties. In the following models we implemented fixed graphs, in which the structure of 

relations does not change in time during the infection. In order to study the resilience of an 

industrial cluster in a generalized network context (i.e. without a priori definition of the 

degree distribution), we will rely on the analysis of the components structure. Hence, we 

follow [8] and [22] that develop an elegant and exact methodology rooted in the employment 

of (ordinary) generating functions. These formal power series are thus defined: 

 
𝐺𝑃(𝑥) = �𝑃(𝑑)𝑥𝑑

∞

𝑑=0

 
 

(2.1) 

The functions prove to be extremely useful to characterize and in defining the properties of 

the degree distributions P(d). For instance, setting 𝑥 = 0, after the repeated derivative we 

obtain: 

 𝑑𝑑𝐺𝑃(𝑥)
𝑑𝑥𝑑

�
𝑥=0

= 𝑃(𝑑)[𝑑(𝑑 − 1)(𝑑 − 2) … 1] = 𝑃(𝑑)𝑑! 

𝑃(𝑑) =
𝑑𝑑𝐺𝑃(𝑥)
𝑑𝑥𝑑

�
𝑥=0

1
𝑑!

 

 

 

 

 

(2.2) 
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That is, the generative function 𝐺𝑃 generates the probability distribution P(d). In order to 

elucidate the infection process, we make use of the following array of properties derived in 

[13]: 

1. 𝐺𝑃(1) = ∑ 𝑃(𝑑)1𝑑 =  ∑ 𝑃(𝑑) = ∞
𝑑=0

∞
𝑑=0 1 provided that P(d) is a normalized probability 

distribution 

2. 𝑑 𝐺𝑃(1)
𝑑𝑥 = 𝐺𝑃′ (1) = ∑ 𝑃(𝑑)𝑑𝑥𝑑−1 = < 𝑑 > ∞

𝑑=0  is the network mean degree 

However, the fundamental contribution of generating functions to the percolation problem is 

given by tracing the two following properties 

3. Consider two independent draws of a random variable D. The probability that their 

sum is d is given by:∑ 𝑃(𝑖)𝑃(𝑑 − 𝑖)𝑑
𝑖=0 = 𝑃2(𝑑). Hence, given that 𝑃2(𝑑) is a probability 

function itself, it has an associated generating function: 

 
𝐺𝑃2(𝑥) = �𝑃2(𝑑)𝑥𝑑 = ��𝑃(𝑖)𝑃(𝑑 − 𝑖)𝑥𝑑

𝑑

𝑖=0

∞

𝑑=0

∞

𝑑=0

 
 

Conversely,  
[𝐺𝑃(𝑥)]2 = ��𝑃(𝑑)𝑥𝑑

∞

𝑑=0

�
2

= �𝑃(𝑖)𝑃(𝑗)𝑥𝑖+𝑗 = 𝐺𝑃2(𝑥)
∞

𝑖,𝑗

 
 

 

The result is generalizable to m independent draws by means of [𝐺𝑃(𝑥)]𝑚. 

4. Consider a distribution P generated by picking a distribution 𝑃𝑖  from a series of 

distributions (𝑃1,𝑃2, … ) with probability 𝜋𝑖  and consequently drawing from it. Then, it 

ensues that 𝐺𝑃 = ∑  𝜋𝑖𝐺𝑃𝑖
 
  

3.3. The Defaulting process in a graph structure: a network in the network 

Suppose that we generate our industrial cluster by means of a configuration model11. In this 

framework, agents are endowed with a degree distribution P(d). That is, the production 

structure is such that the N firms have a probability P(d) to be in partnership with d agents. 

Further, the production structure is such that the firms are vertically distributed along the 

production chain in a way that we do not experience short-loops (figure 7.2). Now suppose 

that every given economic relationship settled between two firms 𝑖, 𝑗 ∈ 𝑁  in the graph has a 
                                                           
11 See [13] for details 
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probability 𝑇𝑖𝑗 to transform into insolvency in the case one of the two firms defaults. 

Assuming that defaults are random and uncorrelated, a second configuration model is formed 

inside the district graph through the sub-network of impaired relationships and it is 

characterized itself by a new degree distribution.  Testing the resilience of our industrial 

network is then equal to study this second layer of potential insolvencies, whose size is defined 

by means of a given transmissibility rate which averages all the 𝑇𝑖𝑗.  Hence, we are questioning 

whether an initial random default may generate a default stream trough the network of 

relationships which may eventually reach any firm in the component to which the first 

impaired firm belongs. Therefore, the dimensions involved in the actual transmission problem 

are thus summarized: 

• The original network of firms and relationships generated by means of a configuration 

model with distribution P(d) 

• A second-level layer of potential insolvencies (i.e. impaired relationships) whose size is 

dependent on 𝑇𝑖𝑗  ∀ 𝑖, 𝑗 ∈ 𝑁.  

• A randomly chosen firm belonging to a component of the original network which get 

impaired by an exogenous shock 

In fact, this exact question corresponds to the classical bond percolation problem of Physics 

[22]. As before, we want to find a synthetic metric for the resilience of the industrial district 

(i.e. a threshold) given the initial conditions of the environment. In a graph theory 

perspective, the capability of the district to undertake an initial shock is conditional on 

whether a component with maximum size (i.e. a giant component) of potential insolvencies 

emerges or not in the long run inside the original network structure12. In the case of 

emergence, the ultimate size of the default stream is equal to the size of the component to 

which the first impaired firm belongs. I follow [13] for the methodology to inspect the 

component size of an actor taken at random13 and I subsequently develop on this method the 

crucial results of [22] both for a homogeneous population of industrial firms and for a mixed 

population of firms and saving banks. On the one hand, the two-step modeling approach is 

necessary to boil down the complexity of the second model by presenting the central issues 

with the homogeneous case and then implementing the heterogeneity. On the other hand, as 

stated before, homogeneous districts with a layer of solid relationships are a fact of reality. 
                                                           
12 As [21] points out, a further characterization of the outbreak evolution in time would require a mean-field 
approximation. 
13 Jackson methodology slightly departs from the one developed in [23] and enriched in [22] for percolation 



18 
 

Hence, I first derive the methodology and then implement the percolation problem. The 

examined method is consistent with our initial assumption concerning the industrial district; 

in fact, as pointed both by [22] and [13], the method presumes a tree local structure. That is, 

no short-loops (i.e. loops between close agents) exist. 

3.4. Generating Functions and agents reachability 

As anticipated in the previous section, the study of the resilience characterized by means of a 

graph structure deals with the eventual length of a default stream. Hence, we need to 

understand the size of the population which may be eventually affected via indirect 

connections by a randomly impaired firm.  We define Q as the distribution of the number of 

firms which are reachable by randomly choosing a business relation in the network, selecting 

one of the two agents which are therethrough connected and summing every agent which is 

connected to this agent by all the paths except the one we originally used to reach him. Hence, 

𝐺𝑄(𝑥) is the generating function associated with the distribution Q. Now define: 

 
𝑃�(𝑑) =

𝑑𝑃(𝑑)
∑ 𝑑𝑃(𝑑)𝑑

=
𝑑𝑃(𝑑)
< 𝑑 >

 
(2.3) 

That is, 𝑃�(𝑑) represents the number of connections we expect the neighbor of an agent to 

have. Put in other terms, 𝑃�(𝑑) is the expected degree of an agent found after randomly picking 

a link and considering one of the two agents connected by it. This metric is fundamental since 

it is able to account for the different relevance of agents (in terms of connections) belonging to 

a network. In fact, while we expect an agent chosen at random in the network to be 

economically involved with <d> partners, we understand that randomly picking a link and 

choosing one of the two agents connected yields a higher probability to reach an agent with a 

relatively higher connectivity. Coming back to the construction of Q, there is a probability  

𝑃�(𝑑) to reach an agent involved in d economic partnerships. Consequently, the original link 

generates d – 1 partnerships and each of these d – 1 links may be followed to find Q additional 

agents. That means that with a large number of agents involved, Q is a random variable. 

Consequently, the generating function of the sum of d – 1 draws from Q is encapsulated by the 

generating function 𝐺𝑄(𝑥) by means of Property 3: [𝐺𝑄(𝑥)]𝑑−1. The generating function of the 

distribution of the agents found after the first agent is then given by  

Property 4: ∑ 𝑃�(𝑑)[𝐺𝑄(𝑥)]𝑑
𝑑−1.  However, we should account also for the agent we initially 

found, hence updating the generating function. The relation between the distribution P of d 
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and the one of d + 1  is such that the distribution of d is 𝑃�(𝑑) = 𝑃(𝑑 − 1). Consequently, the 

generating function is: 

 
𝐺𝑃�(𝑥) = �𝑃(𝑑 − 1)𝑥𝑑 = 𝑥𝐺𝑃(𝑥)

∞

𝑑=1

 
 

Eventually, the generating function for the component size is thus defined by 

 
𝐺𝑄(𝑥) = 𝑥�𝑃�(𝑑)[𝐺𝑄(𝑥)]𝑑−1

∞

𝑑=1

 
 

(2.4) 

Here we have a departure of Jackson from [23]. In spite of 𝑃�(𝑑), they define a generating 

function 𝐺1 which accounts for the number of links departing from a node excluding the one 

used to reach it. However, it is possible to bridge the two methods noticing that: 

 
[𝐺𝑄(𝑥)]2 = 𝑥�𝑃�(𝑑)[𝐺𝑄(𝑥)]𝑑 = 𝑥𝐺𝑃� �𝐺𝑄(𝑥)�

∞

𝑑=1

 

𝐺𝑃� �𝐺𝑄(𝑥)�
𝐺𝑄(𝑥) =

𝐺𝑄(𝑥)
𝑥

= �𝑃�(𝑑)[𝐺𝑄(𝑥)]𝑑−1
∞

𝑑=1

 

 

(2.5) 

Given (2.3): 

 𝐺𝑃� �𝐺𝑄(𝑥)�
𝐺𝑄(𝑥) =

∑ 𝑃(𝑑)𝑑[𝐺𝑄(𝑥)]𝑑−1∞
𝑑=1

< 𝑑 >
=
𝐺′𝑃(𝐺𝑄(𝑥))
𝐺𝑃′ (1)

= 𝐺1 
 

3.5. The Infection Dynamics  

 We gathered everything we need to introduce the financial infection dynamics in our 

economic network by means of a percolation problem. The passage from the deterministic 

model in which fully mixed classes (compartments) of homogeneous agents interact to a 

network structure where actors are characterized by a heterogeneous layer of relations has a 

cost in terms of model solvability. In fact, the N firms of our stochastic network are 

individually characterized by a composite set of features: 

1. The number of agents which a single agent is in partnership with, represented by the 

distribution P(d) 

2. The average financial exposure of agent i with respect to agent j, defined by the 

random variable 𝛽𝑖𝑗  which is distributed by 𝑃𝑖(𝛽)  
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3. The time 𝜏𝑖 during which an impaired firm i continues its activity with its partners 

before declaring bankruptcy, which follows a distribution P(𝜏) 

As pointed in [21], the stringent connection between percolation in a network and traditional 

deterministic diffusion was identified by [11], which reduced the complexity of the problem 

by means of a crucial assumption on the transmission mechanism which I briefly depict. If we 

assume that 𝛽, 𝜏 are independent and identically distributed (IID), it is possible to boil down 

the characterization of 2 and 3. Let us define: 

 1 −  𝑇𝑖𝑗 =  (1 − 𝛽𝑖𝑗∆𝑡)
𝜏𝑖
∆𝑡  

 As the probability that the financial shock is not going to be transmitted from the impaired 

firm i to firm j. Setting ∆𝑡 = 1 we obtain [22] the probability of transmission in discrete time-

steps: 

 𝑇𝑖𝑗 = 1 −  (1 − 𝛽𝑖𝑗)
𝜏𝑖
  (2.6) 

Obviously, 𝛽𝑖𝑗 may vary among individuals and it is not realistic to assume it to be symmetric 

(firms in a production chain usually do not develop reciprocal liabilities). Also, 𝜏𝑖 typically 

differs according to a series of peculiar characteristics of agents. However, being both 𝜏𝑖 and 

𝛽𝑖𝑗 IID, it follows that 𝑇𝑖𝑗 is independently and identically distributed too. Hence, we can 

define a-priori the probability of transmission of the default 𝑇𝑖𝑗 by averaging over the two 

distributions 𝑃𝑖(𝛽) and P(𝜏): 

 
𝑇 = 1 −  �𝑑𝛽�𝑃(𝛽)𝑃(

∞

𝜏=0

𝜏)(1− 𝛽)𝜏 
(2.7) 

Hence, although in the absence of a mean field approximation we are not able to define “laws 

of motion” for the diffusion of the infection such as the ones of the previous chapter, the T 

parameter provides a powerful yet simple characterization for the default process. Further, 

under the assumption of I.I.D14 for 𝛽𝑖𝑗 and 𝜏𝑖  it leaves room for a heterogeneous 

characterization of the economic agents.  The percolation problem is then applied to the study 

of the resilience of our economic set by noticing that the distribution of the impaired 

components which contain a single firm impaired by the initial exogenous shock corresponds 

to the distribution of occupied clusters of the classical bond percolation problem.  Firstly, we 

                                                           
14 Which may also be realistically  tackled, as proved in [22] 
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develop the infection spreading among a single population and then we will generalize to a 

bipartite economic set in which industrial and financial firms are strictly interconnected. 

3.6. Generating Functions for Impaired Firms  

Let me define two new generating functions which account for the number of potential 

insolvencies as a function of the probability of transmission T defined in (2.7). We make use of 

the binomial distribution to express the probability that a firm faces exactly k defaults among 

the d agents with which it is in partnership.  Hence, the probability is given by 

 �
𝑑
𝑘
�𝑇𝑘(1 − 𝑇)𝑑−𝑘 (2.8) 

We implement the distribution P(d) with (2.8) to design the probability distribution of the 

potential insolvencies. We generate it via: 

 
𝐺𝑃(𝑥,𝑇) = �𝑃(𝑑)��

𝑑
𝑘
� (1 − 𝑇)𝑑−𝑘

𝑑

𝑘=0

(𝑇𝑥)𝑘
∞

𝑑=0

 
 

(2.9) 

By the virtues of the Binomial Theorem we know that 

 
��

𝑛
𝑎
� 𝑥𝑛−𝑎𝑦𝑎 =

𝑛

𝑎=0

(𝑥 + 𝑦)𝑛 
 

 

Consequently (2.9) becomes: 

 
𝐺𝑃(𝑥,𝑇) = �𝑃(𝑑)�1 + 𝑇(𝑥 − 1)�

𝑑
= 𝐺𝑃(1 + 𝑇(𝑥 − 1))

∞

𝑑=0

 
 

(2.10) 

Notice that when T = 1 the generating function for the distribution of the impaired 

relationships boils down to the generating function of the degree distribution P(d). That is, 

𝐺𝑃(𝑥, 1) = 𝐺𝑃(𝑥) . Hence, when the average financial exposure 𝛽  and the average time of 

activity of an impaired firm 𝜏  are great enough, the transmissibility T is such that the layer of 

potential insolvencies corresponds to the entire network of relationships, and the size of the 

component of the defaulted firms will equal the size of the component to which the initially 

impaired firm does belong. Hence, 

Now consider:  
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𝐺′𝑃(𝑥,𝑇) = 𝑇�𝑃(𝑑)𝑑�1 + 𝑇(𝑥 − 1)�

𝑑−1
∞

𝑑=0

 
 

(2.11) 

And notice that  

 𝐺′𝑃(1,𝑇) = 𝑇 < 𝑑 >  

From which I construct 𝐺𝑃�(𝑥,𝑇). The probability to reach an impaired firm starting randomly 

from a bond is 

𝐺𝑃�(𝑥,𝑇) = 𝑥
𝐺′𝑃(𝑥,𝑇)
𝐺′𝑃(1,𝑇)

 
 

(2.12) 

Similarly, from (2.5) we may define the 𝐺𝑃��𝐺𝑄(𝑥),𝑇� for impaired firms: 

𝐺𝑃��𝐺𝑄(𝑥),𝑇� = 𝑥
𝐺′𝑃(𝐺𝑄(𝑥),𝑇)
𝐺′𝑃(1,𝑇)

 
(2.13) 

Now, we go back to (2.5) and update and reformulate (2.5)  

 
𝐺𝑄(𝑥,𝑇) = 𝑥

𝐺𝑃��𝐺𝑄(𝑥,𝑇),𝑇�
𝐺𝑄(𝑥,𝑇)  

𝐺𝑄(𝑥,𝑇) = �𝑥𝐺𝑃��𝐺𝑄(𝑥,𝑇),𝑇� 

 

 

 

(2.14) 

Even if we don’t know how to solve (2.14), it is possible to use Property 2 differentiating by x 

and substituting 𝑥 = 1 in order to obtain the average number of impaired firms found from 

one randomly chosen link. 

𝐺𝑄′(𝑥,𝑇) =  1
2
�𝑥𝐺𝑃��𝐺𝑄(𝑥,𝑇),𝑇��

− 12 �𝐺𝑃��𝐺𝑄(𝑥,𝑇),𝑇� + 𝑥𝐺′𝑃��𝐺𝑄(𝑥,𝑇),𝑇�𝐺𝑄′(𝑥,𝑇) �  
(2.15) 

 

Hence, given that   

 𝐺𝑄(1,𝑇) = 𝐺𝑄(1) = 1 =  𝐺𝑃��𝐺𝑄(1,𝑇),𝑇�  

 by means of Property 1 (2.15) boils down to 

𝐺𝑄′(1,𝑇) =
1
2
�1 + 𝐺′𝑃��𝐺𝑄(1,𝑇),𝑇�𝐺𝑄′(1,𝑇) �  (2.16) 

The derivative of 𝐺′𝑃��𝐺𝑄(𝑥,𝑇),𝑇� equals: 

 
𝐺′𝑃��𝐺𝑄(𝑥,𝑇),𝑇� = 𝐺′𝑃�(1,𝑇) =

𝐺′𝑃(𝐺𝑄(𝑥,𝑇),𝑇)
𝐺′𝑃(1,𝑇)

+ 𝑥
𝐺′′𝑃(𝑥,𝑇)
𝐺′𝑃(1,𝑇)
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Hence, plugging 𝐺𝑄(1,𝑇) = 1 and simplifying T  

 
𝐺′𝑃��𝐺𝑄(1,𝑇),𝑇�  =  �𝑇 

∑ 𝑃(𝑑)𝑑(𝑑 − 1)1𝑑−2∞
𝑑=0

< 𝑑 >
+ 1� 

 

=
𝑇

< 𝑑 >
(< 𝑑2 > −< 𝑑 >) + 1 

=   𝑇 �
< 𝑑2 >
< 𝑑 >

− 1� + 1 

(2.17) 

Where < 𝑑2 > = ∑ 𝑃(𝑑)𝑑2∞
𝑑=0   is a part of the variance of the degrees15. Hence, solving for 

𝐺𝑄′(1,𝑇)  equation (2.16) gives: 

𝐺𝑄′(1,𝑇) =
1 

1 − 𝑇 �< 𝑑2 > −< 𝑑 >
< 𝑑 > �

 (2.18) 

Now, 𝐺𝑄′(1,𝑇) represents the average number of impaired firms which we may find starting 

from a randomly chosen partnership. But we may also find the average outbreak of the initial 

shock, that is, the average size of the component of the impaired firms. In order to do so, I 

consider a single randomly chosen impaired firm with a number of partners which we know 

from (2.10) is given by P(x,T).  The generating function of the extended neighborhood size is 

�𝐺𝑄  (𝑥,𝑇) �
𝑑

plus the initial impaired firm. Thus, in the very fashion of (2.4), we define 𝐺𝐷(𝑥,𝑇) 

the generating function for the distribution of the components size of randomly chosen 

impaired firm16 

 
𝐺𝐷(𝑥,𝑇) = 𝑥�𝑃(𝑑)�𝐺𝑄  (𝑥,𝑇) �

𝑑
= 𝑥𝐺𝑝(

∞

𝑑=0

𝐺𝑄  (𝑥,𝑇),𝑇)  
(2.19) 

We easily find the average size of this component by means of Property 2 

 𝐺′𝐷(1,𝑇) = 𝐺𝑃( (1,𝑇),𝑇) + 𝐺′𝑃( (1,𝑇),𝑇)𝐺′𝑄
 ((1,𝑇),𝑇)    (2.20) 

Plugging (2.10) and (2.14) and applying Property 1   

 𝐺′𝐷(1,𝑇) = 1 +
𝑇 < 𝑑 > 

1 − 𝑇 �< 𝑑2 > −< 𝑑 >
< 𝑑 > �

 (2.21) 

 

                                                           
15 Which is given by  𝐸(𝑑2) − 𝐸(𝑑)2 = < 𝑑2 > −< 𝑑 >2 
16[21], [22] define this very generating function such as 𝐻0(𝑥) = 𝑥(𝐻1(𝑥,𝑇);𝑇). However, as I demonstrated, their 
method is easily implemented into [13] methodology by means of the referred proprieties of generating functions 
which we further developed in order to account for the defaulting process. 
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3.7. The Threshold for Homogeneous districts 

Therefore, I offer the crucial result of the analysis. As stated, we cannot track down for the 

expansion of the crisis in our business district without the employment of mean-field 

approximation. However, we may use (2.16) to settle the threshold for the general diffusion of 

the crisis engendered by the initial shock. In fact, notice that when the transmission 

parameter defined in (2.7) is such that the denominator of (2.14) reaches the critical value of 

0, both 𝐺𝑄′(1,𝑇) (the number of impaired firms) and 𝐺′𝐷(1,𝑇) (the relative size of the sub-

networks they belong to) skyrocket. That is, in the limit we expect a non-zero fraction of the 

firms of the district to default (given by the size of the component which the initially impaired 

firm belongs to). The critical value is then obtained through: 

 
1 − 𝑇𝐷 �

< 𝑑2 > −< 𝑑 >
< 𝑑 >

� = 0 

 

𝑇𝐷 =  
< 𝑑 >

< 𝑑2 > −< 𝑑 >
 

 

 

 

(2.22) 

We had obtained the threshold condition 𝑇𝐷(𝐸[𝑑]; < 𝑑2 >), independently of the chosen 

distribution for the business relations of the clusters’ firms. As noticed by various authors 

([18], [13], [22]) the variance of the agents’ connections is the critical element which 

determines resilience to contagion. Essentially, the threshold for the system to be affected by 

an exogenous shock is negatively influenced by the connectivity fluctuations: high variance 

implies that our network is populated by a number of agents heavily connected with a 

majority of low connected ones. Once the more connected agents are impaired, the shock is 

easily diffused to other firms, which are plausibly connected with the higher connected ones. 

In that sense it is easy to understand the positive effect produced by the average number of 

connections < d >. An economic district endowed with a regular structure of relations is less 

prone to financial infection diffusion than a district characterized by unbalanced 

relationships, as it could be with the presence of a dominant company which coordinates a 

number of small sub-suppliers. Therefore, the economic insight of this outcome is 

straightforward. Notice that this result differs from the contagion cascade threshold (1.9) in 

the sense that it derives an optimal size with respect to the overall distribution and number of 

relations among agents, instead of the number of economic actors. However, as it is proved in 

chapter 4, it is possible to bridge the two results by means of a Poisson process for the 
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relationships generation, if we further impose that each agent has (𝑛 − 1) relationships in the 

graph. 

3.8. Heterogeneity of population in the Industrial District 

The tools we developed in section 2.3 were addressed at deriving the crucial condition (2.22), 

which does not depend on any pre-determined distribution we may decide to use to describe 

the business relations within an industrial district. However, given that we want to study the 

financial resilience of a developed district with specialized agents (i.e. not all the skills are 

transferable), in which financial intermediates act to mediate the business risk, collect savings 

and ease the economic transitions, we should bring one step further the characterization of 

the district we modeled in Section 2.1. Consequently, we make a major assumption 

concerning the structure of the economic relations apparently similar to the one we used in 

Section 1.2.1 for our complete deterministic model. That is, we assume that any financial 

relation between the firms is mediated by the saving banks and these latter have only indirect 

connections among them.  In Figure 8 I produced two examples of bipartite networks, in 

which agents of one group are connected with the other type. At one (unrealistic) extreme, 

every industrial firm is connected with each bank and vice versa. Conversely, if we assume for 

the sake of realism that the district is populated by a scarce relative number of saving banks 

which connect a multiplicity of firms which do not usually have direct relation with many 

banks, we are approaching the right part of Figure 8.  

  
Figure 8.1 -  Complete Bipartite Network 

for 10 firms and 5 saving banks 

Figure 8.2 -  Bipartite Network for 4 firms and 2 

saving banks 

Firm1

BankB

Firm2

Firm3

BankA
Firm4

Firm5

BankC

Firm6
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The bipartite characterization of our business district is also useful in a technical sense. In 

fact, a negligible number of cycles are present in the network layer and consequently we are 

able to adopt the methods we derived in the previous section taking into account the 

heterogeneity which we discussed.  

3.9. Implementing two classes of agents in the network 

Consider the industrial cluster (N, g) populated by 𝑁𝐼 = {𝑛1𝐼 ,𝑛2𝐼 , … , 𝑛𝑁𝐼
𝐼 } small and medium 

industrial enterprises and 𝑁𝐹 = {𝑛1𝐹 ,𝑛2𝐹 , … ,𝑛𝑁𝐹
𝐹 } saving banks, such that: 

 𝑁 = � ⋃ 𝑛𝑖
𝑗

𝑖
𝑗∈{𝐼,𝐹}

. 

The heterogeneity of economic agents is accounted by means of the following specifications: 

1. Two different probability distributions for the degrees of economic connections, 

expressed by 𝑃𝐼(𝑑) for the industrial firms and 𝑃𝐹(𝑑) for the saving banks 

2. Two average  integrated probabilities of financial infection represented by 𝑇𝐼𝐹 for the 

contagion which stems from industrial firms to banks and 𝑇𝐹𝐼 for the backward 

mechanism. These two parameters are obtained in the very same fashion  with which 

we derived (2.7) 

3. ∀ 𝑘, 𝑗 ∈ 𝑖, 𝑖 ∈ {𝐼,𝐹} ∄ �𝑛𝑘𝑖 𝑛𝑗𝑖� 𝑠. 𝑡 𝑃�𝑛𝑘𝑖 𝑛𝑗𝑖� ≠ 0. That is to say, two agents of the same type 

may be only indirect neighbours, as Firm 4 and Firm 3 (but not Firms 1-4 with Firms 5-

6) in Figure 8.2 

Specifications 1-3 require us to build up a new set of generating functions to explain the 

diffusion process among the actors of a class. In fact, the bipartite layer we decided to adopt 

for our network prevents us to offer a direct translation of the results we derived in the last 

section. This notwithstanding, it is still possible to find a sufficient amount of regularity in our 

graph. For instance, consider a random actor i : we know for sure that its neighbours’s 

neighbours belong to its very class and are characterized by the same generating function that 

it is.  Starting from the generating function for our two populations, we define, coherently 

with (2.1) and (2.4) 
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𝐺𝐼𝑃(𝑥) = �𝑃𝐼(𝑑)𝑥𝑑

∞

𝑑=0

 

𝐺𝐹𝑃(𝑥) = �𝑃𝐹 (𝑑)𝑥𝑑
∞

𝑑=0

 

 

(2.23a) 

 

(2.23b) 

 
𝐺𝐼𝑄(𝑥) = 𝑥�𝑃�𝐹(𝑑)[𝐺𝐼𝑄(𝑥)]𝑑−1

∞

𝑑=1

 

𝐺𝐹𝑄(𝑥) = 𝑥�𝑃�𝐼(𝑑)[𝐺𝐹𝑄(𝑥)]𝑑−1
∞

𝑑=1

 

 

 

(2.23c) 

 

(2.23d) 

 

Now we have to define the distribution of the neighbours’ neighbours taking into account the 

aforementioned heterogeneity of the layer. In order to do so, we go back to the generating 

function 

 
𝐺𝑗1 = � 𝑃�𝑗(𝑑)[𝐺𝑗𝑄(𝑥)]𝑑𝑗−1

∞

𝑑𝑗=1

 
 

Which we derived from (2.5). This function accounts for the number of links departing from a 

node excluding the one used to reach it. Now consider - without loss of generality- a random 

industrial firm which is in financial relations with 𝑑𝐼 banks. The probability that this firm is 

indirectly connected with j firms (the neighbours’ neighbours) equals the probability that the 

sum of all the (𝑑𝐹 − 1) relations of the 𝑑𝐼  banks is j. Hence, by means of Property 3 we 

account for all the 𝑑𝐼 relations of our random firm and obtain 

𝐺𝐼𝑃[𝐺𝐹1(𝑥)] = �𝑃𝐼(𝑑)
∞

𝑑=1

�� 𝑃�𝐹(𝑑) �𝐺𝐹𝑄(𝑥)�
𝑑𝐹−1

∞

𝑑𝐹=1

�
𝑑 

= �𝑃𝐼(𝑑)
∞

𝑑=1

[𝐺𝐹1(𝑥)]𝑑  
 

(2.24a) 

In the same fashion, a generating function 𝐺𝐹𝑃[(𝐺𝐹1)] for the neighbours’ neighbours of a 

saving bank may be derived: 

 
𝐺𝐹𝑃[𝐺𝐼1(𝑥)] = �𝑃𝐹(𝑑)

∞

𝑑=1

�� 𝑃�𝐼(𝑑) �𝐺𝐼𝑄(𝑥)�
𝑑𝐼−1

∞

𝑑𝐼=1

�
𝑑 

= �𝑃𝐹(𝑑)
∞

𝑑=1

[𝐺𝐼1]𝑑   
 

(2.24b) 

And in a similar manner we can define 𝐺𝐼𝑃�[(𝐺𝐹1(𝑥))] and 𝐺𝐹𝑃�[(𝐺𝐼1(𝑥))]. 

Generating functions (2.24a) and (2.24b) are our workhorses. We are going to implement in 

them the two average integrated transmissions through which we will obtain the generating 

functions of the potential insolvencies for firms and saving banks of the bipartite network. For 
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the sake of brevity we develop the results just for the industrial firms, given that the 

derivation for saving banks is symmetric. Again, we employ the binomial distribution to 

express the diffusion process of the initial shock among the industrial firms. Hence, the 

probability is given by 

 
𝐺𝐼𝑃[(𝐺𝐹1(𝑥,𝑇𝐹𝐼),𝑇𝐼𝐹] = �𝑃𝐼(𝑑)��

𝑑
𝑘
� (1 − 𝑇𝐼𝐹)𝑑−𝑘

𝑑

𝑘=0

(𝑇𝐼𝐹(𝐺𝐹1(𝑥,𝑇𝐹𝐼))𝑘
∞

𝑑=0

 
 

(2.25) 

And, applying the Binomial Identity, 

 𝐺𝐼𝑃[(𝐺𝐹1(𝑥,𝑇𝐹𝐼),𝑇𝐼𝐹] = 𝐺𝐼𝑃(1 + 𝑇𝐼𝐹(𝐺𝐹1(𝑥,𝑇𝐹𝐼) − 1) (2.26) 

How it can be easily inferred, explicit equations become cumbersome. However, I use the form 

derived in (2.12) and proprieties of generating functions in order to develop a clean 

expression for the updated version of (2.16). From (2.12) we know that 

 
𝐺𝑃�(𝑥,𝑇) = 𝑥

𝐺′𝑃(𝑥,𝑇)
𝐺′𝑃(1,𝑇)

 
 

Consequently, 

 
𝐺′𝑃�(1,𝑇) =

𝐺′𝑃(1,𝑇)
𝐺′𝑃(1,𝑇)

+
𝐺′′𝑃(𝑥,𝑇)
𝐺′𝑃(1,𝑇)

= 1 +
𝐺′′𝑃(𝑥,𝑇)
𝐺′𝑃(1,𝑇)

 
(2.27) 

Hence, plugging (2.27) into the updated expression for (2.16) 

 𝐺′𝐼𝑄(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹) =
1
2
�1 + 𝐺′𝐼𝑃�(𝐺𝐼𝑄(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹)𝐺′𝐹1(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹)𝐺′𝐼𝑄(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹)�  

We get the new expression for (2.18) 

 𝐺′𝐼𝑄(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹) =

=
1

2 − �1 +
𝐺′′𝐼𝑃 ��𝐺𝐹

1(𝐺𝐼𝑄(1,𝑇𝐹𝐼)� ,𝑇𝐼𝐹� 𝐺′𝐹1(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹)

𝐺′𝐼𝑃 ��𝐺𝐹
1(𝐺𝐹𝑄(1,𝑇𝐹𝐼)� ,𝑇𝐼𝐹�

�

 

(2.28) 

Similarly to the homogeneous network case, 𝐺′𝐼𝑄(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹) represents the average number 

of impaired industrial firms which we may find starting from a randomly chosen saving bank. 

However, we are still interested in the size of the average component of the defaulted firms 

generated by the initial exogenous shock which impaired one industrial firm. The impaired 
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firms which constitute this random firm’s second order neighbours are described through the 

generalization of the generating function defined in (2.19), such that 

 𝐺𝐼𝐷(𝑥,𝑇𝐹𝐼 ,𝑇𝐼𝐹) =

= 𝑥�𝑃𝐼(𝑑) �𝐺𝐼𝑄�(𝐺𝐹1(𝑥,𝑇𝐹𝐼),𝑇𝐹𝐼 ,𝑇𝐼𝐹��
𝑑

∞

𝑑=0

= 𝑥𝐺𝐼𝑝(𝐺𝐼𝑄�(𝐺𝐹1(𝑥,𝑇𝐹𝐼),𝑇𝐼𝐹�) 

(2.29) 

Then, the average size of the component of impaired industrial firms is again obtained by 

means of Property 2 

 𝐺′𝐼𝐷(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹) = 1𝐺𝐼𝑃(𝐺𝐼𝑄(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹)) + 𝐺′𝐼𝑃(𝐺𝐼𝑄(∙))𝐺′𝐹1(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹)𝐺′𝐼𝑄(∙) 

 

Hence, 

 

 

 

𝐺′𝐼𝐷(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹) = 1 + 𝐺′𝐼𝑃(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹))𝐺′𝐹1(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹)𝐺′𝐼𝑄(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹) (2.30) 

Now, let’s derive 𝐺′𝐼𝑃(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹)𝐺′𝐹1(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹) =  

   

 
= 𝑇𝐼𝐹𝑇𝐹𝐼 �

< 𝑑2𝐹 > −< 𝑑𝐹 >
< 𝑑𝐹 >

� < 𝑑𝐼 > 
 

Now notice that in the long run the effects of the initial shock which impaired one firm are no 

more locally bounded within a limited group of firms when 𝐺′𝐼𝐷(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹) →  ∞ . This 

implies that either 𝐺′𝐼𝑃(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹) → ∞ or 𝐺′𝐼𝑄(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹) → ∞. However, we are not 

concerned with the first possibility, since we are considering a network with a non-trivial 

stratification and consequently< 𝑑𝐹 > ≠ 0. Hence, the latter is the crucial one. Let’s go back to 

(2.28) and notice that  

 
𝐺′′𝐼𝑃 ��𝐺𝐹

1(𝐺𝐹𝑄(1,𝑇𝐹𝐼)� ,𝑇𝐼𝐹� 𝐺′𝐹
1(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹) = (𝑇𝐼𝐹)2𝑇𝐹𝐼 �

< 𝑑2𝐹 > −< 𝑑𝐹 >
< 𝑑𝐹 >

� [< 𝑑2𝐼 > −< 𝑑𝐼 >] 
 

 

We know that 𝐺′𝐼𝑄(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹) → ∞ when its denominator goes to 0, and that is the case when  
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1 −

𝐺′′𝐼𝑃 ��𝐺𝐹
1(𝐺𝐹𝑄(1,𝑇𝐹𝐼)� ,𝑇𝐼𝐹� 𝐺′𝐹

1(1,𝑇𝐹𝐼 ,𝑇𝐼𝐹)

𝐺′𝐼𝑃 ��𝐺𝐹
1(𝐺𝐹𝑄(1,𝑇𝐹𝐼)� ,𝑇𝐼𝐹�

= 0 
 

Hence, this leads us to our final result: 

(𝑇𝐼𝐹)2𝑇𝐹𝐼 �
< 𝑑2𝐹 > −< 𝑑𝐹 >

< 𝑑𝐹 >
� [< 𝑑2𝐼 > −< 𝑑𝐼 >] = 𝑇𝐼𝐹 < 𝑑𝐼 > 

 
(𝑇𝐼𝐹𝑇𝐹𝐼) =

1

�< 𝑑2𝐹 > −< 𝑑𝐹 >
< 𝑑𝐹 > � �< 𝑑2𝐼 > −< 𝑑𝐼 >

< 𝑑𝐼 > �
  

 

 

 

(𝑇𝐼𝐹𝑇𝐹𝐼)∗ =
< 𝑑𝐼 >< 𝑑𝐹 >

[< 𝑑2𝐹 > −< 𝑑𝐹 >][< 𝑑2𝐼 > −< 𝑑𝐼 >] 

 

(2.31) 

 

 

Thus, the composite threshold is determined as the product of the two coefficients for 

financial infection defined in Specification 2. This is coherent both with the results of the 

bipartite percolation model developed by [22] and the dynamical mean-field approximation 

of [27], where the first and second moments of both the degree distributions determine the 

threshold. Specifically, the two variances  𝑉𝑎𝑟[𝑑𝐹],𝑉𝑎𝑟[𝑑𝐼] have a negative effect in lowering 

the threshold, while the expected degrees 𝐸[𝑑𝐹],𝐸[𝑑𝐼] act contrariwise. Hence, the result in 

(2.31) is coherent with (2.22). 

3.10. Some considerations 

This leads us toward some economic consideration concerning the layer of economic relations 

which bounds the agents of a heterogeneous industrial district of the kind such the one we 

illustrated. It is easy to understand that districts populated by firms and saving banks with 

homogeneous connections are less prone to financial contagion than industrial 

agglomerations in which at least one of the two sectors is characterized with a “fat-tailed” 

distribution, in which agents with many and few business relations (i.e. the bank sector) 

dominate the ones with the average degree. In fact, this is the crucial outcome offered in [18], 

which pointed out that “fat-tailed” distributions show a vanishing threshold to infections. 

Although their result is obtained in the context of a power-law distributed network with 

homogeneous agents described by 
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𝑃(𝑑) = 𝑐𝑑−𝛾 =

2𝑚2

𝑘3
 

 

 

the compatibility between (2.22) and (2.31)  assures that their result is generalizable as well 

to the case of heterogeneous relations such the ones we built in our latter model.  

IV. Simulating Financial Contagion in Homogeneous Networks 

In this section I simulate the defaulting process which we implemented in the graph structure 

of the industrial district generated by means of a Poisson process. The model is a modification 

of a SIS model with immunization and random outbreak of infection created by Phillip 

Bonacich. I characterize the graph by means of a simple Poisson random process for 

homogeneous relationships formation. This is useful to trace some parallelism with the 

models derived under assumption 3.  

4.1. Threshold derivation and a bridge toward Assumption 3 

Applying the results we obtained in section 2.3.5 we may directly calculate the threshold for 

the infection to spread among the whole cluster. Given that we employ a simple Poisson 

random process for generating the network relationships, we can extract both < 𝑑 > and   

 < 𝑑2 > from the probability mass function: 

 
𝑃(𝑑) =  

𝑘𝑑

𝑑!
𝑒−𝑘 

(3.1) 

 

By means of  ∑ 𝑑𝑃(𝑑)∞
𝑑=1  and ∑ 𝑑2𝑃(𝑑).∞

𝑑=1  Starting from the first moment < 𝑑 > 

 

 
�𝑑

𝑘𝑑

𝑑!
𝑒−𝑘

∞

𝑑=1

= �𝑘
𝑘𝑑−1

(𝑑 − 1)!
𝑒−𝑘

∞

𝑑=1

=  𝑘�
𝑘𝑑

𝑑!
𝑒−𝑘

∞

𝑑=0

= 𝑘𝑒𝑘𝑒−𝑘 = 𝑘 = < 𝑑 >  
 

 

Then, the second moment   < 𝑑2 > is 
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�𝑑2

𝑘𝑑

𝑑!
𝑒−𝑘

∞

𝑑=1

=  �𝑑
𝑘𝑑

(𝑑 − 1)!
𝑒−𝑘

∞

𝑑=1

= �𝑘𝑑
𝑘𝑑−1

(𝑑 − 1)!
𝑒−𝑘 = 

∞

𝑑=1

�𝑘(𝑑 + 1)
𝑘𝑑

𝑑!
𝑒−𝑘

∞

𝑑=0

= 𝑒−𝑘𝑘 ��𝑑
𝑘𝑑

𝑑!
+

∞

𝑑=0

�
𝑘𝑑

𝑑!

∞

𝑑=0

� = 𝑒−𝑘𝑘 �𝑘�
𝑘𝑑−1

(𝑑 − 1)!
+

∞

𝑑=0

�
𝑘𝑑

𝑑!

∞

𝑑=0

�

= 𝑒−𝑘𝑘 [𝑘𝑒𝑘 + 𝑒𝑘] =   𝑘(𝑘 + 1) 

 

 

 

 

 

 

(3.2) 

To summarize, with a Bernoulli distribution, < 𝑑 > =  𝑘 and  < 𝑑2 > =  𝑘2 + 𝑘  

The threshold derived in section 2.3.5 is then equal to 

 𝑇𝐷 =  
< 𝑑 >

< 𝑑2 > −< 𝑑 >
=  

𝑘
𝑘(𝑘 + 1 − 1)

=  
1
𝑘

 
(3.3) 

Now, notice that the simple Poisson random models narrow the distance with models 

restricted by assumption 3 (homogeneous relations). In fact, we can account for assumption 3 

in graph theory imposing every firm to be connected with any other company, by generating a 

complete graph. In this case, 𝑘 = 𝑛 − 1. Consequently, exactly as in the cases of second 

chapter, the wider the population, the lower the threshold. Or, to state it in other terms, 

 𝑇𝐷 =
1

𝑛 − 1
→ (𝑛 − 1) =  

1
𝑇𝐷

  

Where 𝑛 − 1 = 𝑆0 is the network population after the initial shock which impaired one firm. 

Hence, in the case of complete relationships, we are back within the boundaries of assumption 

2, and consequently the threshold identifies the district optimal size in terms of the number of 

agents. Apart from the mathematical insights, the outcome I just derived is interesting to 

remark the increase in realism we obtained relaxing assumption 3 through the graph 

structure. In fact, in order to get back within assumption 3 we had to impose to our graph not 

only the distribution (the Poisson process) but also the number of connections among the 

agents.  

4.2. Financial contagion with Mathematica: simulation outcomes 

Now, assume that we are considering a generic District Environment similar to the one 

depicted in Section 1.1.4. In this case, the industrial district is populated with 300 firms, one 

of which is randomly affected by a severe loss. Before defaulting (at a fixed rate  per unit of 

time), the impaired firm continues its activity for 𝜏𝑖 = 1 receiving financial assistance (thus 
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contracting debts ) from its business partners. Hence, the transmission of the shock is defined 

by means of the T parameter (section 2.3.3) which we examine for the critical value 𝑇𝐷 

derived in (3.3). This allows us to boil down the characterization of the financial shock 

transmission to the average financial exposure in the district. 

𝑇 = 1 − 𝑒−𝛽 → ln 𝑒−𝛽 = ln[1 − 𝑇] 

 −𝛽∗ = 𝑙𝑛 �
𝑘 − 1
𝑘

� →   𝛽∗ = 𝑙𝑛 �
𝑘

𝑘 − 1
�  

Hence, the critical value which determines the emergence of a giant component of insolvent 

relationships is derived by means of average financial exposure. Finally, we characterize the 

relationships layer assuming that the probability for a link coming into existence is 𝑝 = 1
𝑛+1

 . 

So, in the limit of big populations the probability for two clusters to be attached through the 

same edges goes to zero of loops appear17. We execute the simulation for T = 100 periods. 

Now, we calculate the threshold imposing the aforementioned tree structure by means of 

𝑝 =  1
𝑛+1

  and applying the conditions derived in section 3.1. With 300 firms the average 

degree is nearly 2.3. Hence, substituting the critical value 𝑇𝐷 which we derived in the 

contagion process and plugging 𝜏𝑖 = 1 we obtain the critical level of financial exposure of our 

district: 

 𝛽∗ ≅  ln �
2,4

2,4 − 1
� = 0.53  

It is then possible to run a simulation for a given District Environment  

𝐸�1 =  { 𝛽̅ = 4,5𝑥10−3, 𝜏𝑖 = 1 , 𝑆𝟎 = 299,  𝐼𝟎 = 1}  with an infection parameter equal to the one 

we derived in section 1.2.3 and obtain that the diffusion does not spread. The result is 

reported in Figure 10. Clearly, given the initial conditions and the degree distribution, no 

infection had followed the initial shock and the impaired firm does not transmit to its cluster 

the contagion. Now we replicate the simulation for a slightly different environment, in which 

the diffusion parameter 𝛽̅ is such that 𝛽 ��� >  𝛽∗. Considering  𝛽̅ = 0.6 we define a second 

Industrial District Environment 𝐸�1 =  � 𝛽̅  =  0.6 , 𝜏𝑖 = 1 , 𝑆𝟎 = 299,  𝐼𝟎 = 1�. the result is 

reported in Figure 11. As we can see, the entire component has been infected as the outcome 

of the epidemic. However, notice two fundamental differences from the results of section 

1.1.4. First, the threshold derived in the graph structure is realistically higher. In fact, it 
                                                           
17 See [13], p. 92 for further details on this and other thresholds for Poisson random graphs. 
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stances that a given firm may have outstanding credits for 60% of its capital with respect to 

one its impaired relationships. Secondly, even in the case of transmissions higher than the 

threshold, it can be the case that a default cascade does not follow [22] because the initial 

shock affected an isolated small component.  

 

 
Figure 10.1 The network structure for 𝐸�1 
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Figure 10.1 Cumulate number of impaired firms for 𝐸�1 

 
Figure 11.1 The network structure for 𝐸�2 

 

 
Figure 11.2 Cumulate number of impaired firms for 𝐸�2 
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V. Conclusions  

In this work, we attempted to frame some relevant features of the economic organization of 

industrial districts within an analytic structure with the purpose to study the systemic effects 

of an exogenous economic shock. However, the coexistence of a variety of industrial districts 

endowed with a wide array of features impedes a univocal characterization based on a 

universal model. In fact, at least two levels of complexity act simultaneously in shaping an 

industrial district: the structure of economic interactions and the degree of heterogeneity of 

the industrial population. Consequently, grounded on the definitions of the reviewed 

literature, we provided an identification of the “simplest” economic organization of an 

industrial district – the homogeneous horizontal district. Subsequently, in the course of the 

analysis, we proceeded by a progressive relaxation of assumption 3 and 2, introducing a 

higher level of complexity in order to build a more general framework. Eventually, two 

dimensions of characterization emerge. These are defined by the possible presence of a 

composite population of specialized agents (saving banks and industrial firms) which interact 

by means of casual relations or through a specific layer of relationships, which I modelled by 

implementing an underlying graph structure. When financial contagion dynamics are 

introduced in every scenario, our findings demonstrate that it is in the interactions dimension 

(relations versus relationships) that things change manifestly. With this regard, we 

implemented a diffusion system in the sets in order to study the systemic capability of each 

district typology to withstand the possible outcomes of an exogenous financial shock which 

impairs some agents belonging to the set. In each district, the possible diffusion of the crisis 

and the extent of the consequent default cascade ensued by the first burst of defaults is 

dependent on a set of conditions which we were able to derive in analytical terms. In every 

scenario, this leaded us to the definition of a threshold that establishes the ultimate outcomes 

of an initial default burst. That is, whether a default cascade follows to the initial shock or not 

and how ruinous the cascade could be. We tested the analytic results by means of a series of 

simulations in chapter 4. The thresholds encapsulate the very peculiarities of the complexity 

that had been considered. As stated before, when we change the structure of interaction from 

simple (casual) relations to a network of solid relationships, all things equal (exposure to 

impaired agents and default rates) we also observe a qualitative change in the structure of the 

threshold. With casual relations, the threshold identifies the optimal size of the industrial 

district in terms of the number of agents, conversely, when relationships are taken into 

account, the district tolerance is determined in terms of first and second moments of the 
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degree distribution; that is, by the average number of relationships (positive effect which 

increases the tolerance) and their dispersion among the agents (negative effect). However, in 

chapter 4 we showed that it is possible to bring back the graph model under the assumption 3 

by means of a Poisson process: if this is the case, the connection between the thresholds 

derived in section one and two follows straightforwardly. Even if the characterization offered 

by means of bond percolation provides realistic insights, further work should be addressed to 

relax the assumptions stated in section (3.1). It is in fact a priority for an economic description 

of an industrial district to develop a model with weighted and directed relationships, in order 

to account for different degrees and typologies of economic relationships among the agents. 
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